高速飞行气动环境、气动特性快速预测与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高超音速飞行技术是21世纪航空航天技术发展的新制高点,目前高超音速技术已从概念和原理探索阶段进入到飞行器技术开发阶段。高超音速空气动力学技术是高速飞行器设计中的重要关键技术之一,气动力/热工程快速估算方法能够快速给出飞行器的气动力/热的大小,在高速飞行器初始概念设计和选型优化阶段有重要应用价值,建立能够对复杂三维高速飞行器气动力/热特性进行快速估算的软件平台十分必要。
     无控航天器再入大气层时在强烈的气动载荷作用下会发生解体并产生大量碎片,残存至地面的再入碎片可能会对地面产生很大威胁,提前预报再入碎片陨落时间和地点是减轻其灾害的重要措施。气动快速估算方法能够快速给出航天器和碎片所受的气动力和气动热,建立基于气动快速估算方法的碎片再入预测模型和软件平台是可行手段并具有重要应用价值。
     本文将介绍高速飞行器所在空间气动环境特性,并建立实用化的高超音速飞行器气动力/热快速估算软件平台和碎片再入预测与地面风险评估软件平台。
     首先分析高速飞行器的空间气动环境,在速度-高度图中给出流场无量纲参数分布规律和典型气动效应临界线,并对高速飞行器和再入碎片的综合气动环境进行分析。根据气动环境分析结果,论文中首次给出“软飞行”环境的概念。
     采用基于表面网格和表面流线的高超音速气动力/热快速估算方法开发气动力/热快速估算软件平台。连续流表面压力采用牛顿流模型等方法估算,气动热估算沿流线采用附面层近似解;自由分子流估算采用基于Maxwell平衡气体分布求解无碰撞Boltzmann方程得到的理论公式;过渡流估算采用桥函数方法。对几种典型高速飞行器气动特性进行估算,并与实验或CFD结果进行对比验证。结合验证计算结果,论文对影响气动估算精度的主要因素做了进一步讨论。
     基于气动估算方法建立简单外形物体的气动力/热工程估算模型,通过CFD方法和DSMC方法对部分气动模型进行校验。利用简单外形物体气动估算模型,建立碎片再入预测与地面风险评估软件平台,该平台可在几分钟内完成大量碎片再入仿真分析。与国外已有类似软件相比,本文建立的碎片再入与地面风险评估软件平台能够对更多种碎片外形进行仿真分析。
The hypersonic flight is regarded as a new breakthrough of aeronautics andastronautics in21stcentury. In recent years the hypersonic technology has beenpromoted from conceptual and principal investigation phase to vehicle design anddevelopment phase. As one of the key techniques, engineering methods foraerodynamic prediction have been employed in many applications for conceptual andpreliminary design of hypersonic vehicles. Therefore it is necessary to establish asoftware platform which can predict the aerodynamics and aerodynamic heatings oncomplex three-dimensional vehicle very fast.
     The uncontrolled spacecraft like deorbited satellite or upper stage of spent rocketreenters the earth’s dense atmosphere at the end of their life. The strong aerodynamicand aerothermal loads can melt and break the structures into many pieces of debris,and the surviving ones can cause great risk to the ground. Debris reentry prediction isone way to mitigate the underlying hazard. It should be of great importance to build asoftware system to predict debris reentry based on engineering methods.
     This thesis focuses on the aerodynamic environment of hypersonic vehicles, theestablishments of hypersonic aerodynamic and aeroheating predition platform, theaerodynamic models for simple objects and debris reentry analysis and riskassessment system.
     Firstly, the aerodynamic environment of hypersonic vehicles is introduced,including the distributions of non-dimensional flow parameters and criticalaerodynamic lines in a velocity-altitude map. Then integrated analysis ofaerodynamic environment for cruising hypersonic vehicles and reentry debris will begiven. A new concept of ‘soft flight’ is proposed for the first time based onaerodynamic environment analysis.
     We establish the hypersonic aerodynamic and aeroheating predition softwareplatform via methods based on surface grids and streamlines. For continuum flow, thesurface pressure is calculated by methods of Newtonian flow model and others, and the aerodynamic heating is computed along surface streamlines using approximateboundary layer solutions. For free molecular flow, theoretical formulae by solvingcollisionless Boltzmann equation using the Maxwell equilibrium gas distribution areadopted. For transitional flow, we use bridging relations. The aerodynamic propertiesare calculated and validated for several typical configurations, comparing withexperimental data or CFD results. According to the validation work, we performfurther discussions and conclusions on some vital factors which may influenceprediction accuracy.
     The aerodynamic models for simple objects are proposed. The models arevalidated by CFD or DSMC computations. Based on the aerodynamic models ofsimple objects, we build the software system for debris reentry and risk assessment.The system can predict the reentry of hundreds of distinct debris at the same time inseveral minutes. Compared with other similar tools like DAS and ORSAT, presentsoftware system provides models for more object shapes.
引文
[1] Hallion R P. The history of hypersonics: or,“back to the future-again and again”. AIAA2005-0329,2005.
    [2] Moses P L, Rausch V L, Nguyen L T, et al. NASA hypersonic flight demonstrators-overview,status, and future plans. Acta Astronautica,2004,55:619-630.
    [3]崔尔杰.近空间飞行器研究发展现状及关键技术问题.力学进展,2009,39(6):658-673.
    [4]杨亚政,李松年,杨嘉陵.高超音速飞行器及其关键技术简论.力学进展,2007,37(4):537-550.
    [5]陈予恕,郭虎伦,钟顺.高超声速飞行器若干问题研究进展.飞航导弹,2009,8:26-33.
    [6]蔡亚梅,汪丽萍.美国的高超声速飞行器发展计划及关键技术分析.航天制造技术,2010,12(6):4-7.
    [7]张丽静,刘东升,于寸贵等.高超声速飞行器.航空兵器,2010,2:13-16.
    [8]解发瑜,李刚,徐忠昌.高超声速飞行器概念及发展动态.飞航导弹,2004,5:27-31.
    [9]赵彪.高超声速飞行器技术发展研究[硕士学位论文].哈尔滨:哈尔滨工业大学,2010.
    [10]彭钧.高超声速巡航飞行器乘波布局设计研究[博士学位论文].南京:南京航空航天大学,2007.
    [11]何烈堂.跨大气层飞行器的力热环境分析与飞行规划研究[博士学位论文].长沙:国防科技大学,2008.
    [12]王志经.吸气式高超声速飞行器设计中的一些概念研究[硕士学位论文].南京:南京航空航天大学,2007.
    [13]李晓宇.高超声速飞行器一体化布局气动外形设计[博士学位论文].长沙:国防科技大学,2007.
    [14]陈小庆.高速乘波飞行器气动布局设计研究[硕士学位论文].长沙:国防科技大学,2006.
    [15] Chase R L, Tang M H. A history of the NASP program from the formation of the jointprogram office to the termination of the HySTP scramjet performance demonstrationprogram. AIAA95-6031,1995.
    [16] Thompson R A. Review of X-33hypersonic aerodynamic and aerothermodynamicdevelopment. International Congress of the Aeronautical Sciences, Rept. ICA-0323,2000.
    [17] Marshall L A, Bahm C, Corpening G P, et al. Overview with results and lessons learned ofthe X-43A Mach10flight. AIAA2005-3336,2005.
    [18] Voland R T, Huebner L D, McClinton C R. X-43A hypersonic vehicle technologydevelopment. Acta Astronautica,2006,59:181-191.
    [19] Mercier R A and Ronald T M F. Hypersonic technology (HyTech) Program overview.13thInternational Symposium on Air Breathing Engines, Chattanooga, TN, United States,1997.
    [20] Hank J M, Murphy J S, Mutzman R C. The X-51A scramjet engine flight demonstrationprogram. AIAA2008-2540,2008.
    [21] Anonymous. The development of the X-37re-entry vehicle. AIAA2004-4186,2004.
    [22] Walker S H, Rodgers F. Falcon hypersonic technology overview. AIAA2005-3253,2005.
    [23] Walker S, Tang M, Morris S, et al. Falcon HTV-3x–a reusable hypersonic test bed. AIAA2008-2544,2008.
    [24] Tang M, Chase R L. The quest for hypersonic flight with air-breathing propulsion. AIAA2008-2546,2008.
    [25]张鲁民.航天飞机空气动力学分析.北京:国防工业出版社,2009.
    [26] Klinkrad H. Space debris: models and risk analysis. Chichester: Praxis Publishing Ltd,2006.
    [27] Oberg J E. The things that fell to the earth. Air&Space Magazine,2005, January:50-56.
    [28]都亨,张文祥,庞宝军,等.空间碎片.北京:中国宇航出版社,2007.
    [29] Ailor W H, Patera R P. Spacecraft re-entry strategies: meeting debris mitigation and groundsafety require-ments. Proceedings of the Institution of Mechanical Engineers, Part G: Journalof Aerospace Engineering,2007,221:947-953.
    [30] Eckert R G. Engineering relations for friction and hear transfer to surfaces in high velocityflow. Journal of Aeronautical Sciences,1955,22(8):585-587.
    [31] Bird G A. Molecular gas dynamics and the direct simulation of gas flows. New York: OxfordUniversity Press,1994.
    [32] Cercignani C. Rarefied gas dynamics. Cambridge: Cambridge University Press,2000.
    [33] Tsien S H. Similarity laws of hypersonic flows. Journal of Mathematics and Physics,1946,25:105-106.
    [34]瞿章华,刘伟,曾明等.高超声速空气动力学.长沙:国防科技大学出版社,2001.
    [35] zgen S, K rcal S A. Linear stability analysis in compressible, flat-plate boundary-layers.Theoretical and Computational Fluid Dynamics,2008,22(1):1-20.
    [36] Mack L M. Linear stability theory and the problem of supersonic boundary-layer transition.AIAA Journal,1975,13(3):278-289.
    [37] Coles D. Measurements of turbulent friction on a smooth flat plate in supersonic flow.Journal of Aeronautical Sciences,1954,21(7):433-448.
    [38] Deem R E, Murphy J S. Flat-plate boundary-layer transition at hypersonic speeds. AIAA65-128,1965.
    [39] Kendall J M. Private communication. Jet Propulsion Lab,1973.
    [40] Beckwith I E, Bertram M H. A survey of NASA Langley studies on high-speed transition andthe quiet tunnel. NASA TM X-2566,1972.
    [41] Fay J A, Riddell FR. Theory of stagnation point heat transfer in dissociated air. Journal ofthe Aeronautical Sciences,1958,25(2):73-85.
    [42] Gupta R N, Yos J M, Thompson R A, et al. A review of reaction rates and thermodynamicsand transport properties from an11-species air-model for chemical and thermalnon-equilibrium calculations to30000K. NASA RP1232,1990.
    [43] Gentry A E, Smyth D N, Oliver W R. The Mark IV Supersonic-Hypersonic Arbitratry BodyProgram, volume II–program formulation. Technical report, AFFDL-TR-73-159,1973.
    [44] Cohen C B, Reshotko E. The compressible laminar boundary layer with heat transfer andarbitrary pressure gradient. NACA TR1294,1956.
    [45] Sasman P K, Cresci R J. Compressible turbulent boundary layer with pressure gradient andheat transfer. AIAA Journal,1966,4(1):19-25.
    [46] Schlichting H. Boundary layer theory. Berlin: McGraw-Hill Book Company,1968.
    [47] Granville P S. The calculation of the viscous drag of bodies of revolution. David TaylorModel Basin, Report849,1953.
    [48] Hamilton H H, Greene F A, DeJarnette F R. Approximate method for calculating heatingrates on three-dimensional vehicles. Journal of Spacecraft and Rockets,1994,31(3):345-354.
    [49] Cooke J C. An axially symmetric analogue for general three-dimensional boundary layers.R&M3200, British ARC,1961.
    [50] Zoby E V, Moss J N, Sutton K. Approximate convective-heating equations for hypersonicflows. Journal of Spacecraft and Rockets,1981,18(1):64-70.
    [51] Hamilton H H, Weilmuenster K J, Horvath T J, et al. Computational/experimentalaeroheating predictions for X-33Phase II vehicle. AIAA1998-869,1998.
    [52] Hamilton H H, Weilmuenster K J, DeJarnette F R. Improved approximate method forcomputing convective heating on hypersonic vehicles using unstructured grids. AIAA2006-3394,2006.
    [53] Hamilton H H, Weilmuenster K J, DeJarnette F R. Approximate method for computinglaminar and turbulent convective heating on hypersonic vehicles using unstructured grids.AIAA2009-4310,2009.
    [54] Hamilton H H, Weilmuenster K J, DeJarnette F R, et al. Approximate method for computingthe effect of a finite catalytic wall on laminar heating rates in an equilibrium air flowfield.AIAA2012-0535,2012.
    [55] Kinney D J. Aero-thermodynamics for conceptual design. AIAA2004-31,2004.
    [56] Kinney D J, Garcia J A, Huynh L. Predicted convective and radiative aerothermodynamicenvironments for various reentry vehicles using CBAERO. AIAA2006-659,2006.
    [57] Kinney D J. Aerodynamic shape optimization of hypersonic vehicles. AIAA2006-239,2006.
    [58] Kinney D J. Aerothermal anchoring of CBAERO using high fidelity CFD. AIAA2007-608,2007.
    [59] Kinney D J. Development of the ORION Crew Exploration Vehicle’s aerothermal databaseusing A combination of high fidelity CFD and engineering level methods. AIAA2009-1100,2009.
    [60] Chen P C, Liu D D. ZONAIR: a finite-element based aerodynamic/loads system using aunified high-order sub/super/hypersonic panel methodology. Presented at Aerospace flutterand dynamics council, May8-10,2002, Sedona, AZ.
    [61] Chen P C, Liu D D. Unified hypersonic/supersonic panel method for aeroelastic applicationsto arbitrary bodies. Journal of Aircraft,2002,39(3):499-506.
    [62]黄志澄.空天飞机气动力特性的工程预测方法.气动实验与测量控制,1991,5(3):1-8.
    [63]陈志敏,雷延花.天地往返运输器气动力和气动热工程计算方法研究.西北工业大学学报,2001,19(2):205-208.
    [64]蒋友娣,董葳,陈勇.高超声速飞行器瞬态表面热流和温度的工程计算.能源技术,2007,28(6):315-318.
    [65]蒋友娣.高超声速飞行器气动热和表面瞬态温度计算研究[硕士学位论文].上海:上海交通大学,2008.
    [66]吕丽丽,张伟伟,叶正寅.高超声速再入体表面热流计算.应用力学学报,2006,23(2):259-262.
    [67]车竞,唐硕,何开锋.类乘波体飞行器气动加热的工程计算方法.弹道学报,2006,18(4):93-96.
    [68]康宏琳,阎超,李亭鹤等.高超音速再入钝头体表面热流计算.北京航空航天大学学报,2006,32(12):1395-1398.
    [69]韩东,方磊.基于流线跟踪法的气动热工程计算研究.航空动力学报,2009,24(1):65-69.
    [70]方磊.基于流线跟踪法的气动热工程计算研究[硕士学位论文].南京:南京航空航天大学,2008.
    [71]汤海荣.高超音速飞行器表面热流密度工程估算方法研究[硕士学位论文].南京:南京航空航天大学,2008.
    [72]高建力.高超声速飞行器气动特性估算与分析[硕士学位论文].西安:西北工业大学,2007.
    [73] Lips T, Fritsche B. A comparison of commonly used re-entry analysis tools. ActaAstronautica,2005,57:312-323.
    [74] Lips T, Fritsche B, Koppenwallner G, et al. Spacecraft destruction during re-entry–latestedresults and de-velopment of the SCARAB software system. Advances in Space Research2004,34:1055-1060.
    [75] Rochelle W C, Kirk B S, Ting B C, et al. Modeling of space debris reentry survivability andcomparison of analytical methods.50th International Astronautical Congress,1999,IAA-99-IAA.6.7.03.
    [76] Bouslog S A, Ross B P, and Madden C B. Space debris reentry risk analysis. AIAA-94-0591,1994.
    [77] Rochelle W, Kinsey R E, Reid E A, et al. Spacecraft orbital debris reentry aerothermalanalysis. Proceedings of the Eighth Annual Thermal and Fluids Analysis Workshop:Spacecraft Analysis and Design,1997, Houston: NASA/Johnson Space Center,1-14.
    [78] Rochelle W C, Marichalar J J, Johnson N L. Analysis of reentry survivability of UARSspacecraft. Advances in Space Research,2004,34:1049-1054.
    [79] Portelli C, Salotti L, Anselmo L, et al. BeppoSAX equatorial uncontrolled re-entry. Advancesin Space Research,2004,34:1029-1037.
    [80] Fritsche B, Klinkrad H, Kashkovsky A, et al. Space-craft disintegration during uncontrolledatmospheric re-entry. Acta Astronautica,2000,47(2-9):513-522.
    [81] Fritsche B, Koppenwallner G. Computation of destruc-tive satellite re-entries.3rd EuropeanConference on Space Debris,2001,527-532.
    [82] Fritsche B. Note on the application of SCARAB to the MIR re-entry. Proceedings of theinternational work-shop on MIR deorbit,2001,92-101.
    [83] Anderson J D. Hypersonic and high temperature gas dynamics. New York: McGraw-HillBook Company,1989.
    [84] Lees L. Hypersonic flow. In the Fifth International Aeronautical Conference, Los Angeles,1955,241-276.
    [85] Schwartz L W. Comment on ‘An empirical expression for drag coefficients of cones atsupersonic speeds’. AIAA Journal,1969,7(3):572-573.
    [86] Schultz-Grunow F. New frictional resistance law for smooth plates. NACA-TM-986,1941.
    [87] Johnson C B, Bushnell D M. Power-law velocity-profile-exponent variations with Reynoldsnumber, wall cooling, and Mach number in a turbulent boundary layer. NASA TN D-5753,1970.
    [88] DeJarnette F R and Davis R M. A simplified method for calculating laminar heat transferover bodies at an angle of attack. NASA TN D-4720,1968.
    [89] DeJarnette F R and Hamilton H H. Inviscid surface streamlines and heat transfer onshuttle-type configurations. Journal of Spacecraft and Rockets,1973,10(5):314-321.
    [90] DeJarnette F R. Calculation of heat transfer on shuttle type configurations including theeffects of variable entropy at boundary layer edge. NASA CR-112180,1972.
    [91] DeJarnette F R, Hamilton H H. Aerodynamic heating on3-D bodies including the effects ofentropy-layer swallowing. Journal of Spacecraft and Rockets,1975,12(1):5-12.
    [92] Riley C J, DeJarnette F R. Engineering calculations of three-dimensional inviscid hypersonicflowfield. Journal of Spacecraft and Rockets,1991,28(6):628-635.
    [93] Riley C J, DeJarnette F R. Engineering aerodynamic heating method for hypersonic flow.Journal of Spacecraft and Rockets,1992,29(3):327-334.
    [94] Riley C J. Application of an engineering inviscid-boundary layer method to slenderthree-dimensional vehicle forebodies. AIAA93-2793,1993.
    [95] Hayes W D. The three-dimensional boundary-layer. NAVORD Report1313(NOTS384),U.S. Naval Ordnance Test Station, Inyoken, China Lake, CA, May1951.
    [96] Vaglio-Laurin R. Laminar heat transfer on three-dimensional blunt nosed bodies inhypersonic flow. ARS Journal,1959,29:123-129.
    [97] Parhizkar H, Karimian S M H. Application of axisymmetric analog to unstructured grid foraeroheating prediction of hypersonic vehicles. International Journal of Numerical Methodsfor Heat&Fluid Flow,2009,19:501-520.
    [98] Timmer H G, Arne C L, Stokes T R Jr, et al. Aerothermodynamic characteristics of slenderablating re-entry vehicles. AIAA70-826,1970.
    [99] Wool M R. Final summary report: Passive Nonstop Technology (PANT) Program. AD/A109945,1975.
    [100]DiCristina V. Three-dimensional laminar boundary-layer transition on a sharp8deg cone atMach10. AIAA Journal,1970,8(5):852-856.
    [101]Bowcutt K G, Anderson J D Jr, Capriotti D. Viscous optimized hypersonic waveriders.AIAA87-0272,1982.
    [102]Dhawan S, Narasimha R. Some properties of boundary layer flow during transition fromlaminar to turbulent motion. Journal of Fluid Mechanics,1958,3:418-436.
    [103]沈青.稀薄气体动力学.北京:国防工业出版社,2003.
    [104]Wilmoth R G, Mitcheltree R A, Moss J N. Low-density aerodynamics of the stardust samplereturn capsule. AIAA97-2510,1997.
    [105]Ivanov M S, Markelov G N, Gimelshein S F, Mishina L V, Krylov A N, Grechko N V.High-altitude capsule aerodynamics with real gas effects. J Spacecr Rockets,1998,35(1):16-22.
    [106]徐姗姝.过渡区飞行器流场的数值模拟研究[博士学位论文].北京:清华大学,2008.
    [107]Kotov V M, Lychkin E N, Reshetin A G, et al. An approximate method of aerodynamiccalculation of complex shape bodies in a transition region. Rarefied Gas Dynamics Vol.1,Proc.13th Symp., Novosibirsk, Plenum Press, New York,1982, pp.487-495.
    [108]Potter J L, Peterson S W. Local bridging to predict aerodynamic coefficients in hypersonic,rarefied flow. J Spacecr Rockets,1992,29(3):344-351.
    [109]Morsa L, Zuppardi G, Schettino A, et al. Analysis of bridging formulae in transitionalregime.27th international symposium on rarefied gas dynamics, AIP conference proceedings,2011,1333:1319-1324.
    [110] Matting F W. Approximate bridging relations in the transitional regime between continuumand free-molecule flows. Journal of Spacecraft and Rockets,1971,8(1):35-40.
    [111] Nomura S. Correlation of hypersonic stagnation point heat transfer at low Reynolds number.AIAA Journal,1983,21(11):1598-1600.
    [112] Swaminathan P K, Taylor J C, Rault D F G, et al. Transition regime aerodynamic heating ofmissiles. Journal of Spacecraft and Rockets,1996,33(5):607-613.
    [113] International Organization for Standardization. Standard Atmosphere. ISO2533:1975,1975.
    [114] Kenwright D N, Henza C, Levit C. Feature extraction of separation and attachment lines.IEEE Transactions on Visualization and Computer Graphics,1999,5(2):135-144.
    [115] Kenwright D N. Automatic detection of open and closed separation and attachment lines.Proc. IEEE Visualization '98,1998,151-158.
    [116] http://qt.digia.com/.
    [117] http://www.openscenegraph.org/projects/osg.
    [118] Cleary J W. Effects of angle of attack and bluntness on laminar heating-rate distributions ofa15deg cone at a Mach number of10.6. NASA TN D-5450,1969.
    [119] Moore M, Williams J, Aerodynamic prediction rationale for analyses of hypersonicconfigurations, AIAA89-0525,1989.
    [120]Herrera B J. Results from a convective heat transfer rate distribution test on a0.0175scalemodel (22-0) of the Rockwell international vehicle4space shuttle configuration in theAEDC-VKF tunnel B (OH49B), Vol.1. NASA CR-147626,1976.
    [121]Kleb W L, Wood W A, Gnoffo P A, et al, Computational aerodynamic heating predictionsfor X-34, Journal of Spacecraft and Rockets,1999,36(2):179-188.
    [122]Detra R W, Kemp N H, Riddell F R. Addendum to 'Heat transfer to satellite vehiclesre-entering the atmosphere'. Jet Propulsion,1957,27:1256-1257.
    [123]Tauber M E. A review of high-speed, convective, heat-transfer computation methods. NASATechnical Paper2914,1989.
    [124]Zakkay V, Visich M. Pressure and Laminar Heat Transfer Distribution at the Nose Region ofa Three-Dimensional Body. International Developments in Heat Transfer, Part II, ASME,1961.
    [125]Klett R D. Drag coefficients and heating ratios for right circular cylinders in free-molecularand continuum flow from Mach10to30. Sandia Corporation,1964, SC-RR-64-2141.
    [126]Holden M S, Wieting A R, Moselle J R, et al. Studies of aerothermal loads generated inregions of shock/shock interactions in hypersonic flow. AIAA1988-477,1988.
    [127]潘沙,冯定华,丁国昊,等.气动热数值模拟中的网格相关性及收敛.航空学报,2010,31(3):493-499.
    [128]庄礼深.连续与稀薄流环境下吸气式激光推进器流场的数值模拟[硕士学位论文].北京:清华大学,2006.
    [129]Tewari A. Atmospheric and space flight dynamics. Boston: Birkh user Press,2007.
    [130]Anonymous. NSS1740.14NASA safety standard—guidelines and assessment proceduresfor limiting orbital debris. Washington, DC: NASA, Office of Safety and Mission Assurance,1995:1-67.
    [131]Baker R L, Weaver M A, Moody D M, et al. Orbital spacecraft reentry breakup. AmericanAstronautical Society, Scientific Technology Series,2001,100:365-378.
    [132]Chapman D R. An approximate analytical method for studying entry into planetaryatmospheres. NACA-TN-4276,1958.
    [133]Gallaher W H, Sibulkin M. Successful re-entry of space fragments from a decaying earthorbit. AIAA Journal,1963,1(6):1444-1445.
    [134]Anonymous. Gridded population of the world, version3(GPWv3) data collection.2005,CIESIN, Columbia University, Palisades, NY.
    [135]Patera R P. Hazard analysis for uncontrolled space vehicle reentry. AIAA2006-6500,2006.
    [136]Neyret P, Betaharon K, Dest L, et al. The Intelsat VII-A spacecraft. AIAA92-1946-CP,1992.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700