溶液结构和热力学性质的RISM理论和量子计算
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
不管是自然万物生化过程还是各种化学生产过程,大多数的化学反应都是在溶液中进行的。溶剂化效应作为一种普遍存在的现象,它对溶液中的分子微观结构和热力学性质都有重要的影响,研究其对化学反应速率、反应平衡和反应机理的影响,对工业产品的经济高效生产都有着重要的影响。参考作用点模型理论计算作为目前研究分子流体结构最为可靠的方法,它还能计算出溶剂化效应的各种热力学性质。此外,采用GAUSSIAN03程序分别优化和计算了溶液中的分子结构和热力学性质,并将其结果与参考作用点模型理论计算的结果进行了比较。本文主要内容有:
     1.应用RISM理论计算了二甲基亚砜摩尔分数为0.002下的不同温度下的溶液的微观结构性质和热力学性质。计算结果表明,DMSO加入到水中能够增强溶液的分子网络结构。温度升高,配位数减小,溶液中分子排布趋向无序。平均力势的波动增大表明分子间的诱导力表现为斥力。计算得到的各种热力学性质显示:温度升高,溶液的熵和溶剂化自由能增加,相互作用能和过剩化学位也增加,即高温下溶液越来越偏离理想溶液;空位形成能降低表明溶液分子结构在高温下更容易重组。
     2.应用RISM理论计算了TMAO摩尔分数为0.002下的298 K下的溶液的微观结构性质和热力学性质。比较和分析了溶液中TMAO分子与水分子间各原子对的径向分布函数变化情况。列举了并分析了溶液中溶剂化效应所产生的热力学性质的影响,结果表明TMAO使得溶液结构更加稳定,分子排布更加有序,是一个放热熵减过程。
     3.使用GAUSSIAN03程序对TMAO水溶液的溶剂化效应进行了量子计算,得到了TMAO分子全原子优化后的结构,列出了相应原子间的键长和键角,计算了溶剂化效应的热力学性质,并与RISM计算结果进行了比较,相关热力学量均比较接近。
Whether biochemical processes of the natural world or various chemical production processes, most of the chemical reactions are carried out in solution. Solvent effect is a widespread phenomenon, which has a major impact on the structural and thermodynamic properties. Studying chemical reaction rate, reaction equilibrium and reaction mechanism has an important economic impact on the efficient production of industrial products. As the most reliable method to study the molecular fluid structure, referenced interaction site model can also calculate the various thermodynamic properties of solvent effect. In addition, the molecular structure and solvation thermodynamic properties are carried out by GAUSSIAN 03 program. The results are compared with those of RISM. The main contents are summarized as follows:
     1. The structural and thermodynamic properties of aqueous dimethyl sulfoxide at a mole fraction of 0.002 were investigated using Referenced Interaction Site Model theory at 298 K. The results reveal that the water network structure is enhanced by the presence of DMSO. The increased fluctuation in the potential of mean force suggests that the water-induced force is repulsive. In addition, the increased entropy of solvation and free energy of solvation imply that the randomness of the solution increases with an increase in temperature. The increased interaction energy and excess chemical potential reveal that the solution deviates from an ideal solution. Furthermore, the increased cavity reorganization energy shows that the system structure reorganizes easily at high temperature.
     2. The structural and thermodynamic properties of aqueous TMAO at a mole fraction of 0.002 were investigated using Referenced Interaction Site Model theory at 298 K. We analyse the radial distribution functions of the TMAO molecules and water molecules pairs in solution and the solvent effect on the thermodynamic properties. The results reveal that the molecular structure in solution becomes more stable and orderly. The solvation process is radiative and entropy consumption.
     3. The solvent effect of aqueous TMAO is studied by GAUSSIAN03 program. We carry out the optimized structure by the all atoms model and list the bond length and bond angel. In addition, we compute the thermodynamic properties by the program, which are consistent with those of RISM.
引文
[1]Hohenberg P, Kohn W. Inhomogeneous Electron Gas[J]. Phys. Rev.,1964,136:B864-B871
    [2]Kohn W, Sham L. Density-functional thermochemistry. Ⅲ. The role of exact exchange[J]. J. Chem. Phys.,1993,98:5648-5652
    [3]Pople J A, Santry D P, Segal G A. Approximate Self-Consistent Molecular Orbital Theory. Ⅰ. Invariant Procedures[J]. J. Chem. Phys.,1965,43:S129-S147
    [4]Pople J A, Segal G A. Approximate Self-Consistent Molecular Orbital Theory. Ⅱ. Calculations[J]. J. Chem. Phys.,1965,43:S136-S149
    [5]Stewart J J P. In:Lipkowitz K B, Boyd D B, eds. Reviews in Computational Chemistry. Vol.1[M]. New York:VCH Publishers,1990:45-48
    [6]Wimmer E. In:Schleyer P V R, Allinger N L, eds. The Encyclopedia of Computational Chemistry. Vol.3[M]. Chichester:John Wiley & Sons Inc,1998:1559-1579
    [7]Morokuma K. In:Westmoreland P R, Kollman P A, Chaka A M, eds. Final Report on Applications of Molecular and Materials Modeling[M]. Dordrech:Kluwer Academic Publisher,2002.7-16:292-296
    [8]Curtiss L A, Raghavachari K, Trucks G W, Pople J A. Gaussian-2 theory for molecular energies of first-and second-row compounds[J]. J. Chem. Phys.,1991,94(11): 7221-7230
    [9]Curtiss L A, Raghavachari K, Redfern P C, Pople J A. Gaussian-3 (G3) theory for molecules containing first and second-row atoms[J]. J. Chem. Phys.,1998,109(18): 7764-7776
    [10]Jorgensen W L, Madura J D, Swenson C J. Optimized intermolecular potential functions for liquid hydrocarbons[J]. J. Am. Chem. Soc.,1984,106(22):6638-6646
    [11]Brooks B R, Bruccoleri R E, Olafson B D. CHARMM:a program for macromolecular energy, minimization, and dynamics calculations[J]. J. Comp. Chem.,1983,4:187-217
    [12]Weiner P K, Kollman P A. AMBER:Assisted model building with energy refinement. A general program for modeling molecules and their interactions [J]. J. Comp. Chem.,1981, 2(3):287-303
    [13]Allinger N L. Characterization of self-assembled alkanethiol monolayers on silver and gold using surface plasmon spectroscopy[J]. J. Am. Chem. Soc.,1997,99(25):8217-8134
    [14]Maple J R, Hwang M J, Stockfisch T P, Dinur U, Waldman M. Derivation of class II force fields. Ⅰ. Methodology and quantum force field for the alkyl functional group and alkane molecules[J]. J. Comp. Chem.,1994,15(2):162-182
    [15]Halgren T A. Computational methods for biomolecular docking[J]. J. Comp. Chem.,1996, 17(5-6):490-641
    [16]Osawa E, Lipkowitz K B. In:Lipkowitz K B, Boyd D B, eds. Reviews in Computational Chemistry. Vol.6[M]. New York:VCH Publishers,1995:355-381
    [17]Wertheim M S. Exact solution of the Percus-Yevick integral equation for hard spheres[J]. Phys. Rev. Lett.,1963,10(8):321-323
    [18]Blum L. Mean spherical model for asymmetric electrolytes.2. Thermodynamic properties and the pair correlation function[J]. Mol. Phys.,1975,30(5):1529-1535
    [19]Wei D Q, Blum L. On the mean spherical approximation for hard ions and dipoles[J]. J. Chem. Phys.,1987,87(5):2999-3007
    [20]Baxter R J. Percus-Yevick Equation for Hard Spheres with Surface Adhesion[J]. J. Chem. Phys.,1968,49(6):2770-2774
    [21]Wertheim M S. Exact Solution of the Mean Spherical Model for Fluids of Hard Spheres with Permanent Electric Dipole Moments[J]. J. Chem. Phys.,1971,55(9):4291-4298
    [22]Blum L, Herrera J N. Ionic solutions in the binding mean spherical approximation: Thermodynamic properties of mixtures of associating electrolytes[J]. Mol. Phys.,1998, 95(3):425-429
    [23]Lu J F, Yu Y X, Li Y G. Modification and application of the mean spherical approximation method[J]. Fluid Phase Equilib,1993,85:81-100
    [24]Jiang J W, Liu H L, Hu Y, Prausnitz J M. A molecular-thermodynamic model for polyelectrolyte solutions[J]. J. Chem. Phys.,1998,108(2):780-784
    [25]Lin Yangzheng, Li Yigui, Lu Jiufang, Liu Zhiping. Study on the analytical solution of the MSA for a one-component two-Yukawa potential in bovine serum albumin—NaCl aqueous solution[J]. Mol. Phys.,2002,100(20):3251-3257
    [26]Liu Z P, Li Y G, Chan K Y. Equation of state for nonpolar, polar, chain, and associating fluids based on the dipolar Yukawa potential[J]. Ind. Eng. Chem. Res.,2001,40(3): 973-979
    [27]Andersen H C, Chandler D, Andersen H C. Roles of repulsive and attractive forces in liquids:The optimized random phase approximation[J]. J. Chem. Phys.,1972,57(5): 1929-1937
    [28]Wertheim M S. Fluids with highly directional attractive forces. Ⅰ. Statistical thermodynamics[J]. J. Stat. Phys.,1984,35(1-2):19-34
    [29]Tenno S, Hirata F, Kato S. Molecular theory of solvent effect on keto-enol tautomers of formamide in aprotic solvents:RISM-SCF approach[J]. J. Chem. Phys.,1994,100(10): 7443-7453
    [30]Barker J A, Henderson D. Perturbation theory and equation of state for liquids, Ⅱ. A successful theory of liquids[J]. J. Chem. Phys.,1993,98:1552-1565
    [31]Jin G, Donohue M D.An equation of state for electrolyte solutions.3.Aqueous solutions containing multiple salts[J].Ind.Eng.Chem.Res.,1991,30:240-248
    [32]Weeks J D, Chandler D, Anderson H C.Role of repulsive forces in determining the equilibrium structure of simple liquids[J]. J.Chem.Phys.,1971,54:5237-5247
    [33]Cotterman R L, Schwartz B J, Prausnitz J M.Molecular thermodynamics for fluids at low and high densities:Part 1.Pure fluids containing small or large molecules[J]. AIChEJ., 1986,32:1787-1798
    [35]De-Souza L E S, Benamotz D. Optimized perturbed hard-sphere expressions for the structure and thermodynamics of Lennard-Jones fluids[J]. Mol. Phys.,1993,78:137-149
    [36]Wertheim M S. Finids with highly direetional attractive forees. Ⅱ. Thermodynamic Peturbation-theory and integral-equations[J]. J. Stat. Phys.,1984,35:35-47
    [37]Wertheim M S.Thennodynamic Perturbation theory of polymerization[J]. J. Chem. Phys. 1987,87:7323 - 7331
    [38]Chapman W G, Gubbins K E, Jackson G. SAFT-Equation of state solution model for associating liquids[J]. Fluid Phase Equilib.,1989,52:31-38
    [39]Huang S H, Radosz M.Equation of state for small, large, PolydisPerse, and assoeiating molecules[J]. hid.Eng.Chem.Res.,1990,29:2284-2294
    [40]Kraska T, Gubbins K E. Phase equilib calculations with amodified SAFT equation of state.1. Pure alkanel, alkanols, andwater[J]. Ind. Eng. Chem. Res.,1996,35:4727-737
    [41]Gil.Villegas A, Galindo A, Whitehead P J. Statistical assoeiating fluid theory for chain molecules with attractive Potentials of variable range[J]. J. Chem. Phys.,1997,106: 4168-186
    [42]Gil-Villegas A., Galindo A., Jackson, G. Statistical assoeiating fluid theory for eleetrolyte solutions (SAFT-VRE)[J]. Mol. Phys.,2001,99:531-546
    [43]Tarazona P. Free-energy density functional for hard spheres[J]. Phys. Rev. A,1985,31(4): 2672-2679
    [44]Roseefeld Y. Free-energy model for the inhomogeneous hard-sphere fluid mixture and density-functional theory of freezing[J]. Phys. Rev. Lett.,1989,63(9):980-983
    [45]Phan S, Kierlik E, Rosinberg M L. Equivalence of two free-energy models for the inhomogeneous hard-sphere fluid[J]. Phys. Rev. E,1993,48(1):618-620
    [46]Kierlik E, Rosinberg M. Free-energy density functional for the inhomogeneous hard-sphere fluid:Application to interfacial adsorption[J]. Phys. Rev. A,1990,42(6):3382-3387
    [47]Zhang Xianren, Wang Wenchuan. Methane adsorption in single-walled carbon nanotubes arrays by molecular simulation and density functional theory[J]. Fluid Phase Equilib,2002, 194-197:289-295
    [48]Lu J F, Fu D, Liu J C, Li Y G Application of density functional theory for predicting the surface tension of pure polar and associating fluids[J]. Fluid Phase Equilib,2002,194-197: 755-769
    [49]Cai J, Liu H L, Hu Y. Density functional theory and Monte Carlo simulation of mixtures of hard sphere chains confined in a slit[J]. Fluid Phase Equilib,2002,194-197:755-769
    [50]Zhou J, Wang W C. Adsorption and diffusion of supercritical carbon dioxide in slit pores[J]. Langmuir,2000,16(21):8063-8070
    [51]Panagiotopoulos A Z. Direct determination of phase coexistence properties of fluids by Monte Carlo simulation in a new ensemble[J]. Mol. Phys.,1987,61(4):813-826
    [52]Kofke D A. Enhanced reactivity of fullerene cations containing adjacent pentagons[J]. J. Chem. Phys.,1993,98(5):4149-4162
    [53]Ferrenberg A M, Swenden R H. Two Types of Ordering in the Three-State Antiferromagnetic Potts Model on 3D Lattices:Monte Carlo Evidence[J]. Phys. Rev. Lett., 1998,61(23):2635-2638
    [54]Rosenbluth M N, Rosenbluth A W. Monte Carlo Calculation of the Average Extension of Molecular Chains[J]. J. Chem. Phys.,1955,23(2):356-359
    [55]Tuckerman M, Berne B J, Martyna G J. Reversible multiple time scale molecular dynamics[J]. J. Chem. Phys.,1992,97(3):1990-2001
    [56]Sarman S, Evans D J, Cumings P T. Statistical Mechanics of Nonequilibrium Liquids[J]. Phys. Rep.,1998,305:1-92
    [57]Carnahan N F, Starling K E. Equation of State for Nonattracting Rigid Spheres[J]. J. Chem. Phys.,1969,51(2):635-636
    [58]Kolafa J, Nezbeda I. The Lennard-Jones fluid:An accurate analytic and theoretically-based equation of state[J]. Fluid Phase Equilib,1994,100:1-34
    [59]Hu Y, Liu H L, Prausnitz J M. Equation of state for fluids containing chainlike molecules[J]. J. Chem. Phys.,1996,104(1):396-404
    [60]Liu Z P, Li Y Q Lu J F. Low-density expansion of the solution of mean spherical approximation for ion-dipole mixtures[J]. J. Phys. Chem. B,2002,106(20):5266-5274
    [61]王莹.溶剂效应的量子化学研究[D].四川:四川大学,2006
    [62]Ben-Naim A. Standard thermodynamics of transfer. Uses and misuses[J]. J. Phys. Chem. 1978.82:792-803
    [63]林树昌,溶液平衡[M].北京师范大学出版社,北京,1994
    [64]Barone V, Cossi M, Tomasi J. A new definition of cavities for the computation of solvation free energies by the polarizable continuum model[J]. J. Chem. Phys.1997,107:3210-3222
    [65]Zamanakos G. A Fast and Accurate Analytical Method for the Computation of Solvent Effects in Molecular Simulations[D], Ph. D. Dissertation, California Institute of Technology Pasadena, California,2002
    [66]Cohen-Tannoudhi C, Diu B, F-Laloe. Quantum Mechanics[M], Wiley Interscience Publications,1977
    [67]Jorgansen W L, Madura L D. Quantum and statistical mechanical studies of liquids.25. Solvation and conformation of methanol in water[J]. J. Am. Chem. Soc.1983,105: 1407-1413
    [68]Jorgansen W L, Swansen C J. Optimized intermolecular potential functions for amides and peptides. Hydration of amides[J]. J. Am. Chem. Soc.1985,107:1489-1496
    [69]Alagona G, Tani A. Monte Carlo and theoretical study of aqueous solutions of ethanol[J]. THEOCHEM 1988,166:375-384
    [70]Dunn W J, Nagy P I. Monte Carlo studies on aqueous solutions of methylamine and acetonitrile:hydration of sp3 and sp nitrogen[J]. J. Phys. Chem.1990,94:2099-2105
    [71]Martin D. Hauthal H G. DimethylSulfoxide[M]. New York:Wiley,1975
    [72]Jacobs S W, Rosenbaum E E, Wood D C. DimethylSulfoxide[M]. New York:Marcel Dekker,1971
    [73]Luzar A, Chandler D. Structure and hydrogen bond dynamics of water-dimethyl sulfoxide mixtures by computer simulations [J]. J. Chem. Phys.,1993,98:8160-8173
    [74]Soper A K, Luzar A. A neutron diffraction study of dimethyl sulphoxide-water mixtures[J]. J. Chem. Phys.,1992,97:1320-1331
    [75]Luzar A, Soper A K, Chandler D. Combined neutron diffraction and computer simulation study of liquid dimethyl sulphoxide[J]. J. Chem. Phys.,1993,99:6836-6847
    [76]Soper A K, Luzar A. Orientation of Water Molecules around Small Polar and Nonpolar Groups in Solution:A Neutron Diffraction and Computer Simulation Study [J]. J. Chem. Phys.,1996,100:1357-1367
    [77]Cabral J T, Luzar A, Teixeira J. Bellissent-Funel M C. Single-particle dynamics in dimethyl-sulfoxide/water eutectic mixture by neutrons[J]. J. Chem. Phys.,2000,113: 8736-8746
    [78]Madigosky W M, Warfield R W. Ultrasonic measurements and liquid structure of DMSO-water mixture[J]. J. Chem. Phys.,1983,78:1912-1917
    [79]Fuchs R, Cray G E M, Bloomfield J J. Mechanisms of Nucleophilic Displacement in Aqueous Dimethyl Sulfoxide Solutions[J]. J. Am. Chem. Soc.,1961,83:4281-4284
    [80]Ludwig R, Farrar T C, Zeidler M D. Structure of liquid N-methylacetamide:Temperature dependence of NMR chemical shifts and quadrupole coupling constants[J]. J. Phys. Chem.,1994,98:6-11
    [81]Shashkov S N, Kiselev M A, Tioutiounnikov S N, Kiselev A M. The study of DMSO/water and DPPC/DMSO/water system by means of the X-ray, neutron small-angle scattering, calorimetry and IR spectroscopy[J]. Lesieur P. Physica B,1999,271:184-191
    [82]Chalaris M, Samios J. Computer simulation studies of the liquid mixtures water-dimethylsulfoxide using different effective potential models:Thermodynamic and transport properties[J]. J. Mol. Liq.,2002,98-99:401-411
    [83]Kirchner B, Hutter J. An all-atom simulation study on intermolecular interaction of DMSO-water system[J]. J. Chem. Phys. Lett.,2002,364:497-502
    [84]Rao B G, Singh U C. A Free Energy Perturbation Study of Solvation in Methanol and Dimethy Sulfoxide[J]. J. Am. Chem. Soc.,1990,112:3803-3811
    [85]Vaisman 11, Berkowitz M L. Local Structural Order and Molecular Associations in Water-DMSO Mixtures. Molecular Dynamics Study[J]. J. Am. Chem. Soc.,1992,114: 7889-7896
    [86]Borin I. A.; Skaf M S. Molecular association between water and dimethyl sulfoxide in solution:A molecular dynamics simulation study[J]. J. Chem. Phys.,1999,110: 6412-6421
    [87]Vishnayakov A, Lyubartsev A P, Laaksonen A J. Molecular Dynamics Simulations of Dimethyl Sulfoxide and Dimethyl Sulfoxide Water Mixture[J]. Phys. Chem. A,2001,105: 1702-1710
    [88]Mancera R L, Chalaris M, Refson K, Samios J. Molecular dynamics simulation of dilute aqueous DMSO solutions.A temperature-dependence study of the hydrophobic and hydrophilic behaviour around DMSO[J]. Phys. Chem. Chem. Phys.,2004,6:94-102.
    [89]Mancera R L, Chalaris M, Samios J. The concentration effect on the 'hydrophobic' and 'hydrophilic' behaviour around DMSO in dilute aqueous DMSO solutions.A computer simulation study[J]. J. Mol. Liq.,2004,110:147-153
    [90]Zhang Q, Zhang X, Zhao D X. Polarizable force field for water-dimethyl sulfoxide systems:Ⅱ properties of mixtures by molecular dynamics simulations[J]. J. Mol. Liq., 2009,145:67-81
    [91]李以圭,陆九芳.电解质溶液理论[M].北京:清华大学出版社,2005
    [92]Mitsutake A, Kinoshita M, Okamoto Y, Hirata F. Multicanonical algorithm combined with the RISM theory for simulating peptides in aqueous solution[J]. Chem. Phys. Lett.,2000, 329:295-303
    [93]Yoshida K, Yamaguchi T, Kovalenko A, Hirata F J. Structure of tert-Butyl Alcohol-Water Mixtures Studied by the RISM Theory[J]. Phys. Chem. B,2002,106:5042-5049
    [94]Sato H, Hirata F. Equilibrium and Nonequilibrium Solvation Structure of Hexaammineruthenium (Ⅱ, Ⅲ) in Aqueous Solution:Ab Initio RISM-SCF Study[J]. J. Phys. Chem. A,2002,106:2300-2304
    [95]Imai T, Kovalenko A, Hirata F. Solvation thermodynamics of protein studied by the 3D-RISM theory[J]. Chem. Phys. Lett.,2004,395:1-6
    [96]Minezawa N, Kato A. Intramolecular Charge-Transfer State Formation of 4-(N,N-Dimethylamino) benzonitrile in Acetonitrile Solution:RISM-SCF Study[J]. J. Phys. Chem. A,2005,109:5445-5453
    [97]Freedman H, Le L, Tuszynski J A, Truong T N. Improving the Performance of the Coupled Reference Interaction Site Model-Hyper-netted Chain (RISM-HNC)/Simulation Method for Free Energy of Solvation[J]. J. Phys. Chem. B,2008,112:2340-2348
    [98]Hayaki S, Sato H, Sakaki S. A theoretical study of the liquid structure of nitromethane with RISM method[J]. J. Mol. Liq.,2009,147:9-12
    [99]Vchirawongkwin V, Sato H, Sakaki S. RISM-SCF-SEDD Study on the Symmetry Breaking of Carbonate and Nitrate Anions in Aqueous Solution[J]. J. Phys. Chem. B, 2010,114:10513-10519
    [100]Chandler D, Andersen H C. Optimized Cluster Expansions for Classical Fluids. II. Theory of Molecular Liquids[J]. J. Chem. Phys.,1972,57:1930-1937
    [101]Chandler D. Multiple time-step methods in molecular dynamics[J]. J. Chem. Phys.,1973, 59:2749-2757
    [102]Hirata F, Pettit M, Rossky P J. The interionic potential of mean force in a molecular polar solvent from an extended RISM equation[J]. J. Chem. Phys.,1982,77:509-516
    [103]Hirata F, Bull. Chemical processes in solution studied by an integral equation theory of molecular liquids[J]. Chem. Soc. Jpn.,1998,71:1483-1499
    [104]Perkyns J S, Pettitt B M. site-site theory for finite concentration saline solutions[J]. J. Chem. Phys.,1992,97:7656-7667
    [105]Kovalenko A, Hirata F. Self-consistent description of a metal-water interface by the Kohn-Sham density functional theory and the three-dimensional reference interaction site model[J]. J. Chem. Phys.,1999,110:10095-10113
    [106]Kovalenko A, Hirata F T. Theoretical study for volume changes associated with the helix-coil transition of peptides[J]. Chem. Phys. Lett.,2001,349:496-507
    [107]Tanaka H, Walsh J, Gubbins K E. Structure of water-methanol binary mixtures:role of the water-water interaction Molecular Physics:An International Journal at the Interface Between Chemistry and Physics Mol. Phys.,1992,76:1221-1233
    [108]Chandler, D.; McCoy, J. D.; Singer, S. J. Density functional theory of nonuniform polyatomic systems. Ⅰ. Rational closures for integral equations[J]. J. Chem. Phys.,1986, 58:5971-5976
    [109]Chandler D, McCoy J D, Singer S J. Density functional theory of nonuniform polyatomic systems. Ⅱ. Rational closures for integral equations[J]. J. Chem. Phys.,1986,58: 5977-5983
    [110]Zhou S Q, Zhang X P. Microscopic approach for the site distribution and thermodynamic properties of a single-component polymer subjected to an external field[J]. Phys. Rev. E, 2001,64:011112-011124
    [111]Zhou S Q. Further investigation about Lagrangian theorem-based density functional approximation:test by non-uniform polymer melt[J]. Chem. Phys.,2005,310:129-137
    [112]Zhou S Q. Polymer density functional theory approach based on scaling second-order direct correlation function[J]. J. Colloid Interface Sci.,2006,298:31-38
    [113]Zhou S Q. Formalism for calculation of polymer-solvent-mediated potential[J]. Phys. Rev. E,2006,74:011402-011413
    [114]Yu H A, Roux B, Karplus M. Solvation Thermodynamics:An approach from Analytic Temperature Derivatives[J]. J. Chem. Phys.,1990,92:5020-5033
    [115]Geerke D P, Oostenbrink C, van der Vegt N F A, van W F, Gunsteren J. An Effective Force Field for Molecular Dynamics Simulations of Dimethyl Sulfoxide and Dimethyl Sulfoxide-Water Mixtures[J]. Phys.Chem. B,2004,108:1436-1445
    [116]Berendsen J C, Crigera J R, Straatsma T P. The missing term in effective pair potentials[J]. J. Phys. Chem.,1987,91:6269-6271
    [117]Rossky P J. The Structure of Polar Molecular Liquids[J]. Annu. Rev. Phys. Chem.,1985, 36:321-346
    [118]Largo J, Solana J R. Theory and computer simulation of the coordination number of square-well fluids of variable width[J]. Fluid Phase Equilib.,2002,193:277-288
    [119]Zhou S Q. Semi-analytical hard sphere reference system theory for solvent-mediated potential (Ⅲ):test and application to system with general interaction potentials [J]. Chem. Phys. Lett.,2004,399:315-322
    [120]Zhou S Q. Universal calculational recipe for the calculation of solvent-mediated potential: (II) based on density functional theory[J]. Chem. Phys. Lett.,2004,399:323-330
    [121]Zhou S Q. Universal calculational recipe for solvent-mediated potential:based on a combination of integral equation theory and density functional theory[J]. Chem. Phys. Lett.,2004,392:110-115
    [122]周世琦.计算平均力势的理论方法[J].化学物理学报,2005,05:679-688
    [123]Yancey P H. Water stress osmolytes and proteins[J]. Am. Zool.2001,41:699-709
    [124]Rezusand Y L A, Bakker H J. Destabilization of the Hydrogen-Bond Structure of Water by the Osmolyte Trimethylamine N-Oxide[J]. J. Phys. Chem. B 2009,113:4038-4044
    [125]Arakawa T, Timasheff S N. The stabilization of proteins by osmolytes[J]. Biophys. J. 1985,47:411-414
    [126]Manoj V A, Jonathan S D, Shekhar G. Osmolyte Trimethylamine-N-Oxide Does Not Affect the Strength of Hydrophobic Interactions:Origin of Osmolyte Compatibility [J]. Biophys J.2005,89:858-866
    [127]Paul S, Patey G N. Hydrophobic Interactions in Urea-Trimethylamine-N-oxide Solutions[J]. J. Phys. Chem. B 2008,112:11106-11111
    [128]Fornili A, Civera M, Sironi M and Fornili S L. Molecular dynamics simulation of aqueous solutions of trimethylamine-N-oxide and tert-butyl alcohol[J]. Phys. Chem. Chem. Phys., 2003,5:4905-4910
    [129]Freda M, Onori G, Santucci A. Infrared Study of the Hydrophobic Hydration and Hydrophobic Interactions in Aqueous Solutions of tert-Butyl Alcohol and Trimethylamine-n-oxide[J]. J. Phys. Chem. B 2001,105:12714-12718
    [130]Michele A D, Freda M, Onori M, Santucci A. Hydrogen Bonding of Water in Aqueous Solutions of Trimethylamine-N-oxide and tert-Butyl Alcohol:A Near-Infrared Spectroscopy Study[J]. J. Phys. Chem. A 2004,108:6145-6150
    [131]Karen G, Hovagimyan, John T G. Interactions of Trimethylamine-N-Oxide and Water with cyclo-Alanylglycine[J]. J. Phys. Chem. B 2005,109:24142-24151
    [132]Sinibaldi R, Casieri C, Melchionna S, Onori G, Segre A L, Viel S, L Mannina L, Luca D. The Role of Water Coordination in Binary Mixtures. A Study of Two Model Amphiphilic Molecules in Aqueous Solutions by Molecular Dynamics and NMR[J]. J. Phys. Chem. B 2006,110:8885-8892
    [133]Fukasawa T, Tominaga Y, Wakisaka A. Molecular Association in Binary Mixtures of tert-Butyl Alcohol-Water and Tetrahydrofuran-Heavy Water Studied by Mass Spectrometry of Clusters from Liquid Droplets[J]. J. Phys. Chem. A2004,108:59-63
    [134]Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery J A Jr, Vreven T, Kudin K N, Burant J C, Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honada Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, AlLaham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Gonzalez C, Pople J A. Gaussian 03. Revision C.02, Gaussian, Inc., Wallingford CT,2004
    [135]Geerke D P, Oostenbrink C, van der Vegt N F A, van W F, Gunsteren J. An Effective Force Field for Molecular Dynamics Simulations of Dimethyl Sulfoxide and Dimethyl Sulfoxide-Water Mixture[J]. Phys.Chem. B,2004,108:1436-1445
    [136]Becke A D. Density-functional thermochemistry. III. The role of exact exchange[J]. J. Chem. Phys,1993,98(7):5648-5652
    [137]Arianna F, Monica C,Maurizio S, Sandro L. Fornili. Molecular dynamics simulation of aqueous solutions of trimethylamine-N-oxide and tert-butyl alcohol[J]. Phys. Chem. Chem. Phys.,2003,5:4905-4910
    [138]Melissa P, Zahra F, Isaac T S Li, Nikhil G, Adrienne E, Gilbert C W. Imaging Secondary Structure of Individual Amyloid Fibrils of a β2-Microglobulin Fragment Using Near-Field Infrared Spectroscopy[J]. J. Am. Chem. Soc.,2011,133:7376-7383

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700