长昆高速铁路桥隧相连高边坡设计参数研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
拟建的长昆铁路客运专线在穿越山区时,出现了许多桥隧相连工程。当前的铁路规范及手册关于桥隧相连地段工程设计形式和边坡设计参数无明确相关规定。本学位论文在总结桥隧相连工程设计特点的基础上,结合工点工程地质条件为长昆铁路雪峰山一号隧道出口边坡和大岩湾一号隧道出口边坡提出了建议性的桥隧相连设计形式。采用有限元数值分析软件MIDAS/GTS软件对不同几何设计参数下的桥隧边坡进行稳定性和动力响应分析。主要研究内容及成果如下:
     (1)结合桥隧相连工程设计特点和工点工程地质条件,提出雪峰山一号隧道出口处宜采用对接型桥隧相连形式,大岩湾一号隧道出口处宜采用串接型的桥隧相连形式。
     (2)桥基荷载作用下边坡静力分析结果表明,桩基底的应力变化随着桥基埋深增加而减少。桥基埋深大于20m时,基底等效应力变化比率小于0.1。桥基荷载能否对边坡表层产生影响,主要处决于桥基的水平位置。
     (3)两处工点不同设计参数下的动力分析结果表明,桥隧边坡表面在列车动荷载作用下的动力响应加速度峰值小于0.05g,动力响应位移峰值小于lmm。
     (4)雪峰山一号隧道出口采用对接型桥隧相连设计时,桥梁桩基埋深宜取20m,桩基承台外侧至边坡表面距离宜为5m。桥基施工时,边坡纵向开挖的安全坡率为1:0.75,且应采用台阶式的开挖方式,每8m设2m宽平台。隧道洞口侧坡坡率可取1:0.25,洞口仰坡工后采用自然坡度。
     (5)大岩湾一号隧道出口采用串接型桥隧相连设计时,桥台内置隧道的长度在0~10m范围桥隧边坡是稳定的。桥台内置隧道0~5m时,桥梁荷载对边坡整体稳定的影响较为明显,大于5m以后影响很小。隧道洞口两侧中上部是最易发生破坏的区域。
There have been many bridge and tunnel connecting section connecting section along the proposed ChangKun passenger line when pass through the mountain areas. TThere are no clear relevant railway specifications and manuals for the design form and slope design parameters of bridges and tunnels connecting section in current. In this study? a proposed design form applied for the outlet slope of Xuefengshan1st tunnel and Dayanwan11st tunnel have been created, based on summarizing the design features of bridge and tunnel connecting section and engineering geological conditions of investigated sites. The slope stability and dynamic response of bridge and tunnel slope in different geometric design parameters are analyzed with the help of MIDAS/GTS software.
     The main research contents and results are as follows:
     (1) Based on the design features of bridge and tunnel connecting engineering, the outlet slope of Xuefengshan1st tunnel is suitable for the form of butt-connected bridge and tunnel connecting section, and Dayanwan1st tunnel is suitable for the form of connected in series type.
     (2) The results of static analysis of slope under bridge loads shows that the change of stress in the bottom of the pile is reducing with the increase of depth of the abutment. When the depth of the abutment is more than20m the change of equivalent stress in the bottom of the pile is less than0.1. Whether the bridge loads has an impact on the slope surface, is mainly determined by the position of the abutment in horizontal.
     (3) From the dynamic analysis of slopes in the two investigated sites, the dynamic response peak acceleration of the bridge and tunnel slope surface under the train dynamic loads is less than0.05g and the peak displacement is less than1mm.
     (4) The bridge foundation depth should be taken as20m and the distance between outside of the pile cap and the surface of the slope should be5m when the type of bridge and tunnel connecting in the outlet slope of Xuefengshan1st tunnel is butt-connected. The safety excavation slope in longitudinal direction is1:0.75and it should be taken in the way of making a2m wide platform per8m. The desirable slope of side slope in tunnel portal is1:0.25. After the construction, the slope surface of tunnel entrance should be recovered as natural.
     (5) The tunnel slope is stable in case the length of abutment built-in tunnel ranges from0to10m when the type of bridge and tunnel connecting in the outlet slope of Dayanwan1st tunnel that connected in series. When the length that the abutment built-in tunnel ranges from0to5m, the bridge load has an obvious impact on the stability of tunnel slope and little impact beyond5m. The upper part of both sides of the tunnel entrance is the area where failure most likely to occur
引文
[1]Fellenius W. Calculation of the stability of earth dams[C] Transactions of the 2nd congress on large dams,Washington,DC.1936,4:445-463.
    [2]Bishop A W.The use of the slip circle in the stability analysis of slopes[M]. Institution of civil engineers,1955.
    [3]Janbu N. Slope stability computations[J].Publication of:Wiley (John) and Sons, Incorporated,1973.
    [4]Sarma S K. Stability analysis of embankments and slopes[J]. Geotechnique,1973, 23(3):423-433.
    [5]Sharma S, Raghuvanshi T K, Anbalagan R. Plane failure analysis of rock slopes[J]. Geotechnical & Geological Engineering,1995,13(2):105-111.
    [6]Y.X.Zhang,K.Yin, Numerical simulation of excavation of the Permanent ship lock in the Three Gorges Project [J]. Slope Stability Engineering,Yagi,Y-amagaineeVia ng,1999,Balkema,Rotterdam,345-348
    [7]寇晓东,周维垣,杨若琼FLAC-3D进行三峡船闸高边坡稳定分析[J].岩石力学与工程学报,2001,20(1):6-10.
    [8]西藏左贡县怒江大桥桥台稳定性分析,西南交通大学硕士学位论文[D],2004.
    [9]张友葩,高永涛,王杰林,方祖烈.动载荷下边坡的失稳分析[J].北京科技大学学报2004,25(2):110-116
    [10]毕继红,吴丽艳.列车荷载对桥梁及桩基下边坡的动力作用[J].岩土工程学报,2005,27(12):1458-1462.
    [11]张雷,王孟渝,叶勇,等.考虑桥基荷载的岩质边坡稳定性数值模拟研究[J].地下空间与工程学报,2009,5(006):1331-1335.
    [12]向安田.朱合华.丁文其.贾明辉.偏压连拱隧道洞口仰坡失稳机制的数值分析[J].地下空间与工程学报,2008,4(1).:73-79
    [13]张利国,王春雷.客运专线桥基高边坡稳定性三维有限元分析[J].铁道工程学报,2010(002):45-48.
    [14]刘文平,赵燕明,郑颖人.岩质边坡开挖应力与变形的有限元模拟[J].后勤工程学院学报,2004,20(2):45-48.
    [15]王恭先.高边坡设计与加固问题的讨论[J].甘肃科学学报,2003,15(8):5-9.
    [16]露天矿边坡设计及工程动载作用下的稳定性分析与评价[D].长沙:中南大学,2011
    [17]李新创.露天矿最终边坡的合理设计[J].中国矿山工程,1989,3:001.
    [18]蔡美峰,乔兰,李长洪,等.深凹露天矿高陡边坡稳定性分析与设计优化[J]. 北京科技大学学报,2004,26(5):465-470.
    [19]祝玉学,张绪珍,王国中.露天矿边坡优化设计方法[J].岩土工程学报,1989,3(23.26).
    [20]程志华.二滩水电站高边坡设计与施工[J].水力发电,1997(8):35-38.
    [21王智方.坡率法在高速公路路堑高边坡设计中的应用[J].路基工程,2005,4:021.
    [22]铁道部第一勘察设计院.铁路工程地质手册.中国铁道出版社.1999
    [23]中华人民共和国行业标准,铁路桥涵地基和基础设计规范,TB10002.5-99,中国铁道出版社,2000
    [24]李秉生.水体对铁路岩石边坡岩体质量及坡度设计的影响[J].西南交通大学学报,1991,(2).
    [25]谢强.道路岩石边坡坡度确定方法的研究口[J].中国公路学报,2000,13(2):24-26
    [26]谢强.铁路岩石边坡研究[D].博士学位论文.成都:西南交通大学,1998
    [27]王飞.山区高速公路桥隧相连技术的研究与应用[J].公路工程与运输,2008,188(11).
    [28]江祖铭,王崇礼主编.公路桥涵设计手册一墩台与基础.人民交通出版社.1996:550-553
    [29]郑黎明.铁路边坡岩体的振动特性和机理[J].岩石力学与工程学报,1994,13(1):69-78.
    [30]王逢朝,夏禾,吴萱.列车振动对环境及建筑物的影响分析[J].北方交通大学学报,1999,4.
    [31]施成华.雷明锋.彭立敏.赵丹.桥隧相连结构静动力特性影响因素分析[J].中南大学学报,2011,42(4)
    [32]杨健山.傅鹤林.桥隧过渡段振动响应数值分析[J].企业技术开发.2011,30(7).
    [33]金亮星,李建.高速铁路路堑岩质边坡的动力响应分析[J].振动工程学报,2008,21(4):354-358.
    [34]金亮星.高速铁路路堑岩质边坡的动态响应及稳定性研究[D].长沙:中南大学,2005.
    [35]聂志红.高速铁路轨道路基竖向动力响应研究[D].长沙:中南大学,2005.
    [36]李冬生,马志富,徐占良.长昆线桥隧相连设计研究[J].铁道工程学报,2011(12):69-73.
    [37]赵峰,夏永旭,许东.桥隧相接隧道明洞稳定性研究[J].公路,2009,12(12):180-186.
    [38]Kaynia A M, Madshus C,Zackrisson P.Ground vibration from high-speed trains: prediction and counter measure [J].J Geotech Geoenviron Eng,2000,126 (6):531-537
    [39]Hirokazu T, Shuhei S, Xie Weiping.Train track ground dynamics due to high speed moving source and ground vibration transmission [J].Journal of Structure Mechanics and Earthquake Engineering,2001,682 (7):299-309.
    [40]刘维宁,夏禾,郭文军.地铁列车振动的环境响应[J].岩石力学与工程学报,1996,15(1):586-593.
    [41]谢伟平,胡建武,徐劲.高速移动荷载作用下的轨道地基系统的动力响应[J].岩石力学与工程学报,2002,21(7):1075—1078.
    [42]Zienkiewicz O C,Humpheson C,Lewis R W. Associated and Non-associated Viscoplasticity and Plasticity in Soil Mechanics[J].Geotechnique,1975,25(4):671-689.
    [43]郑颖人,赵尚毅等有限元极限分析法及其在边坡中的应用[M].北京:人民交通出版社,2011
    [44]LYSMER J, WASS G Shear waves in plane infinite structures[J]. Journal of the Engineering Mechanics, ASCE,1972,98(EMI):85-105
    [45]张奇华等.链子崖危岩体变形破坏系统识别[J].岩石力学与工程学报,1998,23(10):97-103
    [46]姚男.列车振动荷载作用下软硬互层边坡的变形破坏机制与稳定性分析[D].成都理工大学硕士论文,2011
    [47]梁波,蔡英.不平顺条件下高速铁路路基的动力分析[J].铁道学报,1999,21(2):84-88.
    [48]梁波,罗红,孙常新.高速铁路振动荷载的模拟研究[J].铁道学报,2006,28(4)
    [49]铁道部科情所编译.国外高速铁路技术发展研究资料之四法国TGV高速铁路[R]1991
    [50]蔡英.高速铁路路基的研究[R].西南交通大学,1995
    [51]赵文.荷载作用下岩体力学行为特征及桥基位置确定方法研究[D].博士学位论文.成都:西南交通大学,2005
    [52]建筑边坡工程技术规范(GB50330-2002)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700