海域岛礁岩体质量分类体系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以舟山大陆连岛工程为依托,交通部开展了题为“跨海特大跨径钢箱梁悬索桥结构特性及技术标准研究”的国家科技支撑计划课题,本文以该课题的子课题“海域岛礁桥梁地基岩体质量分类体系指南研究”为契机,结合西堠门大桥的工程实践,以北塔基老虎山岛礁为研究对象,以分级方法的发展趋势及对比分析为指导,以海域岛礁岩体的工程地质特点为基础,以岩体质量分级控制因素的选取原则为依据,开展海域岛礁岩体质量分类体系研究。
     论文首先总结了岩体质量分级方法的发展趋势,并对国内外多种岩体质量分级(类)方法进行了归类和对比分析,确定采用多因素多指标的复合指标分级方法用于海域岛礁岩体分级。随后从老虎山岛礁的工程地质条件出发,系统归纳了海域岛礁岩体的工程地质特点。依据分级因素的选取原则,采用岩石力学性质、岩体结构类型、结构面发育特征、风化状况、地下水条件5项分级控制因素,作为海域岛礁岩体质量分级体系的基本单元。并分别选取岩石单轴饱和抗压强度RQb、岩石质量指标RQD(或岩体块度指数RBI)、岩体完整性系数Kv、风化程度系数KY对上述分级控制因素进行量化分界,然后根据因素乘积法建立上述指标间的函数关系Z(Rb,RQD,Kv,KY)或Z(Rb,RBI,Kv,KY),并视地下水状况采用地下水影响修正值T对岩体质量基本评分值Z进行修正,最终以岩体质量修正评分值[Z]作为评价岩体质量级别的复合指标。之后,选取国内外有代表性的岩体质量分级方法对海域岛礁岩体质量分级体系进行了可靠性验证。
     基于海域岛礁岩体质量分级体系,开展了老虎山岩体质量分级和结构面工程地质分类,结合对海域岛礁岩体的力学参数取值研究,建立了反映老虎山桥基边坡质量的综合岩体质量分级(含结构面)及其配套的变形和强度参数体系。最后,提出了指南编制的指导思想与原则,确定了指南的主要内容和体系结构,为制定《海域岛礁岩体质量分类体系指南》奠定了基础。
Based on Zhoushan mainland link project, The Ministry of Transport started a national technology project titled "Study on Structure Characteristics and Technical Standards of Long Span Suspension and Steel Box Girder Sea-Crossing Bridge", this thesis takes the opportunity of the sub research project of "Study on the Guide of Rock mass Quality Classification System of Sea Reefs as Bridge Foundation", depends on the engineering practice of Xihoumen Bridge, takes the north tower foundation of Laohu island as research object, guided by the development tendency and comparative analysis of classification methods, based on the engineering geological characteristics of reef rock mass and according to the select principle of classification control factors, to carry out the research of reef rock mass classification system.
     In the thesis, the development tendency of classification methods is summarized firstly, followed by a sortation and comparative analysis among different kinds of classification methods both in and abroad, and chooses the classification method of multi-factors and multi-indexes with a complex index for reef rock mass classidfication. Subsequently, from the engineering geological characteristics of the Laohu island, the engineering geological characteristics of the reef rock mass are concluded systematically. Abide by the select principle of classification control factors, use5classification control factors of rock mechanical property, rock mass structure type, characteristics of discontinuities, weathering conditions and groundwater conditions as the basic elements of reef rock mass quality classification system, and use uniaxial saturated compressive strength Rb, rock quality designation index RQD (or rock block index RBI), rock mass integrality coefficient Kv, weathering degree coefficient Ky to quantify and compartmentalize the classification factors mentioned above. Then, according to factor multiplication method the functional relation between these indexes of Z(Rb,RQD,Kv,Ky) or Z(Rb,RBI,Kv,Ky) is built up, and a modifier T which depends on groundwater conditions is used to modify the basic scoring value Z, and finally take the modified scoring value [Z] as the complex index which indicates the quality level of the rock mass. After that, the dependability of reef rock mass classification system is validated by several rock mass classification methods commonly used both in and abroad.
     Based on the reef rock mass classification system, the study on rock mass quality classification and engineering geological rating of discontinuities of the Laohu island are carried out, combined with the value-taking of mechanical parameters of the rock mass, the comprehensive rock mass (including discontinuities) classification of the Laohu island and corresponding value-taking system of deformation and strength parameters are built up. Finally, the guideline and principles for the establishment of the classification guide are presented, and the main contents and Structure are determined too, which lay the foundation for the establishment of Guide on Rock mass Quality Classification System of Sea Reefs.
引文
[1]胡卸文,朱海勇,吕小平,潘永坚.大跨度高塔柱桥基边坡稳定性研究[J].岩石力学与工程学报,2007,26(增1):3177-3182.
    [2]刘佑荣,唐辉明.岩体力学[M].北京:化学工业出版社,2008:115-128.
    [3]陈昌彦,王贵荣.各类岩体质量评价方法的相关性探讨[J].岩石力学与工程学报,2002,21(12):1894-1900.
    [4]张敢生,戚文革.矿山爆破[M].北京:冶金工业出版社,2009:6-9.
    [5]康小兵,许模,陈旭.岩体质量Q系统分类法及其应用[J].中国地质灾害与防治学报,2008,19(4):91-95.
    [6]Barton N. Rock mass classification and tunnel reinforcement selection using the Q-system[A]. In: Proc. Symp. Rock Class. Eng. Purp. ASTM Special Technical Publication 1984[C]. Philadelphia:[s.l.].1988.159~88.
    [7]Barton N R, et al. Engineering classification of rock masses for the design of tunnel support[J]. Rock Mechanics,1974: 189~236.
    [8]Bieniawski Z T. Engineering rock mass classification[M]. New York:Science Press, 1989:180-250.
    [9]黄润秋,王仕天,胡卸文.高拱坝坝基重大工程地质问题研究[M].西南交通大学出版社,1996:172-177.
    [10]刘业科,曹平,衣永亮,等.基于地下深部工程岩体特性的RMR系统修正[J].中南大学学报(自然科学版).2010,41(4):1497-1505.
    [11]孙东亚,陈祖煜,杜伯辉,曹永成.边坡稳定性评价方法RMR-SMR体系及其修正[J].岩石力学与工程学报.1997,16(4):297-304.
    [12]Romana M. SMR classification.In: Proc.7th ISRM Congress,1991, 955~960.
    [13]Romana M. A geomechanical classification for slopes:slope mass rating. In: Comprehensive Rock Engineering. Pergamon Press, Oxford: 1993, 3: 575~600.
    [14]Romana M. New adjustment ratings for application of Bieniawski classification to slopes. In: Int. Symposium on the Role of Rock Mechanics. ISRM, Zacatecas, 1985, 49~53.
    [15]丁向东,吴继敏,顾俊.水利工程岩体质量分类方法综述[J].水电能源科学,2006, 24(4):44-49.
    [16]中华人民共和国国家标准.工程岩体分级标准(GB50218-94) [S].北京:中国计划出版社,1994.
    [17]何青峰,赵法锁,等.CSMR分级方法在边坡工程中的应用[J].地球科学与环境学报,2007,29(2):196-198.
    [18]李胜伟,李天斌,王兰生.边坡岩体分类体系的CSMR法及应用[J].地质灾害与环境保护,2001,12(2):7-13.
    [19]葛华,吉峰,等.岩体质量分级方法—CSMR法的修正及其应用[J].地质灾害与环境保护,2006,17(1):90-94.
    [20]中华人民共和国国家标准.水利水电工程地质勘察规范(GB50287-99) [S].北京:中国计划出版社,1999.
    [21]刘启千,徐光黎.工程岩体质量分级的模糊综合评判[J].地球科学——中国地质大学学报,1989,14(3):291-296.
    [22]郝哲,汪明元.公路隧道岩体分级的模糊综合评判法[J].长江科学院院报,2005,22(5):55-57.
    [23]徐波,任光明,刘应龙,熊靖辉.围岩质量分级的模糊综合评判研究[J].中国煤炭地质,2009,21(1):43-58.
    [24]叶海旺,朱瑞赓.基于模糊综合评判的岩石分级系统研究[J].武汉大学学报,2009,25(5):47-49.
    [25]贾超,肖树芳,刘宁.可拓学理论在洞室岩体质量评价中的应用[J].岩石力学与工程学报,2000,22(5):751-756.
    [26]胡宝清.可拓评价方法在围岩稳定性分类中的应用[J].水利学报,2000(2):66-70.
    [27]王锦国,周志芳,杨建,等.溪洛渡水电站坝基岩体工程质量的可拓评价[J].勘察科学技术,2001(6):25-29.
    [28]周汉民.岩体质量的可拓学评价方法在边坡工程中的应用[J].矿业快报,2003(12):13-15.
    [29]原国红,陈剑平,马琳.可拓评判方法在岩体质量分类中的应用[J].岩石力学与工程学报,2005,24(9):1539-1544.
    [30]魏一鸣,范体均,童光煦.基于神经网络的岩体质量模式识别[J].武汉化工学院学报,1994,16(3):62-65.
    [31]李强.BP神经网络在工程岩体质量分级中的应用研究[J].西北地震学报,2002,24(3):220-224.
    [32]赵红亮,陈剑平.人工神经网络在澜沧江某电站坝基右岸复杂岩体分类中的应用[J].煤田地质与勘探,2003,31(1):31-33.
    [33]王彪,陈剑平,李钟旭,等.人工神经网络在岩体质量分级中的应用[J].世界地质,2004,23(1):64-68.
    [34]杜时贵,李军.岩体质量的分形表述[J].地质科技情报,1997,16(1):91-96.
    [35]彭振华,丁浩,连建发,等.分形理论在地下工程岩体质量评价中的应用[J].隧道建设,2003,23(1):17-20.
    [36]刘树新,张飞.三维岩体质量的多重分形评价及分类[J].岩土力学,2004,25(7):1116-1121.
    [37]范卫锋,林启太.基于分形理论的岩石质量评价[J].矿业研究与开发,2005,25(3):31-33.
    [38]魏一鸣,陶建宝.基于灰色关联度的岩体质量评价[J].有色矿冶,1994(2):9212.
    [39]李长洪.岩体分类的灰色聚类理论及应用[J].冶金矿山设计与建设,1995(2):20-25.
    [40]冯玉国.灰色优化理论模型在地下工程围岩稳定性分类中的应用[J].岩土工程学报,1996,18(3):62-66.
    [41]魏一鸣,童光煦.工程围岩结构分析专家系统[J].湖南有色金属,1995,11(1):13-15.
    [42]何水源,邓安福,张建辉.关于岩体分级专家系统的几个问题探讨[J].重庆建筑大学学报,1998,20(4):51-57.
    [43]贺怀建,白世伟,陈建.岩土工程专家系统中的推理及其应用[J].岩石力学与工程学报,2002,21(8):1239-1242.
    [44]孙恭尧,黄卓星,夏宏良.坝基岩体分级专家系统在龙滩工程中的应用[J].红水河,2002,21(3):6-11.
    [45]王石春,何发亮,李苍松.隧道工程岩体分级[M].成都:西南交通大学出版社,2007:4-10.
    [46]臧秀平,阮含婷,李萍,等.岩体分级考虑因素的现状与趋势分析[J].岩土力学,2007,28(10):2245-2248.
    [47]孙少锐,吴继敏,魏继红.隧洞围岩分类与洞径和超欠挖之间的关系研究[J].岩土力学,2005,26(8):1278-1282.
    [48]蔡斌等.《工程岩体分级标准》与Q分类法、RMR分类法的关系及变形参数估算[J].岩石力学与工程学报,2004,20(增):1677-1679.
    [49]陈近中.双江口电站工程岩体质量分级研究[D].成都:成都理工大学,2007.
    [50]万国荣,石豫川,等.SMR法在公路边坡稳定性分级中的应用[J].公路交通技术,2004(2):7-10.
    [51]黄昌乾,范建军.边坡岩体质量分类的SMR法及其应用实例[J].岩土工程技术,1998(1):7-15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700