空间多级倒立摆非线性控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以实现空间四级倒立摆实物系统稳定控制为核心,针对多级倒立摆的控制方法及其硬件结构的优化进行了研究.首先,建立了空间n级倒立摆的数学模型,提出了变增益LQR控制方法,讨论了滤除倒立摆系统中白噪声的控制方法;其次,基于变增益LQR控制方法完成了导轨受限情况下二级倒立摆逐级摆起控制仿真实验及实物实验;第三,对三级倒立摆的自动摆起问题在理论上进行了探讨,完成了三级倒立摆的自动摆起控制仿真实验;最后,对空间四级倒立摆控制系统进行了定性分析,设计了空间四级倒立摆系统的硬件结构并进行了优化,实现了世界上首例空间四级倒摆实物控制.
     本文主要内容如下:
     1.采用Lagrange方法,分别建立了空间一、二、三级倒立摆的数学模型,并给出了n级空问倒立摆系统的数学模型的统一表达式;通过对空间四级倒立摆系统建模,验证了n级空间倒立摆系统的数学模型统一表达式的正确性.
     2.针对一类自治非线性控制系统,提出了变增益LQR控制方法,并成功应用于多级倒立摆的实物控制系统.该方法是一种基于状态的增益调度反馈控制方法,其主要特点是在控制过程中,实时计算非线性控制系统的雅可比矩阵,实时求解代数黎卡提方程,进而得到随状态变化的实时反馈增益.基于变增益LQR控制方法,对LQG控制器进行了改进,仿真和实物控制实验均取得了较好的控制效果.
     3.变增益LQR控制器在倒立摆自动摆起控制中的应用.首先,实现了导轨受限情况下二级倒立摆非线性系统的逐级自动摆起控制.其次,改进了逆系统轨迹控制器,实现了基于逆系统轨迹控制的三级倒立摆自动摆起控制的仿真实验.
     4.空间四级倒立摆实物控制系统.普通倒立摆的摆杆只能在一个铅垂面内摆动,而空间倒立摆的摆杆可以在三维空间内自由转动,自由度增加一倍.因此,从控制理论和控制工程的意义上讲,空间倒立摆实物系统控制的实现要比普通倒立摆的实现困难得多,不仅因为这样的系统其变量、非线性程度及不稳定性等因素成倍增加,而且有关机械结构的设计和电子器件的选择也遇到瓶颈性的困难.本文对空间四级倒立摆系统进行了定性分析,并设计了与模型匹配的杆系结构和驱动平台.最后,实现了空间四级倒立摆控制的实物实验.实验结果表明:空间四级倒立摆系统不但具有良好的稳定性和鲁棒性,还可使倒立摆小车行走到指定的位置.
In this paper, some control methods for mult-rod inverted pendulum system are studied and the physical structure of inverted pendulum system is optimized, which is aimed to implement the stabilization of the spherical quadruple inverted pendulum sys-tem. Firstly, the mathematical model of spherical n-rod inverted pendulum is derived; the variable gain linear quadratic regulator(VGLQR) control technique is proposed, and control method for filtering the white noise from the inverted pendulum control system is discussed. Secondly, the swing-up control of nonlinear double inverted pendulum un-der restricted rail length is realized based on VGLQR control technique. Thirdly, the swing problem of triple inverted pendulum is theoretically discussed, and the simulation for swing-up of a triple inverted pendulum is achieved. Finally, the qualitative analy-sis of spherical quadruple inverted pendulum is discussed; the structure of the spherical quadruple inverted pendulum system is designed and optimized; the spherical quadruple inverted pendulum is firstly stabilized in the world.
     The main works in the thesis are as follows:
     1. The detailed process of inferring the mathematical model of spherical single/ double/triple inverted pendulum is proposed, and the model of spherical n-rod inverted pendulum(SNIP) is conclude. In addition, the model of the spherical quadruple inverted pendulum is derived via the Lagrangian method, by which the correctness of the mathe-matical model of SNIP is Verified.
     2. For a class of autonomous nonlinear control systems, the VGLQR control tech-nique is proposed, and the controller of VGLQR is successfully applied to stabilizing a multi-rod inverted pendulum. This method is a kind of gain-scheduled feed-back control technique based on states variables. The main feature of VGLQR is to obtain the Jacobi matrix and resolve the algebraic Riccati equations at each sampling time online, and a more precise real-time feedback gain matrix, which is changing with respect to states, is obtained. Based on VGLQR technique, the controller of LQG is improved, and the results of simulation and experiments illustrate the new LQG controller is of significant performance.
     3. The VGLQR control technique is applied in control systems for swing-up inverted pendulum. At first, based on VGLQR technique, the swing-up of a double inverted pendulum under restricted rail length is realized. Then, the inversion-based controller is improved, and the simulation experiment for swinging-up of the triple inverted pendulum is achieved.
     4. Physical experiment for the spherical quadruple inverted pendulum is imple-mented. Because the rod of ordinary inverted pendulum can only rotate in a plumb plane, and the rod of spherical inverted pendulum can free rotate in three-dimensional space, the degrees of freedom of the spherical inverted pendulum are as twice as that of ordinary inverted pendulum. Therefore, both in theory and practice, it is more difficult to stabilize a spherical inverted pendulum than to stabilize a ordinary inverted pendulum because not only the factors of state variables, nonlinearity and instability fold increase in spherical inverted pendulum systems but also great difficult is encountered for the design of physical construction and the component selection. In this paper, the qualitative anal-ysis of spherical quadruple inverted pendulum is discussed, and the physical construction, which is matched with the mathematical model, is designed. Finally, the physical exper-iment is very well implemented, and the result illustrates that it not only has quite good stability and robustness, but also is able to make the cart of the pendulum moving to the place where it is appointed in advance.
引文
[1]固高科技(深圳)有限公司.倒立摆与自动控制原理实验.2005.
    [2]R. H. Cannon. Dynamics of physical systems[M]. McGraw-Hill,1967.
    [3]J. F. Schaefer, R. H. Cannon. On the control of unstable mechanical systems[C]. In Auto-matic remote control Ⅲ, Proceedings of the 3th IFAC (International Federal on Automatic Control),1967,1:6C.1-6C.13.
    [4]S. Mori, H. Nishihara,K. Furuta. Control of unstable mechanical system control of pen-dulum[J]. International Journal of Control,1976,23(5):673-692.
    [5]K. Furuta, T. Okutani, H. Sone. Computer control of a double inverted pendulum [J]. Computers and Electrical Engineering.1978,5(1):67-84.
    [6]K. Furuta, K. Hiroyuki, K. Kazuhiro. Digital control of a double inverted pendulum on an inclined rail[J]. International Journal of Control,1980,32(5):907-924.
    [7]J. W. Watts. Control of an inverted pendulum[C]. ASEE Annual Conference, session 2527, 1984,706-710.
    [8]R. M. Dimeo, S. C. A. Thomopoulous. Novel control of an inverted pendulum[C]. American Control Conference,1994,2185-2189.
    [9]J. Nelson, L. G. Kraft. Real-time control of an inverted pendulum system using comple-mentary neural network and optimal techniques[C]. American Control Conference,1994, 3:2553-554.
    [10]S. Omatu, T. Ide. Stabilization of inverted pendulum by neuro-control[C]. IEEE World Congress on Computational Intelligence, IEEE International Conference on Neural Net-works,1994,4:2367-2372.
    [11]S. Deris, S. Omatu, K. Kitagawa. Stabilization of inverted pendulum by the genetic algo-rithm[C]. IEEE International Conference on Systems, Man and Cybernetics,1995,383-388.
    [12]F. Gordillo, A. Bernal. Optimal control of an inverted pendulum by genetic programming: practical aspects[C]. IEEE International Conference on Artificial Neural Networks and Genetic Algorithms,1997,144-151.
    [13]张明廉,郝健康,何卫东,孙昌龄.拟人智能控制与三级倒立摆[J].航空学报,1995,16(6):654-661.
    [14]李祖枢,徐鸣,周其鉴.一种新型的仿人智能控制器(HSIC)[J].自动化学报,1990,16(6):503-509.
    [15]张明廉,何卫东,沈程智.归约规则法仿人控制[C].第一届全球华人智能控制与智能自动化大会论文集,北京:科学出版社,1993,291-296.
    [16]涂亚庆,李祖枢.一种新型的仿人智能控制器的设计方法[J].自动化学报,1994,20(5):616-621.
    [17]郝健康,张明廉.拟人智能控制在三级倒立摆中的应用[C].第二届全国智能自动化学术年会论 文集,天津.1995,526-531.
    [18]张明廉,郝健康,何卫东,孙昌龄.拟人智能控制与三级倒立摆[J].航空学报,1995,16(6):654-661.
    [19]何彦彦,沈程智.三级倒立摆系统的可控性与可观性分析[J].北京航空航天大学学报,1996,22(5):545-549.
    [20]Weiji Chen, Lei Fang, SekUn Cheang, KamKin Lei, Feizhou Zhang. Personified intelligent control for an inverted pendulum system[C]. Proceedings of the 3th World Congress on Intelligent Control and Automation,2000,3:1702-1706.
    [21]H. Fer, D. F. Enns. An application of dynamic inversion to stabilization of a triple inverted pendulum on a cart[C]. IEEE International Conference on Control Applications,1996,708-714.
    [22]G. A. Medrano-Cerda. Robust stabilization of a triple inverted pendulum-cart[J]. Inter-national Journal of Control,1997,68(4):849-866.
    [23]K. G. Eltohamy. and Chen-Yuan, Kuo. Nonlinear optimal control of a triple link inverted pendulum with single control input[J], International Journal of Control,1998,69(2):239-256.
    [24]李德毅.三级倒立摆的云控制及动平衡模式[J].中国工程科学,1999,1(1):41-46.
    [25]李洪兴.从模糊控制的数学本质看模糊逻辑的成功[J].模糊系统与数学,1995,9(4):1-14.
    [26]李洪兴.模糊控制的插值机理[J].中国科学,E辑,1998,28(3):259-267.
    [27]李洪兴.变论域自适应模糊控制[J].中国科学,E辑,1999,29(1):10-20.
    [28]李洪兴.模糊控制的数学本质与一类高精度模糊控制器的设计[J].控制理论与应.1997,14(6):868-876.
    [29]李洪兴.模糊控制器与PID调节器的关系[J].中国科学,E辑,1999,29(2):136-145.
    [30]李洪兴,苗志宏,工加银.四级倒立摆的变论域自适应模糊控制[J].中国科学(E辑),2002,32(1):65-75.
    [31]李洪兴,苗志宏,王加银.非线性系统的变论域自适应模糊控制[J].中国科学,E辑,2002,32(2):211-223
    [32]王加银.基于变论域自适应模糊控制的倒立摆仿真与实物实现[D].北京:北京师范大学博士论文,2002.
    [33]H. X. Li, J. Y. Wang, Y. B. Feng and Y. D. Gu. Hardware implementation of the quadruple inverted pendulum with single motor[C], Progress in Nature Science,2004,14(9):822-827.
    [34]袁品高,张广玉.平面两级倒立摆的分析、控制器设计与实现[J],控制工程,2004,11(6):517-520.
    [35]J. Shen, A. K.Sanyal, N. A. Chaturvedi, D. Bernstein, H. McClamroch. Dynamics and control of a 3D pendulum[C]. Decision and Control,2004. CDC.43rd IEEE Conference on 14-17 Dec.2004,1:323-328.
    [36]么健石,龙德,徐心和.基于动觉图式的平面倒立摆摆起控制[J].东北大学学报(自然科学版),2005,26(6):531-534.
    [37]S. Cong, D. Zhang. Design and implementation of 2DOF spherical inverted pendulum[J]. Journal of systems engingeering and electronics,2005.16(1):123-127.
    [38]I. Chiharu, H. Hiroshi. Stabilization control of 2-DOF spherical inverted pendulum[C]. Papers of Technical Meeting on Industrial Instrumentation and Control, IEE Japan,2005, VOL.ⅡC-05, NO.116-125, PAGE:33-38.
    [39]K. Kameta, A. Sekiguchi. Y. Tsumaki, Y. Kanamiya. Walking control around singularity using a spherical inverted pendulum with an underfloor pivot [C]. Humanoid Robots,7th IEEE-RAS International Conference on Nov.29 2007-Dec.12007.210-215.
    [40]G. Liu, S. Challa, and L. Yu. Revisit controlled lagrangians for spherical inverted pendu-lum [J]. International Journal of Mathematics and Computers in Simulation,2007,1(2): 209-214.
    [41]G. Liu, D. Nesic and I. Mareels, Non-linear stable inversion-based output tracking control for a spherical inverted pendulum[J], International Journal of Control,2008,81(1):116-133.
    [42]G. Liu, D. Nesic and I. Mareels, Non-local stabilization of a spherical inverted pendu-lum[J], Interna-tional Journal of Control,2008,81(7):1035-1053.
    [43]L. Consolinia,and M. Tosquesb. On the exact tracking of the spherical inverted pendulum via an homotopy method [J]. Systems & Control Letters,2009,58(1):1-6.
    [44]I. Poulakakis, and J. W. Grizzle. The spring loaded inverted pendulum as the hybrid zero dynamics of an asymmetric hopper [J]. IEEE Transactions on Automatic Control,2009, 54(8):1779-1793.
    [45]冯艳宾.基于模糊推理建模和变论域自适应模糊控制的三级平而倒立摆仿真与硬件实现[D].北京:北京师范大学博士论文,2007.
    [46]http://news.dlut.edu.cn/xwzx/dgxw/2010/09/xwzx.dgxw.1283665817d26031.html
    [47]K. Furuta, et al. Swing up control of inverted pendulum[C],1991 International Conference on Industrial Electronics, Control and Instrumentation, Kobe, Japan, October 1991, pp: 2193-2198.
    [48]W. Spong, The swing up control problem for the acrobot[J]. IEEE Control Systems,1995, 15(1):49-55.
    [49]W. Torres-Pomales, O.R. Gonzalez. Nonlinear control of swing-up inverted pendulum[C]. IEEE International Conference on Control Applications,1996,259-264.
    [50]S. A. Bortoft. Robust swing-up control for a rational double pendulum[C]. In IFAC'96, San Francisco,1996, F:413-419.
    [51]K. J. Astrom and K. Furuta,M. Iwashiro. T. Hoshino. Energy based strategies for swing-up a double pendulum[C].14th World Congress of IFAC, Beijing,1999,283-288.
    [52]K. J. Astrom and K. Furuta. Swinging up a pendulum by energy control[J]. Automatica. 2000,36(2):287-295.
    [53]K. J. Astrom, J. Aracil, F. Gordillo. A family of smooth controllers for swinging up a pendulum[J]. Automatica,2008,44(7):1841-1848.
    [54]李祖枢.力矩受限单摆的摆起倒立控制—仿人智能控制在非线性系统中的应用[J].控制理论与应用,1999,16(2):225-229.
    [55]D. Chatterjeea, A. Patraa, H. K. Joglekarb. Swing-up and stabilization of a cart-pendulum system under restricted cart track length[J]. Systems & Control Letters,2002,47(4):355-364.
    [56]李祖枢,工育新,谭智,张华,温永玲.小车二级摆系统的摆起倒立控制与实践[c].第五届全球智能控制与自动化大会论文集,杭州,2004:2360-2365.
    [57]K. Graichen, M. Treuer, M. Zeitz. Swing-up of the double pendulum on a cart by feed-forward and feedback control with experimental validation [J]. Automatica,2007,43(1): 63-71.
    [58]M. C. Deng, A. Inoue, M. Kosugi. Swing-up control of a cart-type single inverted pendulum with parasitic dynamics[J]. International Journal of Innovative Computing, Information and Control,2007,3(6B):1349-4198.
    [59]T. Henmi, M.C. Deng, A. Inoue, N. Ueki, Y. Hirashima. Swing-up control of a serial dou-ble inverted pendulum[C]. Proceeding of the 2004 American Control Conference Boston. Massachusetts,2004:3992-3997.
    [60]T. K. Liu, C. H. Chen, Z. S. Li, J. H. Chou. Method of inequalities-based multiobjective genetic algorithm for optimizing a cart-double-pendulum system[J]. International Journal of Automation and Computing,2009,06(1):29-37.
    [61]J. H. Yang, S. Y. Shim, J. H. Seo, and Y. S. Lee. Swing-up control for an inverted pendulum with restricted cart rail length[J]. International Journal of control, Automation, and systems,2009,7(4):674-680.
    [62]C. W. Tao, J. Taur, J. H. Chang, and S. F. Su. Adaptive fuzzy switched swing-up and slid-ing control for the Double-Pendulum-and-Cart system[J]. IEEE Transactions on Systems, Man, and Cybernetics-PART B:CYBERNETICS,2010,40(1):241-252.
    [63]K. Graichen, V. Hagenmeyer, M. Zeitz. A new approach to inversion-based feedforward control design for nonlinear systems[J]. Automatica,2005,41(12):2033-2041.
    [64]李祖枢,但远宏,温永玲,张华.小车三级摆摆起倒立的仿人智能控制[J].华中科技大学学报(自然科学版),2004,32(增刊):38-41.
    [65]A. S. Shiriaeva, H. Ludvigsenb, O. Egelandc. Swinging up the spherical pendulum via stabilization of its first integrals[J]. Automatica.2004,40(1):73-85.
    [66]D. P. Atherton. Early developments in nonlinear control[J]. IEEE Control Systems Mag-azine,1996,16(3):34-43.
    [67]A. Isidori. Nonlinear control systems[M]. Springer-Verlag, Berlin, third edition.1995.
    [68]H. K. Khalil. Nonlinear systems (3rd Edition)[M]. Prentice Hall,2001.
    [69](意)马里诺(Riccardo Marino)等著,姚郁,贺风华译.非线性系统设计-微分几何、自适应及鲁棒控制[M].北京:电子工业出版社,2006.
    [70]J. S. Shamma, M. Athans. Analysis of gain scheduled control for nonlinear plants [J]. IEEE Transactions on Automatic Control,1990,35(8):898-907.
    [71]W. J. Rugh. Analytical framework for gain scheduling[J]. IEEE control systems magazine. 1991,11(1):79-84.
    [72]W. J. Rugh,& J. S. Shamma. Research on gain scheduling [J]. Automatica,2000,36(10): 1401-1425.
    [73]A. McKernana, A. Sala, C. Arino, G. W. Irwin. Sampled-data gain scheduling of contin-uous LTV plants [J]. Automatica,2009,45(10):2451-2453.
    [74]I. Kanellakopoulos, P. V. Kokotovic, A. S. Morse. Systematic design of adaptive con-trollers for feedback linearizable systems[J]. IEEE Transactions on automatic control, 1991,36(11):1241-1253.
    [75]M. Kristic, I. Kanellakopoulos, and P. Kokotovic. Nonlinear and adaptive control de-sign[M]. New York: John Wiley & Sons,1995.
    [76]V. I. Utkin. Variable structure systems with sliding modes [J]. IEEE Transactions on Au-tomatic Control,1977,22(2):212-222.
    [77]胡跃明.变结构控制理论与应用[M].北京:科学出版社,2003.
    [78]M. S. Chen, Y. R. Hwang, M. A. Tomizuka. State-dependent boundary layer design for sliding mode control[J]. IEEE Transactions on Automatic Control,2002,47(10):1677-1681.
    [79]Q. P. Ha, Q. H. Nguyen, D. C. Rye, Durrant-Whyte. Fuzzy sliding-mode controllers with applications[J].IEEE Transactions on Industrial Electronics,2001,48(1):38-41.
    [80]C. W. Tao, J. S. Taur and M. L. Chan. Adaptive fuzzy terminal sliding mode controller for linear systems with mismatche time-varying uncertainties [J]. IEEE Transactions on Systems, Man, and Cybernetics,2004,34(1):255-262.
    [81]李春文,冯元琨.多变量非线性控制的逆系统方法[M].北京:清华大学出版社,1991.
    [82]S. Devasia, D. Chen, B. Paden. Nonlinear inversion-based output tracking[J]. IEEE Trans-actions on Automatic Control,1996,41(7):930-942.
    [83]K. S. Narendra and F. L. Lewis. Special issue on neural network feedback control[J], Automatica,2001,37(8):1147-1148.
    [84]R. S. Rastko, L. L. Frank. Neural-network approximation of piecewise continuous func-tions:Application to friction compensation[J]. IEEE Transactions on Neural Networks, 2002,13(3):745-751.
    [85]L. Ender, R. M. Filho. Neural networks applied to a multivariable nonlinear control strate-gies[J]. Computer Aided Chemical Engineering,2003,15(1):190-195.
    [86]孙富春,李莉,孙增圻.非线性系统神经网络自适应控制的发展现状及展望[J],控制理论与应用,2005,22(2):254-260.
    [87]S. S. Ge, J. Zhang. Neural-network control of nonaffine nonlinear systems with zero dy-namics by state and output feedback[J]. IEEE Transactions on Neural Networks,2003, 14(4):900-918.
    [88]李洪兴,王加银.n级倒立摆系统建模[J].模糊系统与数学,2002,16:251-257.
    [89]尤书平.分析力学[M].北京:水利电力出版社,1989.
    [90]哈尔滨工业大学理论力学教研室编.理论力学(第六版)[M].北京:高等教育出版社,2002.
    [91]马博军,方勇纯.刘先恩,土鹏程.三维桥式吊车建模与仿真平台设计[J].系统仿真学报,2009,21(12):3798-3803.
    [92]A. Isidori, and K. Wei. H∞ control via measurement feedback for general nonlinear sys tem[J]. IEEE Transactions on Automatic Control,1995,40(3):466-472.
    [93]W. Lin, C. I. Byrnes. Hx control of discrete-time nonlinear systems[J]. IEEE Transactions on Automatic Control,1996,41(4):494-510.
    [94]K. M. Zhou, J. C. Doyle, K. Glover. Robust and H∞ optimal control[M], New Jersey: Prentice Hall,1996.
    [95]J. R. Cloutier, C. N. D'Souza, and C. P. Mracek. Nonlinear regulation and nonlinear H∞ control via the state-dependent Riccati equation technique[C]. In Proceedings of the International Confer-ence on Nonlinear Problems in Aviation and Aerospace, Daytona Beach, FL, May 1996:117-140.
    [96]S. J. Shamma, R. J. Cloutier. Existence of SDRE stabilizing feedback [J]. IEEE Transac-tions on Automatic Control,2003,48(3):513-517.
    [97]P. K. Meron, T. Lam, L. S. Crawford, V. H. Cheng. Real-time computational methods for SDRE nonlinear control of missiles[C]. Proceedings of the American Control conference An-chorage, AK May 8-10,2002:232-237.
    [98]C. P. Mracek, J. R. Cloutier, and C. A. D'Souza. A new technique for nonlinear estima-tion[C]. In:Proceedings of the 1996 IEEE International Conference on Control Applica-tions Dearborn, MI, September 1996:338-343.
    [99]李洪兴,宋雯彦,袁学海,李宇成.基于Fuzzy推理的时变系统建模[J].系统科学与数学,2009,29(8):1109-1128.
    [100]R. E. Kalman. A new approach to linear filtering and pretication problems [J]. Transactions of the ASME - Journal of Basic Engineering, Series D,1960,82:35-45.
    [101]R. E. Kalman. On the general theory of control systems[J]. Proc. First International Congress on Automatic Control, Moscow,1960:481-492.
    [102]R. E. Kalman. Contributions to the theory of optimal control[J]. Bol. Soc. Mat. Mexicana, 1961,5:102-119.
    [103]R.E. Kalman, When is a linear control system optimal[J]? Transactions of the ASME, Journal of Basic Engineering, Series D,1964,86:81-90.
    [104]W. M. Wonham. On a matrix Riccati equation of stochastic control[J]. SIAM Journal on Control and Optimization,1968,6(4):681-697.
    [105]V. Kucera. A contribution to matrix quadratic equations[J]. IEEE Transactions on Auto-matic Control,1972,17(3):344-347.
    [106]V. Kucera. On nonnegative definite solutions to matrix quadratic equations[J]. Automat-ica,1972,8(4):413-423.
    [107]B. P. Molinari. The stabilizing solution of the algebraic Riccati equation[J]. SIAM Journal on Control and Optimization,1973,11(2):262-271.
    [108]H. Kano. Existence condition of positive-defiite solutions for algebraic matrix Riccati equations[J]. Automatica,1987,23(3):393-397.
    [109]M. L. Ni. Existence condition on solutions to the algebraic Riccati equation[J]. ACTA Automatica Sinica,2008,34(1):85-87.
    [110]解学书.最优控制理论与应用[M].北京:清华大学出版社,1986.
    [111]P. Benner. Solving large-scale control problems[J]. IEEE Control Systems Magazine,2004, 24(1):44-59.
    [112]A. J. Laub and K. R Meyer. Canonical forms for Hamiltonian and symplectic matricts[J]. Celestial Maham,1974,9:213-238.
    [113]A. J. Laub. Canonical forms for σ-symplectic matricts[D]. M. S. thesis, school of Math., Univ. of Minnesota, Dec.1972.
    [114]A. J. Laub. A Schur method for solving algebraic Riccati equations[J]. IEEE transaction on Automatic Control,1979,24(6):913-921.
    [115]G. H. Golub, Matrix computations[M], The Johns Hopkins University Press, Baltimore, 1985.
    [116]关治,陆金甫.数值分析基础[M].北京:高等教育出版社,2002.
    [117]马振华等.现代应用数学手册计算与数值分析卷[M].北京:清华大学出版社,2005.
    [118]同济大学应用数学系.线性代数(第四版)[M].北京:高等教育出版社,2003.
    [119]D. L. Kleinman, On an iterative technique for Riccati equation computation[J]. IEEE Transactions on Automatic Control,1968,13(1):114-115.
    [120]H. Mukaidani, H. Xu, and Y. Monden. Numerical computation for solving algebraic Ric-cati equations of weakly coupled systems[J]. Electrical Engineering in Japan,2007,160(1): 39-48.
    [121]P. Benner, R. Byers, E. S. Quintana-Orti, G. Quintana-Orti. Solving algebraic Riccati equations on parallel computers using Newton's method with exact line search[J]. Parallel Computing,2000,26(10):1345-1368.
    [122]N. J. Higham, AND H. M. Kim. Solving a quadratic matrix equation by Newton's method with exact line searches[J]. SIAM J. MATRIX ANAL. APPL.2001,23(2):303-316.
    [123]M.J. Grimble. LQG optimal control design for uncertain systems[C]. Control Theory and Applications, IEE Proceedings D,1992,139:21-30.
    [124]I. Munteanu, N.A. Cutululis, A.I. Bratcu. E. Ceanga. Optimization of variable speed wind power systems based on a LQG approach[J]. Control Eng Pract,2005,13(7):903-912.
    [125]Q. Ben, U. Jeffrey, and D.W. Hugh. Implicit Jacobians for linearised state estimation in nonlinear systems[C]. Proceedings of the 1995 American Control Conference, IEEE Press, June 1995.
    [126]胡寿松,王执铨,胡维礼.最优控制理论与系统[M].北京:科学出版社,2005.
    [127]洪嘉振,计算多体系统动力学[M].北京:高等教育出版社,2003.
    [128]刘延柱.高等动力学[M].北京:高等教育出版社,2001.
    [129]刘延柱.陀螺力学[M].北京:科学出版社,1986.-114-

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700