欠驱动Lagrange系统的同步控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在当前的生产生活过程中,许多任务对于单个系统是无法独立承担的,从而就需要多个系统进行协调配合完成。欠驱动系统是控制输入数目少于系统自由度个数的控制系统,它广泛存在于机器人、交通运输和航空航天等各个领域。由于系统驱动器的减少,从而具有质量轻、成本低和能量消耗少等众多优点,因此研究多个欠驱动系统的协调同步控制具有很重要的意义。而欠驱动Lagrange系统是所有欠驱动系统的典型代表,所以本论文针对多个欠驱动Lagrange系统构成的同步运动系统,研究其同步控制问题。
     首先,基于部分反馈线性化和线性二次型最优控制理论,设计了多个欠驱动Lagrange系统的协调同步控制器。控制器的设计过程中不仅对系统的跟踪误差进行了加权评价,同时也将同步误差变量引入到所设计的线性二次型性能指标函数中进行加权调节。通过调节加权矩阵中权值项的大小,从而达到同时改善系统跟踪性能和同步性能的目的。所设计的最优同步控制器不仅能够保证系统的跟踪误差有界,而且同时保证了系统运动的协调同步性,通过数值仿真和实时控制实验也验证了此结论。
     其次,应用聚合式结构双层递阶滑模控制理论,设计了多个单输入欠驱动Lagrange系统的滑模同步控制律。根据系统的同步控制目标,定义了系统的同步误差,并结合交叉耦合控制策略定义了包含系统位置跟踪误差和同步误差的耦合状态变量。由耦合状态变量设计的第一层滑模面构造系统的第二层滑模面,通过设计系统的同步控制律,保证系统的轨线在有限时间内到达滑模面,并沿着滑模面趋向原点。仿真和实验结果表明,所设计的递阶滑模同步控制器不仅实现了对指令信号的精确跟踪,同时也实现了系统在运行过程中运动的协调同步。
     然后,针对两个无输入耦合的欠驱动Lagrange系统,设计了系统的递推反步同步控制律。采用可逆坐标变换将系统动力学模型转化成规范形式后,定义系统的广义同步误差作为系统独立的状态变量,与欠驱动子系统联立设计了系统的同步控制律。另外,为了进一步实现对多个无输入耦合的欠驱动Lagrange系统的同步控制,定义系统的耦合误差状态变量,得到系统的耦合状态方程,进而采用递推反步设计方法,设计了适用于包含多个欠驱动Lagrange系统的同步运动系统的反步同步控制律,保证了系统的跟踪性能和同步性能。通过数值仿真和实验结果验证了该方法的有效性。
     最后,研究了多个欠驱动Lagrange系统的无源化同步控制策略。通过设计闭环系统期望的能量函数,使闭环系统具有端口受控制哈密尔顿方程的形式,并将定义的同步误差变量引入到所设计的闭环系统期望的能量函数中,采用互联阻尼配置无源化控制方法,通过求解匹配条件得到了系统的同步控制器。数值仿真和实时控制实验结果表明,所设计的无源化同步控制器不仅实现了对指令信号的精确跟踪,而且保证了系统具有良好的同步性能。
In modern manufacture and life, many tasks can’t be accomplished independentlyby a single system. Multiple systems are usually coordinated to complete some missions.Underactuated systems are control systems with fewer control inputs than the number ofthe configuration variables. There exist such systems widely in robotics, transportation,aerospace vehicles and many other fields. Underactuated systems have the advantage inlight weight, low cost and less energy consumption due to the reduction of the systemdrivers. The synchronization of multiple underactuated systems is very important andnecessary. As the underactuated Lagrange systems are the typical systems of the wholeunderactuated systems, this dissertation is devoted to the synchronization control of mo-tion systems consisting of multiple underactuated Lagrange systems.
     Firstly, the synchronization controller of multiple underactuated Lagrange systems isdesigned based on partial feedback linearization technology and linear quadratic optimalcontrol theory. During the controller design, not only the tracking errors are evaluated,but also the synchronization error variables are introduced into the quadratic performanceindex function. The weight matrix can be easily adjusted to improve the tracking andsynchronization performance. The designed optimal synchronization controller can guar-antee that the tracking error is bounded and meanwhile maintain the synchronization ofthe motion systems. Numerical simulation results and real-time control experiments vali-date the e?ectiveness of the proposed controller.
     Secondly, the hierarchical sliding mode control theory is employed to design thesliding-mode synchronization control law for multiple single-input underactuated La-grange systems. Synchronization errors of the motion systems are defined according tocontrol objectives. The coupled state variables composed of position tracking errors andsynchronization errors are defined by using the cross-coupling control strategy. The sec-ond layer sliding surface is formed by the first layer sliding surfaces, which are designedwith the the coupled state variables. The designed synchronization control law can ensurethat the system trajectories reach the sliding surface in finite time, and tend to the originalong the sliding surface. Simulation and experimental results show that the proposed hi-erarchical sliding-mode synchronization controller can guarantee that the motion systemstrack command signals accurately and move in synchronization.
     Then, the recursive backstepping synchronization control law is proposed for twounderactuated Lagrange systems without input coupling. A reversible coordinate trans-formation is used to transform the system dynamics model into a canonical form. Gen-eralized synchronization errors are defined as independent state variables to design thesynchronization controller. In addition, to realize synchronization control for multipleunderactuated Lagrange systems without input coupling, coupling state equations are ob-tained to propose the synchronization controller by using backstepping method. The syn-chronous motion of multiple underactuated Lagrange systems is achieved with the de-signed synchronization controller. Simulations and experimental results demonstrate theeffectiveness of the synchronization method.
     Finally, the passivity-based synchronization control of multiple underactuated La-grange systems is studied. The closed-loop system is designed to have a port-controlledHamilton form with a desired energy function. The defined synchronization errors areintroduced into the desired energy function, which is the closed-loop Lyapunov func-tion. By solving the matching conditions, a passivity-based synchronization controller isobtained with interconnection and damping assignment passivity-based control method.Simulations and experimental results show that the proposed approach realizes a precisetrajectory-tracking control and good synchronization performance of the systems.
引文
[1] Ren L, Mills J K, Sun D. Convex Synchronized Control for a 3-DOF Planar Paral-lel Manipulator[C]//IEEE International Conference on Robotics and Automation.Orlando, FL, 2006:1129–1134.
    [2] Ren L, Mills J K, Sun D. Trajectory Tracking Control for a 3-DOF Planar ParallelManipulator Using the Convex Synchronized Control Method[J]. IEEE Transac-tions on Control Systems Technology, 2008, 16(4):613–623.
    [3] Murao T, Kawai H, Fujita M. Passivity-based Synchronized Visual Feedback Con-trol for Eye-to-Hand Systems[C]//Proceedings of the IEEE Industrial ElectronicsSociety. Porto, Portugal, 2009:2314–2319.
    [4] Wang C, Sun D. A Synchronization Control Strategy for Multiple Robot SystemsUsing Shape Regulation Technology[C]//Proceedings of the 7th World Congresson Intelligent Control and Automation. Chongqing, China, 2008:467–472.
    [5] Sun D, Wang C, Shang W, et al. A Synchronization Approach to Trajectory Track-ing of Multiple Mobile Robots While Maintaining Time-varying Formations[J].IEEE Transactions on Robotics, 2009, 25(5):1074–1086.
    [6] Chung S J, Ahsun U, Slotine J J E. Application of Synchronization to FormationFlying Spacecraft: Lagrangian Approach[J]. Journal of Guidance, Control, andDynamics, 2009, 32(2):512–526.
    [7] Uchiyama M, Nakamura Y. Symmetric Hybrid Position/force Control of TwoCooperating Robot Manipulators[C]//IEEE International Workshop on IntelligentRobots. Tokyo, Japan, 1988:515–520.
    [8] Wu X, Cai J, Wang M. Master–slave Chaos Synchronization Criteria for the Hor-izontal Platform Systems via Linear State Error Feedback Control[J]. Journal ofSound and Vibration, 2006, 295(1-2):378–387.
    [9] Koren Y. Cross-coupled Bixaial Computer Control for Manufacturing System[J].Jounral of Dynamic Systems,Measuerment and Control, 1980, 102(12):265–272.
    [10]江上正,谭跃钢.位置差反馈最优同步控制系统的研究[J].控制与决策,1997, 12(6).
    [11] Tan Y, Egami T, Murata T. Method for Optimal Synchronous Position Control andits Application to a Linear X-Y Table[J]. Transactions of the Society of MechanicalEngineers, 1996, 62(589):107–114.
    [12] Xiao Y, Zhu K Y. Optimal Synchronization Control of High-precision MotionSystems[J]. IEEE Transactions on Industrial Electronics, 2006, 53(4):1160–1169.
    [13] Wang C, Hu J, Zhu Y, et al. Optimal Synchronous Trajectory Tracking Control ofWafer and Reticle Stages[J]. Tsinghua Science and Technology, 2009, 14(3):287–292.
    [14] Xiao Y, Zhu K Y, Liaw H C. Generalized Synchronization Control of Multi-axisMotion Systems[J]. Control Engineering Practice, 2005, 13(7):809–819.
    [15] Zhou D, Shen T, Tamura K. Adaptive Nonlinear Synchronization Control of Twin-gyro Precession[J]. Journal of Dynamic Systems, Measurement and Control, 2006,128(3):592–599.
    [16]方一鸣,赵琳琳,欧发顺.冷带轧机两侧压下位置系统鲁棒动态输出反馈同步控制[J].自动化学报, 2009, 35(4):438–442.
    [17]孙宜标,李萌萌,郭庆鼎.基于QFT的双直线电机鲁棒同步控制[J].沈阳工业大学学报, 2008, 30(3):249–252.
    [18]张承慧,石庆升,程金.一种基于相邻耦合误差的多电机同步控制策略[J].中国电机工程学报, 2007, 27(15):59–63.
    [19]蒋近,戴瑜兴,郜克存,等.多线切割机的速度同步控制[J].控制理论与应用, 2011, 28(2):279–283.
    [20] Shang W W, Cong S A, Zhang Y X, et al. Active Joint Synchronization Controlfor a 2-DOF Redundantly Actuated Parallel Manipulator[J]. IEEE Transactions onControl Systems Technology, 2009, 17(2):416–423.
    [21] Shan J, Liu H T, Nowotny S. Synchronised Trajectory-tracking Control of Mul-tiple 3-DOF Experimental Helicopters[J]. IEE Proceedings: Control Theory andApplications, 2005, 152(6):683–692.
    [22] Sun D, Wang C. Controlling Swarms of Mobile Robots for Switching betweenFormations Using Synchronization Concept[C]//Proceedings of IEEE InternationalConference on Robotics and Automation. Rome, Italy, 2007:2300–2305.
    [23] Wang C, Sun D. A Synchronous Controller for Multiple Mobile Robots in Time-varied Formations[C]//Proceedings of IEEE/RSJ International Conference on In-telligent Robots and Systems. Nice, France, 2008:2765–2770.
    [24] Sun D, Shao X Y, Feng G. A Model-free Cross-coupled Control for Position Syn-chronization of Multi-axis Motions: Theory and Experiments[J]. IEEE Transac-tions on Control Systems Technology, 2007, 15(2):306–314.
    [25] Sun D, Lu R, Mills J K, et al. Synchronous Tracking Control of Parallel Ma-nipulators Using Cross-coupling Approach[J]. International Journal of RoboticsResearch, 2006, 25(11):1137–1147.
    [26] Su Y X, Sun D. A Model Free Synchronization Approach to Controls of ParallelManipulators[C]//Proceedings of the IEEE International Conference on Roboticsand Biomimetics. Shenyang, China, 2004:523–528.
    [27] Su Y X, Sun D, Ren L, et al. Nonlinear PD Synchronized Control for Paral-lel Manipulators[C]//IEEE International Conference on Robotics and Automation.Barcelona, Spain, 2005:1374–1379.
    [28] Su Y, Sun D, Ren L, et al. Integration of Saturated PI Synchronous Control and PDFeedback for Control of Parallel Manipulators[J]. IEEE Transactions on Robotics,2006, 22(1):202–207.
    [29] Tomizuka M, Hu J S, Chiu T C, et al. Synchronization of Two Motion ControlAxes under Adaptive Feedforward Control[J]. Journal of Dynamic Systems, Mea-surement and Control, 1992, 114(2):196–203.
    [30] Kamano T, Suzuki T, Iuchi N, et al. Adaptive Feedforward Controller for Synchro-nization of Two Axes Positioning System[J]. Transactions Society of Instrumentand Control Engineers, 1993, 29(7):785–785.
    [31] Tsao J G, Sheu L T, Yang L F. Adaptive Synchronization Control of the Magneti-cally Suspended Rotor System[J]. Dynamics and Control, 2000, 10(3):239–253.
    [32]杨亚辉,苏玉鑫,张立科,等.机器人系统同步协调自适应控制[J].系统仿真学报, 2008, 20(1):117–119.
    [33] Sun D, Mills J K. Adaptive Synchronized Control for Coordination of Multi-robot Assembly Tasks[J]. IEEE Transactions on Robotics and Automation, 2002,18(4):498–510.
    [34] Sun D. Adaptive Coupling Control of Two Working Operations in CNC Integrat-ed Machines[J]. Journal of Dynamic Systems Measurement and Control, 2003,125(4):662–665.
    [35] Sun D. Position Synchronization of Multiple Motion Axes with Adaptive CouplingControl[J]. Automatica, 2003, 39(6):997–1005.
    [36] Liu H H T, Sun D. Uniform Synchronization in Multi-axis Motion Con-trol[C]//Proceedings of the American Control Conference. Portland, OR,2005:4537–4542.
    [37] Sun D, Dong H N, Tso S K. Tracking Stabilization of Di?erential Mobile RobotsUsing Adaptive Synchronized Control[C]//Proceedings of IEEE International Con-ference on Robotics and Automation. Washington, DC, United states, 2002:2638–2643.
    [38] Sun D, Feng G, Lam C M, et al. Orientation Control of a Di?erential MobileRobot Through Wheel Synchronization[J]. IEEE Transactions on Mechatronics,2005, 10(3):345–351.
    [39] Ren L, Mills J K, Sun D. Adaptive Synchronization Control of a Planar ParallelManipulator[C]//Proceedings of the American Control Conference. Boston, MA,2004:3980–3985.
    [40] Ren L, Mills J K, Sun D. Controller Design Applied to Planar Parallel Manipulatorsfor Trajectory Tracking Control[C]//IEEE International Conference on Roboticsand Automation. Barcelona, SPAIN, 2005:968–973.
    [41] Ren L, Mills J K, Sun D. Adaptive Synchronized Control for a Planar Parallel Ma-nipulator: Theory and Experiments[J]. Journal of Dynamic Systems Measurementand Control, 2006, 128(4):976–979.
    [42] Ren L, Mills J K, Sun D. Performance Improvement of Tracking Control for a Pla-nar Parallel Robot Using Synchronized Control[C]//IEEE/RSJ International Con-ference on Intelligent Robots and Systems. Beijing, CHINA, 2006:2539–2544.
    [43] Ren L, Mills J K, Sun D. Experimental Comparison of Control Approaches onTrajectory Tracking Control of a 3-DOF Parallel Robot[J]. IEEE Transactions onControl Systems Technology, 2007, 15(5):982–988.
    [44] Sun D, Feng G. A Synchronization Approach to the Mutual Error Control of aMobile Manipulator[C]//Proceedings of the 20th IEEE International Conferenceon Robotics and Automation. Taipei, Taiwan, 2003:3005–3010.
    [45] Sun D. A Synchronisation Approach to Mutual Error Compensation in Control-ling the Vehicle with an Installed Manipulator[J]. International Journal of VehicleDesign, 2006, 42(3):287–305.
    [46] Namvar M, Aghili F. Adaptive Force-motion Control of Coordinated Robots In-teracting with Geometrically Unknown Environments[J]. IEEE Transactions onRobotics, 2005, 21(4):678–694.
    [47] Zhu W H. On Adaptive Synchronization Control of Coordinated Multirobots withFlexible/Rigid Constraints[J]. IEEE Transactions on Robotics, 2005, 21(3):520–525.
    [48] Rodriguez-Angeles A, Nijmeijer H. Mutual Synchronization of Robots via Esti-mated State Feedback: A Cooperative Approach[J]. IEEE Transactions on ControlSystems Technology, 2004, 12(4):542–554.
    [49] Liu H H T, Shan J. Adaptive Synchronized Attitude Angular Velocity Track-ing Control of Multi-UAVs[C]//Proceedings of the American Control Conference.Portland, OR, United states, 2005:128–133.
    [50] Yang L F, Chang W H. Synchronization of Twin-gyro Precession under Cross-coupled Adaptive Feedforward Control[J]. Journal of Guidance, Control, and Dy-namics, 1996, 19(3):534–539.
    [51] Zhou D, Shen T. Adaptive Nonlinear Synchronization Control of Twin-gyro Pre-cession[C]//8th International Conference on Control, Automation, Robotics andVision. Kunming, China, 2004:1188–1193.
    [52] Liu H T, Shan J, Sun D. Adaptive Synchronization Control of Multiple Space-craft Formation Flying[J]. Journal of Dynamic Systems Measurement and Control,2007, 129(3):337–342.
    [53]王磊,戴华平,孙优贤.时变复杂动力学网络的同步控制[J].控制理论与应用, 2008, 25(4):603–607.
    [54] Cheong J, Niculescu S I, Kim C. Motion Synchronization Control of DistributedMultisubsystems with Invariant Local Natural Dynamics[J]. IEEE Transactions onRobotics, 2009, 25(2):382–398.
    [55] Chopra N, Liu Y C. Controlled Synchronization of Mechanical System-s[C]//Proceedings of the ASME Dynamic Systems and Control Conference. AnnArbor, Michigan, USA, 2008:823–830.
    [56] Liu Y C, Chopra N. Robust Controlled Synchronization of Interconnected RoboticSystems[C]//Proceedings of the American Control Conference. Baltimore, USA,2010:1434–1439.
    [57] Zhao D Z, Li C W, Ren J. Speed Synchronisation of Multiple Induction Motorswith Adjacent Cross-coupling Control[J]. IET Control Theory and Applications,2010, 4(1):119–128.
    [58]曹玲芝,王红卫,李春文,等.基于偏差耦合的起重机起升机构同步控制[J].计算机工程与应用, 2008, 44(25):233–235.
    [59]曹玲芝,李春文,牛超,等.基于相邻交叉耦合的多感应电机滑模同步控制[J].电机与控制学报, 2008, 12(5):586–592.
    [60]王宣银,程佳.基于相关耦合的并联四轴电动伺服平台鲁棒控制[J].中国电机工程学报, 2009, 29(6):117–121.
    [61]管力明,林剑.无轴单张纸输纸机的同步控制[J].控制理论与应用, 2009,26(5):573–577.
    [62] Alvarez J, Rosas D, Hernandez D, et al. Robust Synchronization of Arrays ofLagrangian Systems[J]. International Journal of Control Automation and Systems,2010, 8(5):1039–1047.
    [63] Zhao D Y, Li S Y, Gao F. Finite Time Position Synchronised Control for Paral-lel Manipulators Using Fast Terminal Sliding Mode[J]. International Journal ofSystems Science, 2009, 40(8):829–843.
    [64] Zhao D, Li S, Gao F, et al. Robust Adaptive Terminal Sliding Mode-based Synchro-nised Position Control for Multiple Motion Axes Systems[J]. IET Control Theoryand Applications, 2009, 3(1):136–150.
    [65]高金峰,罗先觉,马西奎.实现连续时间标量(超)混沌信号同步控制的非线性反馈方法[J].物理学报, 2000, 49(5):838–843.
    [66]樊春霞,姜长生.统一混沌系统Backstepping同步控制[J].哈尔滨工业大学学报, 2004, 36(11):1571–1574.
    [67] Bowong S. Adaptive Synchronization of Chaotic Systems with Unknown Bound-ed Uncertainties via Backstepping Approach[J]. Nonlinear Dynamics, 2007,49(1):59–70.
    [68] Fang R W, Chen J S. A Cross-coupling Controller Using an H-infinity Scheme andits Application to a Two-axis Direct-drive Robot[J]. Journal of Robotic Systems,2002, 19(10):483–497.
    [69] Zhou D. H∞Synchronization Control of Linear Systems and its Application toWafer-reticale Stage[J]. Chinese Journal of Mechanical Engineering (English Edi-tion), 2005, 18(2):174–178.
    [70] Moore P R, Chen C M. Fuzzy Logic Coupling and Synchronised Control of Multi-ple Independent Servo-drives[J]. Control Engineering Practice, 1995, 3(12):1697–1708.
    [71] Lee H C, Jeon G J. Neuro-controller for Synchronization of Two Motion Axes[J].International Journal of Intelligent Systems, 1998, 13(6):571–586.
    [72] Liu Y C, Chopra N. Controlled Synchronization of Robotic Manipulators in theTask Space[C]//Proceedings of the ASME Dynamic Systems and Control Confer-ence. Hollywood, CA, USA, 2009:1355–1362.
    [73] Tsai M C, Shen B H. Synchronisation Control of Parallel Dual Inverted PendulumsDriven by Linear Servomotors[J]. IET Control Theory and Applications, 2007,1(1):320–327.
    [74] Nair S, Leonard N E. Stable Synchronization of Mechanical System Networks[J].SIAM Journal on Control and Optimization, 2008, 47(2):661–683.
    [75] Brockett R W. Asymptotic Stability and Feedback Stabilization[J]. Di?erentialGeometric Control theory, 1983:181–191.
    [76] Seto D, Baillieul J. Control Problems in Super-articulated Mechanical Systems[J].IEEE Transactions on Automatic Control, 1994, 39(12):2442–2453.
    [77] Rathinam M, Murray R M. Configuration Flatness of Lagrangian Systems Under-actuated by One Control[J]. SIAM Journal on Control and Optimization, 1998,36(1):164–179.
    [78] Reyhanoglu M, VanderSchaft A, McClamroch N H, et al. Nonlinear Control of aClass of Underactuated Systems[C]//Proceedings of the 35th IEEE Conference onDecision and Control. Kobe, Japan, 1996:1682–1687.
    [79] Spong M W. Partial Feedback Linearization of Underactuated Mechanical Sys-tems[C]//Proceedings of the IEEE/RSJ/GI International Conference on IntelligentRobots and Systems. Munich, Germeny, 1994:314–321.
    [80] Olfati-Saber R. Control of Underactuated Mechanical Systems with Two Degreesof Freedom and Symmetry[C]//Proceedings of the American Control Conference.Chicago, IL, USA, 2000:4092–4096.
    [81] Olfati-Saber R. Nonlinear Control and Reduction of Underactuated Systems withSymmetry I: Actuated Shape Variables Case[C]//Proceedings of the IEEE Confer-ence on Decision and Control. Orlando, FL, United states, 2001:4158–4163.
    [82] Olfati-Saber R. Nonlinear Control and Reduction of Underactuated Systems withSymmetry II: Unactuated Shape Variables Case[C]//Proceedings of the IEEE Con-ference on Decision and Controll. Orlando, FL, United states, 2001:4164–4169.
    [83] Olfati-Saber R. Nonlinear Control and Reduction of Underactuated Systems withSymmetry III: Input Coupling Case[C]//Proceedings of the IEEE Conference onDecision and Control. Orlando, FL, United states, 2001:3778–3783.
    [84]陈宏钧,石如冬,高丙团,等.欠驱动球棒系统不动点控制器设计[J].控制工程, 2008, (4):398–401.
    [85] Miroslav K, Ioannis K, Peta K. Nonlinear and Adaptive Control Design[M]. NewYork: John Wiley & Sons, 1995.
    [86]高丙团,贾智勇,陈宏钧,等. TORA的动力学建模与Backstepping控制[J].控制与决策, 2007, 22(11):1284–1288.
    [87]刘盛平,吴立成,陆震. PPR型平面欠驱动机械臂的点位控制[J].控制理论与应用, 2007, (3):435–439.
    [88]郑敏捷,徐世杰.欠驱动航天器姿态控制系统的退步控制设计方法[J].宇航学报, 2006, 27(5):947–951.
    [89] Morel Y, Leonessa A. Adaptive Nonlinear Tracking Control of an Underactu-ated Nonminimum Phase Model of a Marine Vehicle Using Ultimate Bounded-ness[C]//Proceedings of the IEEE Conference on Decision and Control. Maui, HI,United states, 2003:3097–3102.
    [90] Hussein I I, Bloch A M. Optimal Control of Underactuated Nonholonomic Me-chanical Systems[J]. IEEE Transactions on Automatic Control, 2008, 53(3):668–682.
    [91] Jarzebowska E. Tracking Control Design for Underactuated Constrained System-s[J]. Robotica, 2006, 24:591–593.
    [92] Acar C, Murakami T. Underactuated Two-wheeled Mobile Manipulator ControlUsing Nonlinear Backstepping Method[J]. IEEE Industrial Electronics Society,2008:1621–1626.
    [93] Seifried R, Eberhard P. Design of Feed-forward Control for Underactuated Multi-body Systems with Kinematic Redundancy[J]. Motion and Vibration Control,2009:275–284.
    [94]赖旭芝,吴敏,佘锦华,等.欠驱动两杆机器人的统一控制策略和全局稳定性分析[J].自动化学报, 2008, 34(1):57–65.
    [95] Su C Y, Stepanenko Y. Sliding Mode Control of Nonholonomic Mechanical Sys-tems: Underactuated Manipulators Case[J]. Nonlinear Control Systems Design,1995:565–569.
    [96] Bergerman M, Xu Y S. Robust Joint and Cartesian Control of UnderactuatedManipulators[J]. Journal of Dynamic Systems Measurement and Control, 1996,118(3):557–565.
    [97]何广平,陆震,王凤翔.欠驱动机器人的动力学耦合奇异研究[J].航空学报,2005, 26(2):240–245.
    [98] Lee J J. Robust Adaptive Control of an Underactuated Free-?ying Space Robot un-der a Non-holonomic Structure in Joint Space[J]. International Journal of SystemsScience, 1996, 27(11):1113–1121.
    [99] Wang H B, Wang Y L, Zhao T S, et al. Passivity-based Variable Structure Controlof Two-link Underactuated Robot[C]//Proceedings of the International Conferenceon Machine Learning and Cybernetics. Shanghai, China, 2004:496–499.
    [100]何广平,陆震,王凤翔.欠驱动冗余度机器人运动优化控制[J].宇航学报,2002, 23(5):16–20.
    [101] Lo J C, Kuo Y H. Decoupled Fuzzy Sliding-mode Control[J]. IEEE TransactionsFuzzy System, 1998, 6(3):426–435.
    [102] Mon Y J, Lin C M. Hierarchical Fuzzy Sliding-mode Control[C]//IEEE Interna-tional Conference on Fuzzy Systems. Honolulu, HI, United states, 2002:656–661.
    [103] Wang W, Yi J Q, Zha D B, et al. Double Layer Sliding Mode Control for Second-order Underactuated Mechanical Systems[C]//Proceedings of IEEE/RSJ Interna-tional Conference on Intelligent Robots and Systems. 2005:3188–3193.
    [104] Lin Z, Zhu Q D, Cai C T. Variable Structure Control Based on Sliding Mode for a2-DOF Underactuated Robot Manipulator[C]//Proceedings of the World Congresson Intelligent Control and Automation. Dalian, China, 2006:2029–2033.
    [105]林壮,段广仁,宋申民.水平欠驱动机械臂的反步自适应滑模控制[J].机器人, 2009, 31(2):37–42,51.
    [106]王伟,易建强,赵冬斌,等. Pendubot的一种分层滑模控制方法[J].控制理论与应用, 2005, 22(3):417–422.
    [107] Lin C M, Mon Y J. Decoupling Control by Hierarchical Fuzzy Sliding-mode Con-troller[J]. IEEE Transactions on Control Systems Technology, 2005, 13(4):593–598.
    [108]阮晓钢,胡敬敏,王启源,等.一种独轮机器人的滑模控制[J].控制工程,2011, 18(1):128–132.
    [109]张晓华,赵旖旎,程红太.灵长类仿生机器人悬臂飞跃运动控制研究[J].信息与控制, 2010, 39(6):794–800.
    [110] Ashrafiuon H, Ren P. Sliding Mode Tracking Control of Underactuated SurfaceVessels[J]. ASME Dynamic Systems and Control Division, 2005:11–16.
    [111]瞿军,刘为.基于双层滑模的舰载垂直装填机械防摆控制[J].控制工程,2010, 17(2):241–244.
    [112]杜辉,张洪华.一类带液体晃动航天器的姿态控制[J].空间控制技术与应用, 2010, 36(2):25–30.
    [113]林壮,段广仁.欠驱动刚体航天器姿态机动滑模控制研究[J].控制与决策,2010, 25(3):389–393.
    [114] Wang W, Yi J Q, Zhao D B, et al. Hierarchical Sliding-mode Control Method forOverhead Cranes[J]. Zidonghua Xuebao, 2004, 30(5):784–788.
    [115]王伟,易建强,赵冬斌,等.基于滑模方法的桥式吊车系统的抗摆控制[J].控制与决策, 2004, 19(9):1013–1016.
    [116]段学超,仇原鹰,段宝岩.平面倒立摆自适应滑模模糊控制[J].控制与决策,2007, 22(7):774–777.
    [117] Hao Y X, Yi J Q, Zhao D B, et al. Robust Control Using Incremental Sliding Modefor Underactuated Systems with Mismatched Uncertainties[C]//American ControlConference. Seattle, WA, United states, 2008:532–537.
    [118]王伟,易建强,赵冬斌,等.一类非确定欠驱动系统的串级模糊滑模控制[J].控制理论与应用, 2006, 23(1):53–59.
    [119]毕凤阳,张嘉钟,魏英杰,等.模型不确定时滞欠驱动AUV的模糊变结构控制[J].哈尔滨工业大学学报, 2010, 42(3):358–363.
    [120]刘殿通,易建强,谭民.不确定欠驱动非线性系统的模糊滑模控制[J].电机与控制学报, 2003, 7(3):215–218.
    [121]刘庆波,余跃庆,苏丽颖.欠驱动机器人最优运动轨迹生成与跟踪控制[J].机械工程学报, 2009, 45(12):15–21.
    [122]林壮,朱齐丹,邢卓异.基于遗传优化的水平欠驱动机械臂分层滑模控制[J].控制与决策, 2008, 23(1):99–102.
    [123]刘大亮,孙汉旭,贾庆轩.一种球形机器人的非线性滑模运动控制[J].机器人, 2008, 30(6):498–502.
    [124]卜仁祥,刘正江,胡江强.基于动态非线性滑动模态的欠驱动船舶直线航迹控制[J].清华大学学报(自然科学版), 2007, 47(S2):1880–1883.
    [125]刘殿通,易建强,谭民.一类非线性系统的自适应滑模模糊控制[J].自动化学报, 2004, 30(1):143–150.
    [126] Bloch A M, Leonard N E, Marsden J E. Controlled Lagrangians and the Stabiliza-tion of Mechanical Systems I: The First Matching Theorem[J]. IEEE Transactionson Systems and Control, 2000, 45:2253–2270.
    [127] Bloch A M, Chang D E, Leonard N E, et al. Controlled Lagrangians and the Sta-bilization of Mechanical Systems II: Potential Shaping[J]. IEEE Transactions onAutomatic Control, 2001, 46(10):1556–1571.
    [128] Ortega R, Van der Schaft A, Maschke B, et al. Interconnection and Damping As-signment Passivity-based Control of Port-controlled Hamiltonian Systems[J]. Au-tomatica, 2002, 38(4):585–596.
    [129] Jeltsema D, Ortega R, Scherpen J M A. An Energy-balancing Perspective of Inter-connection and Damping Assignment Control of Nonlinear Systems[J]. Automat-ica, 2004, 40(9):1643–1646.
    [130] Castanos F, Ortega R. Energy-balancing Passivity-based Control is Equivalen-t to Dissipation and Output Invariance[J]. Systems and Control Letters, 2009,58(8):553–560.
    [131] Blankenstein G, Ortega R, Van Der Schaft A J. The Matching Conditions of Con-trolled Lagrangians and IDA-passivity Based Control[J]. International Journal ofControl, 2002, 75(9):645–665.
    [132] Ortega R, Van Der Schaft A J, Mareels I, et al. Putting Energy Back in Control[J].IEEE Control Systems Magazine, 2001, 21(2):18–33.
    [133] Ortega R, Spong M W, Gomez-Estern F, et al. Stabilization of a Class of Underactu-ated Mechanical Systems via Interconnection and Damping Assignment[J]. IEEETransactions on Automatic Control, 2002, 47(8):1218–1233.
    [134] Wang Z, Goldsmith P. Modified Energy-balancing-based Control for the TrackingProblem[J]. IET Control Theory and Applications, 2008, 2(4):310–322.
    [135] Astolfi A, Ortega R. Dynamic Extension Is Unnecessary for Stabilization via In-terconnection and Damping Assignment Passivity-based Control[J]. Systems andControl Letters, 2009, 58(2):133–135.
    [136] Aguilar-Ibanez C F, Guzman-Aguilar F, Lozano R, et al. A Control Energy Ap-proach for the Stabilization of the Rigid Beam Balanced by the Cart[J]. Interna-tional Journal of Robust and Nonlinear Control, 2009, 19(11):1278–1289.
    [137] Sanz A, Etxebarria V. Experimental Control of a Single-link Flexible Robot Ar-m Using Energy Shaping[J]. International Journal of Systems Science, 2007,38(1):61–71.
    [138] Macchelli A, Melchiorri C. Modeling and Control of the Timoshenko Beam. theDistributed Port Hamiltonian Approach[J]. SIAM Journal on Control and Opti-mization, 2005, 43(2):743–767.
    [139] Cai Z, Qu W, Xi Y, et al. Stabilization of an Underactuated Bottom-heavy Airshipvia Interconnection and Damping Assignment[J]. International Journal of Robustand Nonlinear Control, 2007, 17(18):1690–1715.
    [140]张静,武俊峰.磁悬浮系统的哈密顿建模和无源控制[J].电机与控制学报,2008, 12(4):464–467.
    [141] Gomez-Estern F, Van Der Schaft A J. Physical Damping in IDA-PBC Con-trolled Underactuated Mechanical Systems[J]. European Journal of Control, 2004,10(5):451–468.
    [142] Ortega R, Garcia-Canseco E. Interconnection and Damping Assignment Passivity-based Control: A Survey[J]. European Journal of Control, 2004, 10(5):432–450.
    [143] Mahindrakar A D, Astolfi A, Ortega R, et al. Further Constructive Results onInterconnection and Damping Assignment Control of Mechanical Systems: TheAcrobot Example[J]. International Journal of Robust and Nonlinear Control, 2006,16(14):671–685.
    [144] Acosta J A, Ortega R, Astolfi A, et al. Interconnection and Damping Assign-ment Passivity-based Control of Mechanical Systems with Underactuation DegreeOne[J]. IEEE Transactions on Automatic Control, 2005, 50(12):1936–1955.
    [145] Ramirez H, Sbarbaro D, Ortega R. On the Control of Non-linear Processes: AnIDA-PBC Approach[J]. Journal of Process Control, 2009, 19(3):405–414.
    [146] Donaire A, Junco S. On the Addition of Integral Action to Port-controlled Hamil-tonian Systems[J]. Automatica, 2009, 45(8):1910–1916.
    [147] Batlle C, Doria-Cerezo A, Espinosa-Perez G, et al. Simultaneous Interconnectionand Damping Assignment Passivity-based Control: The Induction Machine CaseStudy[J]. International Journal of Control, 2009, 82(2):241–255.
    [148] Liu D T, Guo W P, Yi J Q. Ga-based Stable Control for a Class of Underactu-ated Mechanical Systems[C]//Proceedings of the International Society for OpticalEngineering. Chongging, China, 2005:1–6.
    [149] Yesiloglu S M, Temeltas H. General Underactuated Cooperating Manipulators andTheir Control by Neural Network[C]//Second International Symposium on NeuralNetworks: Advances in Neural Networks. Chongqing, China, 2005:210–215.
    [150] Izumi K, Ichida K, Watanabe K, et al. Monotonic Decreasing Energy and Switch-ing Control for Underactuated Manipulators[J]. Intelligent Unmanned Systems:Theory and Applications, 2009, 192:205–212.
    [151]栾楠,明爱国,赵锡芳,等.含有非驱动关节机器人的学习控制[J].机器人,2002, 24(2):49–53,75.
    [152] Ortega R, Lor′?a A, Nicklasson P J, et al. Passivity-based Control of Euler-lagrangeSystems: Mechanical Electrical and Electromechanical Applications[M]. London:Springer-Verlag, 1998.
    [153] Hermann R, Krener A. Nonlinear Controllability and Observability[J]. IEEETransactions on Automatic Control, 1977, 22(5):728–740.
    [154] Khalil H K. Nonlinear Systems[M]. New York: New Jersey: Prentice Hall, 1996.
    [155] Eltohamy K G, Kuo C. Nonlinear Generalized Equations of Motion for Multi-linkInverted Pendulum Systems[J]. International Journal of Systems Science, 1999,30(5):505–513.
    [156] Hauser J, Sastry S, Kokotovic P. Nonlinear Control via Approximate Input-outputLinearization: The Ball and Beam Example[J]. IEEE Transactions on AutomaticControl, 1992, 37(3):392–398.
    [157] Olfati-Saber R. Cascade Normal Forms for Underactuated Mechanical System-s[C]//Proceedings of the IEEE Conference on Decision and Control. Sysdney, N-SW, Australia, 2000:2162–2167.
    [158] Olfati-Saber R. Normal Forms for Underactuated Mechanical Systems with Sym-metry[J]. IEEE Transactions on Automatic Control, 2002, 47(2):305–308.
    [159] Bupp R T, Bernstein D S, Coppola V T. A Benchmark Problem for Nonlinear Con-trol Design[J]. International Journal of Robust and Nonlinear Control, 1998:307–310.
    [160]焦晓红,关新平.非线性系统分析与设计[M].电子工业出版社, 2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700