桥梁健康监测系统的数据获取:理论和方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
桥梁是交通系统中的关键环节,但是,本应有较长生命周期的桥梁却在使用中面临着一系列危机。为了防止灾难性的事故发生,怎样对广泛使用中的桥梁进行监测已成为了一个重要的课题。
     为了尽早识别和定位桥梁上的潜在损伤,有必要对重要桥梁进行长期的健康监测和定期评估。然而,在上述工作开展前,首先应该可靠而准确的获得桥梁相关数据。本文重点对桥梁挠度数据的准确获取开展了研究,同时也对裂纹检测和桥梁健康模型识别进行了简要讨论。
     论文首先介绍了广义结构元和扩展形态学滤波,在此基础上,设计了4套挠度测量系统,简要介绍如下:
     (1)利用张力线作为静止参考线,采用视频采集和图像处理与识别的方法提出了非接触式张力线桥梁挠度测量系统,对该系统的组成、结构和测量原理进行了阐述,分析了系统可能产生的误差原因,并提出了相应的应对策略。精度实验和对比实验表明,该系统能够可靠获取高精度的桥梁挠度数据。目前,该系统已在一座实际的箱梁桥得到了应用。
     (2)提出了自适应全天候自标定测量系统,该系统能够同时测量桥梁的挠度和位移数据,其最显著的特点是能够自动完成比例标定。
     (3)针对桥梁挠度测量中快速重现桥梁连续挠度线形的需要,利用倾角传感器和位移传感模块,设计了连续挠度快速测量和重现系统,就系统的组成,硬件设计、软件和算法设计进行了阐述;
     (4)利用激光准直发射器和视频设备,实现了激光投射式桥梁挠度/位移测量系统。
     本文也研究了桥梁裂纹检测与损伤识别,主要做了以下工作。
     (1)提出了基于桥梁表面图像的裂纹识别与重建算法,对裂纹图像预处理、裂纹提取、存储和裂纹图像重建进行了阐述。
     (2)根据主元分析方法的原理,论文提出了基于主元分析的桥梁健康模型识别,探讨了桥梁测量数据的收集和模型建立的有关问题。
     此外,由于本文提出的测量方法需要,提出了广义结构元与扩展形态学滤波,就相关的定义、性质和应用进行了阐述。
     概括而言,本文研究和设计了4套新型挠度/位移测量系统,提出了桥梁裂纹检测和损伤识别的方法。
Bridges are key elements in the transportation system, but aging bridges which are normally designed to have long life span are facing a severe crisis. It is an important issue how to monitor these widely used bridges in order to prevent potential catastrophic events.
     Continuous health monitoring or regular condition assessment of important bridges is necessary so that early identification and localization of any potential damage can be made. Before this work can be done, however, the bridge data must be acquired reliably and precisely. This thesis is focused mainly on the precise acquisition of bridge deflections, followed by a brief discussion of the crack detection and identification of a bridge.
     In this thesis, we first introduce the theory of the generalized structural element as well as that of the extended morphological filtering. On this basis, four deflection-measuring systems are designed, which are outlined below.
     (1) A non-contact weighted-stretched-wire system is developed. The principle, organization and structure of the system are discussed. Using a stretched wire as the stationary reference line, this system employs the video capturing, digital image processing and recognition techniques, simultaneously. Some possible sources of the measurement error produced by the system are analyzed, and the corresponding strategies are proposed. Through a series of laboratory experiments concerning the precision achievable by the system as well as the coherence between the measured values obtained by our system and by a deflection gauge, it is shown that the system can acquire the deflections in a bridge reliably and with a high precision. The proposed system has been applied to a real-life box-girder bridge.
     (2) An adaptive, all-weather self-calibration system is advised, which can monitor and detect both the displacements and the deflections in a bridge, simultaneously. One remarkable advantage of this system is that the calibration process is automated.
     (3) A system is designed for bridge alignment. The system configuration and hardware are described, followed by a description of the alignment algorithm as well as the relevant filtering algorithms used. In this system, the deflection values are acquired rapidly with the aid of tiltmeter and displacement sensing module.
     (4) A bridge (deflection, displacement)-measuring system is realized based on the laser alignment radiation and video equipment.
     The crack detection and damage identification of a bridge are also studied in this thesis, which is summarized as follows.
     (1) An algorithm is proposed for identifying and reconstructing the cracks in a bridge from a set of images of the bridge surface, which is accompanied with a detailed description of the methods for crack image preprocessing, crack extraction, storage and crack image reconstruction.
     (2) According to the principle of PCA (Principle Component Analysis), a PCA based bridge health model identification method is presented. Some issues related to the collection of the measured data and the establishment of model are also discussed.
     In summary, this thesis addresses the design of four novel systems for the precise acquisition of bridge deflections and/or displacements. New methods for the crack detection and damage identification of a bridge are also proposed.
引文
[1]徐威.既有铁路混凝土桥状态评定方法研究[D].西南交通大学,硕士学位论文. 2005-08-16.
    [2] J.M. Ko, Y.Q. Ni. Technology developments in structural health monitoring of large-scale bridges[J]. Engineering Structures 2005, 27: 1715–1725.
    [3]罗伟,张志华.桥梁健康状况检测技术综述[J].黑龙江交通科技. 2005,28(10):59-59.
    [4]沙丽新,阮欣.桥梁结构健康检测与评估方法发展现状综述[J].青岛建筑工程学院学报. 2003,24(4):19-22.
    [5] B. Zhang, Z. Zhou, K. Zhang, G. Yan, Z. Xu. Sensitive Skin and the Relative Sensing System for Real-time Surface Monitoring of Crack in Civil Infrastructure[J], Journal of Intelligent Material Systems and Structures, 2006, 17(10): 907-917.
    [6]段尔焕等.工程安全鉴定与加固技术[M],人民交通出版社,2004.
    [7] F. Necati Catbas, Mustafa Gul, Jason L. Burkett. Conceptual damage-sensitive features for structural health monitoring: Laboratory and field demonstrations[J]. Mechanical Systems and Signal Processing. 2008, 22: 1650–1669.
    [8]毕卫红,郎利影.桥梁检测中光纤传感技术的研究综述[J],传感器世界. 2002,8(6):1-5.
    [9]陈伟民,朱永,黄尚廉,等.光纤法珀应变传感器系统的实验研究[J].土木工程学报, 2002,35 (4): 36-39.
    [10]夏乐.桥梁健康状况检测技术研究现状[J].北方交通,2006,11:52-53.
    [11] M.I. Rafiq, M.K. Chryssanthopoulos, Toula Onoufriou. Performance updating of concrete bridges using proactive health monitoring methods[J]. Reliability Engineering and System Safety. 2004, 86: 247–256.
    [12] Vurpillot S, Kruefer, Benouaich D, Clement D, Inaudi D. Vertical deflection of a prestressed concrete bridge using deformation sensors and inclinometer measurements[J]. ACI Structural Journal. 1998, 95(5): 518–26.
    [13] Ian N. Robertson. Prediction of vertical deflections for a long-span prestressed concrete bridge structure[J]. Engineering Structures. 2005, 27(12): 1820–1827.
    [14] A. Ghali, M. Elbadry. Monitoring of deflections of the confederation bridge[C], Canada. In: Proceedings of 1997 Annual Conference of the Canadian Society for Civil Engineering, Sherbrooke, Canada, 1997: 161-166.
    [15] Z.X. Li, T.H.T. Chan, J.M. Ko. Fatigue analysis and life prediction of bridges with structural health monitoring data—Part I: methodology and strategy[J]. International Journal of Fatigue.2001, 23: 45–53.
    [16] T. H. T. Chan, Z. X. Li, J. M. Ko. Fatigue analysis and life prediction of bridges with structuralhealth monitoring data—Part II: application[J]. International Journal of Fatigue. 2001, 23: 55–64.
    [17] S. P Gross, K. A Byle, N. H Burns. Deformation Behavior of Long-Span Prestressed High-Performance Concrete Bridge Girders[C], In: Proceedings, PCI/FHWA International Symposium on High Performance Concrete, New Orleans, LA. 1997: 623-634.
    [18] P. Barr, M.O. Eberhard, J.F. Stanton, B. Khaleghi, J.C. Hsieh. High Performance Concrete in Washington State SR18/SR516 Over-crossing: Final Report on Girder Monitoring[C], Washington State Transportation Center. 2002:150-152.
    [19] B.H. Koh, S.J. Dyke. Structural health monitoring for flexible bridge structures using correlation and sensitivity of modal data[J]. Computers and Structures. 2007, 85: 117–130.
    [20] J.F. Stanton, M.O. Eberhard, P.J. Barr,A weighted-stretched-wire system for monitoring deflections[J].Engineering Structures. 2003, 25: 347–357.
    [21] Hani H. Nassifa, Mayrai Gindyb, Joe Davis,Comparison of laser Doppler vibrometer with contact sensors for monitoring bridge deflection and vibration[J]. NDT&E International. 2005, 38: 213–218.
    [22] K Y Wong, K L Man, W Y Chan. Real-time kinematic spans the gap[J]. GPS World. 2001, 12(7):10-18.
    [23] Y Zhu, Y Fu, W Chen and S Huang. Online Deflection Monitoring System for Dafosi Cable-Stayed Bridge[J]. Journal of Intelligent Material Systems and Structures. 2006, 17(8-9): 701-707.
    [24] H-N Li, D-S Li, G-B Song. Recent applications offiber optic sensors to health monitoring in civil engineering[J]. Engineering Structures. 2004, 26: 1647–1657.
    [25] Sang-Hoon Kim, Jung-Ju Lee, Il-Bum Kwon, Structural monitoring of a bending beam using Brillouin distributed optical fiber sensors[J], Smart Mater. Struct. 2002, 11: 396–403.
    [26] K S C Kuang, Akmaluddin, W J Cantwell1 and C Thomas, Crack detection and vertical deflection monitoring in concrete beams using plastic optical fibre sensors[J], MEASUREMENT SCIENCE AND TECHNOLOGY. 2003, 14: 205–216.
    [27] G. Kister, R.A.Badcock, Y.M Gebremichael., et al. Monitoring of an all-composite bridge using Bragg grating sensors. Construction and Building Materials, 2007, 21(7):1599-1604.
    [28] G. Kistera, D. Winter, R.A. Badcock, Structural health monitoring of a composite bridge using Bragg grating sensors. Part 1: Evaluation of adhesives and protection systems for the optical sensors[J]. Engineering Structures. 2007, 29: 440–448.
    [29] P. Moyo. J.M.W. Brownjohn. R. Suresh.S.C. Tjin.Development of fiber Bragg grating sensors for monitoring civil infrastructure[J]. Engineering Structures. 2005, 27: 1828–1834.
    [30] T.H.T. Chan, L. Yu. Fiber Bragg grating sensors for structural health monitoring of Tsing Ma bridge: Background and experimental observation[J]. Engineering Structures. 2006, 28: 648–659.
    [31] G. Kister, R.A. Badcock. Monitoring of an all-composite bridge using Bragg grating sensors[J]. Construction and Building Materials. 2007, 21: 1599–1604.
    [32] W. Chung, S. Kim, N.-S. Kim. Hee-up Lee. Deflection estimation of a full scale prestressed concrete girder using long-gauge fiber optic sensors[J]. Construction and Building Materials. 2008, 22(3): 394-401.
    [33] G. Fu, A.G. Moosab.Structural damage diagnosis using high resolution images[J]. Structural Safety. 2001, 23: 281–295.
    [34] W.X. Ren. X.L. Peng. Baseline finite element modeling of a large span cable-stayed bridge through field ambient vibration tests[J]. Computers and Structures. 2005, 83: 536–550.
    [35] T.H.T. Chan, L. Guo, Z.X. Li. Finite element modelling for fatigue stress analysis of large suspension bridges[J]. Journal of Sound and Vibration. 2003, 26: 443–464.
    [36] M. L. Wang, G. Heo, D. Satpathi. Dynamic characterization of a long span bridge:a finite element based approach[J]. Soil Dynamics and Earthquake Engineering. 2007, 16: 503-512.
    [37] Z.X. Li, T.H.T. Chan, R. Zheng. Statistical analysis of online strain response and its application in fatigue assessment of a long-span steel bridge. Engineering Structures. 2003, 25: 1731–1741.
    [38] Z.X. Lia. T.H.T. Chan. J.M. Ko. Determination of effective stress range and its application on fatigue stress assessment of existing bridges. International Journal of Solids and Structures. 2002, 39: 2401–2417.
    [39] S. Vurpillot, Kruefer, D. Benouaich, D. Clement, D. Inaudi. Vertical Deflection of a Prestressed Concrete Bridge Using Deformation Sensors and Inclinometer Measurements[J], ACI Structural Journal. 1998, 5: 518–26.
    [40]朱永,陈伟民,黄尚廉,符欲梅.直接投射式光电挠度位移测量装置[P],中国,ZL01206766.0,2003.01.22:1.
    [41]朱永,陈伟民,符欲梅.二维、大量程激光挠度/位移测量方法及装置[P],中国, ZL200510020375.5,2005.8.10:1.
    [42]陈伟民,朱永,符欲梅,黄尚廉.自标定自编码成像法多点动态挠度/位移测量方法及装置[P].发明专利,200510020324.2,2005.8.3:1.
    [43]杨建春,陈伟民.桥梁结构状态参数监测技术研究现状[J].传感器技术. 2004.3(23): 1-5.
    [44] K.W. Shushkewich. Design of Segmental Bridges for Thermal Gradient[J], PCI Journal. 1998, 43(4): 120–37.
    [45] J.F. Stanton, P. Barr, M.O. Eberhard. Behavior of High-Strength HPC Bridge Girders[J], ACI Special Publication, SP-189, American Concrete Institute. 2000: 71-83.
    [46] In Hwan Yanga. Prediction of time-dependent effects in concrete structures using early measurement data[J], Engineering Structures. 2007, 29(10): 2701-2710.
    [47] Ian N. Robertson. Prediction of vertical deflections for a long-span prestressed concrete bridge structure[J], Engineering Structures. 2005, 27(12): 1820–1827.
    [48] Sherif Yehia. Osama Abudayyeh. Imran Fazal. Dennis Randolph.A decision support system for concrete bridge deck maintenance[J]. Advances in Engineering Software.2008, 39(3): 202-210.
    [49] W.X. Ren, X.L. Peng, Y.Q. Lin. Experimental and analytical studies on dynamic characteristics of a large span cable-stayed bridge[J]. Engineering Structures.2005, 27: 535–548.
    [50] Z.X. Li, T.H.T. Chan. Fatigue criteria for integrity assessment of long-span steel bridge with health monitoring[J]. Theoretical and Applied Fracture Mechanics.2006, 46: 114–127.
    [51] P. Omenzetter, J.M.W. Brownjohn, P. Moyo. Identification of unusual events in multi-channel bridge monitoring data[J]. Mechanical Systems and Signal Processing. 2004, 18: 409–430.
    [52] Yousheng Cheng, Hani G. Melhem. Monitoring bridge health using fuzzy case-based reasoning[J]. Advanced Engineering Informatics. 2005, 19: 299–315.
    [53] John H.G. Macdonald, Wendy E. Daniell. Variation of modal parameters of a cable-stayed bridge identified from ambient vibration measurements and FE modelling[J]. Engineering Structures. 2005 27: 1916–1930.
    [54] C.W. Lin, Y.B.Yang. Use of a passing vehicle to scan the fundamental bridge frequencies: An experimental verification[J]. Engineering Structures. 2005, 27: 1865–1878.
    [55] Q.W. Zhang. Statistical damage identification for bridges using ambient vibration data[J]. Computers and Structures. 2007 85: 476–485.
    [56] Y.L. Xu, L.D. Zhu. Buffeting response of long-span cable-supported bridges under skew winds. Part 2: case study[J]. Journal of Sound and Vibration.2005, 281: 675–697.
    [57] R. P. C. Sampaio. Damage Detection Using the Frequency Respons-function Curvature Method. Journal of Sound and vibration[J]. 1999, 226(5): 1029-1042.
    [58] D.J. Yu, W.X. Ren. EMD-based stochastic subspace identification of structures from operational vibration measurements[J]. Engineering Structures. 2005, 27: 1741–1751.
    [59] R.R. Zhang, R. King, L. Olson, Y.L. Xu. Dynamic response of the Trinity River Relief Bridge to controlled pile damage: modeling and experimental data analysis comparing Fourier and Hilbert–Huang techniques[J].Journal of Sound and Vibration. 2005, 285: 1049–1070.
    [60] A.-M. Yan, G. Kerschen, P. De Boe, J.-C. Golinval. Structural damage diagnosis under varying environmental conditions—Part I: A linear analysis. Mechanical[J] Systems and Signal Processing. 2005, 19: 847–864.
    [61] A.-M. Yan, G. Kerschen, P. De Boe, J.-C. Golinval. Structural damage diagnosis under varying environmental conditions—part II: local PCA for non-linear cases[J]. Mechanical Systems and Signal Processing. 2005, 19: 865–880.
    [62] P.S. Marsh, D.M. Frangopol. Reinforced concrete bridge deck reliability model incorporating temporal and spatial variations of probabilistic corrosion rate sensor data[J]. Reliability Engineering and System Safety. ARTICLE IN PRESS.
    [63] C.R. Farrar, W.D. Timothy. Microwave interferometers for non-contact vibration measurements on large structures[J]. Mechanical Systems and Signal Processing.1999, 13 (2): 241 - 253.
    [64] H. Tabatabai, A.B. Mehrabi. Bridge staycable condition assessment using vibration measurement techniques[A] . Proc ,Stru Mate Tech Conference on Bridges and Highways SPIE. 2000, 31: 194– 204.
    [65] J. Serra. Image analysis and mathematical morphology[M]. New York: Academic,1982.
    [66]崔屹.图象处理与分析——数学形态学方法及应用[M].科学出版社,2002.
    [67] Haralick, Robert M. Mathematical Morphology[M], Oxford Univ Pr, 2007.
    [68]迟健男,方帅,徐心和等.基于多结构元顺序形态变换的灰度图像边缘检测[J].中国图象图形学报. 2006,11(1): 41-46.
    [69]马义德,张祥光,杨淼.基于多结构元广义形态滤波的改进算法[J].电子科技大学学报. 2004,33(4): 391-394.
    [70]蒋立辉,耿蒙,赵春晖.基于广义形态滤波和模糊逻辑的散斑噪声抑制[J].红外与激光工程. 2005,34(1): 80-83.
    [71]王楠,律方成,刘云鹏等.自适应广义形态滤波方法在介损在线监测数据处理中的应用研究[J].中国电机工程学报. 2004,24(2): 161-165.
    [72]赵春晖,乔景渌,孙圣和.一类多结构元自适应广义形态滤波器[J].中国图象图形学报. 1997,2(11): 806-809.
    [73]张奔牛,蓝章礼,周志祥.位移/挠度检测和监测装置及方法[P].中国,发明专利申请公开说明书:200510057473.6.
    [74]杨耀权,施仁,于希宁等.用Hough变换提高激光光斑中心定位精度的算法[J].光学学报. 1999,19(12):1655-1660.
    [75] J. Paul, W. Frederick, L. David. Nova laser alignment control system [A].SPIE[C], 1984,483: 54-64.
    [76] S.M. Thomas and Y.T. Chan. A simple approach for the estimation of circular arc centre and itsradius[J], Computer Vision, Graphics, and Image Processing. 1989, 45(3): 362-370.
    [77] E.P. Lyvers, O.R. Mitchell,M.L. Akey,et a1.Subpixel measurements using a moment-based edge operator[J].IEEE Transactions on Pattern Analysis and Machine Intel1igence. 1989, 11():1293—1309.
    [78] Kenneth R. Caslteman. Digital image processing [M]. Beijing: Tshua university publishing company, 1998.
    [79]杜进生,秦权,刘西拉系统可靠度及其在桥梁工程中的应用前景[J].公路交通科技. 1999,16(4): 21-24.
    [80]张建仁,秦权.现有混凝土桥梁的时变可靠度分析[J].工程力学. 2005,22(4): 90-95.
    [81]赵国藩,金伟良,贡金鑫.结构可靠度理论[M].北京:中国建筑工业出版社,2000年第1版: 12-20.
    [82]孙光亮.多层次综合评判模型及其应用[J],系统工程,1996(2):64-67.
    [83]王有志,徐鸿儒,任锋.钢筋混凝土梁式桥的安全性评估系统研究与开发[J].公路交通科技,2002,19(1):51-54.
    [84]赵振宇,徐用懋.模糊理论和神经网络的基础与应用[M].北京:清华大学出版社,1996第1版: 19-31.
    [85]王永平,张宝银,张树仁.桥梁使用性能模糊评估专家系统[J].中国公路学报,1996,9(2):62-67.
    [86]袁曾任.人工神经元网络及其应用[M].北京:清华大学出版社,1996年10月第1版: 53-56.
    [87] J. Gahboussi, J.H. Garrett, X. Wu. Knowledge-based modeling of material behavior with neural networkd[J]. Journal of EngrgMech, ASCE. 1991, 117(1): 132-153.
    [88] X. Wu, J. Gahboussi, J.H. Garrett Use of neural networks in detection of structural damage[J]. Computer and Structures. 1992, 42(4): 649-659.
    [89] M.F. Elkordy, K.C. Chang, G. C. Lee. Neural networks trained by analytically simulated damage states[J]. Journal of Comp in CivEngrg , ASCE. 1993, 7(2): 130-145.
    [90] P. Szewezyk, P. Hajela. Damage detection in structures based on feature-sensitive neural networks[J]. Journal of Comp in CivEngrg , ASCE. 1994, 8(2) : 163-178.
    [91] S.F. Masri, M. Nakamura, et al. A neural network approach to the detection of changes in structural parameters[J ]. Journal of Engineering Mechanics-ASCE. 1996, 12(4): 350-360.
    [92] R.I.Levin, N.A.J. Lieven. Dynamic finite element model updating using neural network[J]. Journal of Sound and Vibration. 1998, 210(5): 593-607.
    [93] M.J. Atalla, D.J. Inman. On model updating using neural networks[J]. Mech Sys and Signal Processing. 1998, 12(1) : 135-161.
    [94] T. Marwala, H. EM Hunt. Fault identification using finite element models and neural networks[J]. Mech Sys and Signal Processing. 1999, 13(3) : 475-490.
    [95] C. Zang, M. Imregun. Structural damage detection using artificial neural networks and measured FRF data reduced via principal component projection[J]. Journal of Sound and Vibration. 2001, 242(5) : 813-827.
    [96] H.Z. Kun, M. Noori. Application of wavelet analysis for structural Health monitoring, [C]. Proceedings of 2nd International Workshop on Structural Health Monitoring, Stanford University, Stanford, CA. 1999: 946-955.
    [97] Z.K. Hou. Wavelet-based approach for structural damage detection[J], Journal of EM, ASCE. 2000, 126(7): 677-683.
    [98] H.Adriana, Z.K. Hou, Wavelet-based approach for ASCE structural health monitoring benchmark studies[C]. Proceedings of the 3rd International Workshop on Structural Health Monitoring, Stanford University, Stanford, CA. 2001: 12-14.
    [99] Z.K. Hou, H. Adriana. Progress of phase II study of the ASCE health monitoring benchmark data using wavelet approach[C]. the first ASCE Engineering Mechanics Conference, New York, NY. 2002: 1-8.
    [100]张建仁,刘扬,许福友.结构可靠度理论及其在桥梁工程中的应用[M].北京:人民交通出版社,2003年第1版:61~77.
    [101]公路养护质量检查评定标准(JTJ075—94)[S].北京:人民交通出版社,1994.
    [102]公路养护技术规范(JTJ073—96)[S].北京:人民交通出版社.1996.
    [103] L. Sirovich, M. Kirby, Low-dimensional procedure for characterization of human faces[J], J. Opt. Soc. Am. 1987, 4: 519–524.
    [104] M. Kirby, L. Sirovich. Application of the KL procedure for the characterization of human faces[J]. IEEE Trans. Pattern Anal. Mach.Intell. 1990, 12 (1): 103–108.
    [105] M. Turk, A. Pentland, Eigenfaces for recognition[J]. J. Cogn. Neurosci. 1991, 3(1): 71–86.
    [106] A. Pentland, Looking at people: sensing for ubiquitous and wearable computing[J]. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22(1): 107–119.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700