高墩大跨连续刚构双幅桥风致干扰效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近几年,西部地区高速公路网大规模向黄土沟壑地区延伸,当公路线路穿越崇山峻岭和高原沟壑区时,高墩大跨的连续刚构桥常成为首选桥型。而且随着交通量的增大,大跨连续刚构桥除了具有墩高、跨度大的特点之外,还常采用上、下行的分离式布置,即采用双幅桥。对于双幅桥结构的高墩大跨连续刚构桥,在强风作用下有可能产生较大的尾流振动,因此考虑气流的遮挡和干扰,系统地研究双幅桥相互间的气动干扰效应,具有十分重要的意义。
     本文在研究单幅连续刚构桥梁对风反应特点的基础上,筛选了双幅桥之间的位置、风向角和攻角等各种影响双幅桥干扰效应的因素,设计了试验方案,首次系统全面地进行了连续刚构双幅桥的静力和动力干扰效应风洞试验研究,所采用的试验方法和试验结论对于研究类似桥梁结构的干扰效应有一定参考价值。
     通过双薄壁空心墩和不同主梁节段的测力风洞试验,并引入气动干扰因子来研究连续刚构双幅桥静力三分力系数的气动干扰问题。分析表明:上下游三分力系数与单桥的三分力系数相比均有所变化,且下游三分力系数变化明显,表现出遮挡效应和尾流干扰效应;不同的主梁断面形式、双幅桥之间的净间距、顺桥向错位、风攻角和风向角对双幅桥三分力系数干扰效应均有影响。试验得到的参数变化时桥墩和主梁三分力系数的一系列数据,将为工程技术人员在计算桥梁静风荷载时正确地估计双幅桥相互之间的影响提供理论参考和依据。
     在测力试验的基础上,进行静风响应干扰效应计算分析,分别对双幅桥施工阶段和成桥阶段的静风响应进行计算,并与单桥时的静风响应进行对比,定量的分析了干扰效应对位移响应和内力响应的具体影响。
     采用气动弹性模型试验方法研究了施工最大双悬臂状态动力气动干扰效应,得到了双幅桥不同净间距、顺桥向错位、高差、不同风向角和攻角等多种工况下的风致振动位移响应,分析了上述各因素对双幅桥间的动力干扰效应的影响,结果表明,双幅桥的水平振动响应与单幅桥相比,上游变化不大,下游响应都有不同程度的降低。
In recent years, highway network in the western region is extended to loess gully region on a large-scale. When the highway routes pass through the mountains and highland region, the high-pier span continuous rigid frame bridge is often the preferred bridge type. And as traffic increases, the long-span continuous rigid-frame bridge pier besides the characteristics of high pier and large span, it also arranged has up and down separation arrangement, that is, parallel bridge. For the twin deck continuous rigid frame bridge with high-pier and long-span, the greater wake vibration will happens under the action of the strong wind, so it is obviously significant to study comprehensively the aerodynamic interference effect between pairs of bridge considering the airflow obstruction and interference.
     The factors of various interference effect such as position between parallel bridge, wind direction, attack angle are selected based on the characteristics of reaction to wind for single continuous rigid frame bridge. Test program is designed. The wind tunnel tests are conducted for the first time to study the static and dynamic interference effects of twin-deck continuous rigid frame bridge in Systematic and comprehensive manner. The test method and conclusion can help to study the interference effects of similar structure.
     Aerodynamic interference effect on aerostatic coefficient of the parallel continuous rigid frame bridge is studied by sectional model wind tunnel tests of double thin-walled hollow piers and different segments of the main beam, and by the introduction of factor. Analysis shows that:Aerodynamic interference of upper and lower has changed compared to the one of single bridge, and the lower aerodynamic interference changed significantly, showing a shielding effect and the wake interference effects; Different forms of the main beam section, the net distance and side-by-side interval between the two bridges, wind attack and direction angles all influent the aerodynamic interferences of aerostatic coefficients. The series aerostatic coefficients test data of the piers and the main beam when the parameters change will provide a theoretical reference for correct estimation the impact between parallel bridge by the designers in the calculation of the static wind loads.
     The interference effect of static wind response analysis is performed based on sectional model test, aerostatic response is analyzed respectively for the construction and bridge completion phase, and compared with single bridge. The specific impact of the interference effect on the displacement and internal forces response is analyzed quantitatively.
     Aerodynamic interference effects are studied by aeroelastic model test on construction of the largest double-cantilever state. The wind-induced vibration displacement response has been gotten under a variety of operating conditions such as different net distance between double bridge, cis-bridge dislocation, elevation difference, wind direction and attack angle. The above-mentioned factors of the dynamic interference effects are analyzed. Results showed that the horizontal vibration response of the double bridge, compared with the single bridge, the upstream response changes little and the downstream response reduces to varying degrees.
引文
[01]刘健新,李加武.中国西部地区桥梁风工程研究,建筑科学与工程学报[J].2005,22(4): 32-40
    [02]Stathopoulos T. Adverse wind load on low building due to buffeting[J]. J. struct. Engineering, ASCE 1984,110(10):2374-2392
    [03]谢壮宁.典型群体超高层建筑风致干扰效应研究[D].上海:同济大学,2003
    [04]KHANDURI A C, STATHOPOULOS T, BEDARD C. Wind induced interference effects on building——a review of the state of the art[J]. Engineering Structures,1998, 20(7):617-630.
    [05]Armitt J. Wind loading on cooling towers. J.Struct.Div., ASCE,1980,106(ST3): 623-641
    [06]陈文烈.复杂高层建筑风特性及相互干扰的数值模拟[D],杭州:浙江大学,2006
    [07]葛建斌.高层建筑风致干扰效应研究[D],汕头:汕头大学,2004
    [08]吴坤.某高层建筑物气动力的试验研究[D],南京:南京航空航天大学,2005
    [09]吴辅兵.振动翼推进及干扰效应非定常流体动力研究[D],哈尔滨:哈尔滨工程大学,2004
    [10]陈素琴.建筑群中建筑物间的相互气动干扰的数值研究[D],上海:同济大学,2000
    [11]Kim T, Flynn M R. Numerical Simulation of Air Flow Around Multiple Objects Using the Vortex Method[J]. Journal of Wind Engineering and Industrial Aerodynamics,1995, 56 (2-3):213-234.
    [12]楼小峰,曹丰产,林志兴.串列钝体绕流的数值计算[J].同济大学学报,2002,30(5):604-608.
    [13]Zdravkovich M.M.Review of flow interference between two cylinders in various arrangement[J]. Journal of Fluids Engineering,1977,99(4):618-633.
    [14]Zdravkovich M.M.Review of flow interference induced oscillations in flow past two circular cylinders in various arrangement[J]. Journal Wind Eng. Ind. Aerodyn. 1988.28:183-200.
    [15]Ohya Y., Okajima A, Hayashi M. Wake interference and votex shedding[A]In:N P Cheremisinoff Ed.Encyclopedia of Fluid Mechanics [C]Ch 10 Gulf Publishing.1989
    [16]ROWAN A I, STOYAN S, XIE J M, et al. Tacoma narrows 50 years later-wind engineering investigations for parallel bridges[J]. Briage Structures:Assesment.Design and Construction,2005,1(1):3-17.
    [17]ROWAN A Irwin, STOYANS, XIE Ji-ming, et al. Effects of aerodynamic interferences between heaving and torsional vibration of bridge decks:the case of Tacoma Narrows Bridge [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2003(91):1547-1557
    [18]顾明,黄鹏.群体高层建筑风荷载干扰的研究现状及展望[J].同济大学学报,2003,31(7):762-766
    [19]黄鹏.高层建筑风致干扰效应研究[D],上海:同济大学博士论文,2001
    [20]林志兴,葛耀君,曹丰产,等.钢箱梁桥的抗风问题及其对策研究[J].同济大学学报:自然科学版,2002,30(5):614-617.
    [21]刘志文,陈政清,刘高,邵新鹏.双幅桥面三分力系数气动干扰效应试验研究[J].湖南大学学报:自然科学版,2008,35(1):16-20.
    [22]王中文.大跨度连续刚构桥悬臂施工阶段风致响应及制振措施研究[D].成都:西南交通大学,2000
    [23]吕卫军.高墩大跨连续刚构桥风荷载研究[D].西安:长安大学,2006
    [24]Becker S, Lienhart H, Durst F. Flow around three-dimensional obstacles in boundary layers. Journal of w in d engineering and industrial aerodynamics,2002,90:265-279
    [25]杨庆山,黄韬颖.中美澳三国风荷载规范简介及其关于设计风速规定之比较[C].第十三届全国结构风工程学术会议论文集,2007,辽宁大连,1110-1118
    [26]谢壮宁,顾明,倪振华.3个不同高度高层建筑间的横风向动力干扰效应[J].西安交通大学学报,2004,38(9):967-970.
    [27]谢壮宁,顾明,倪振华.不同断面宽度群体高层建筑的动力干扰效应(第1部分顺风向响应)[J].西安交通大学学报,2003,24(4):8-16.
    [28]谢壮宁,顾明,倪振华.不同断面宽度群体高层建筑的动力干扰效应(第2部分横风向响应)[J].建筑结构学报,2003,24(5):50-57.
    [29]黄鹏,顾明.高层建筑静风荷载的干扰效应研究[J].建筑结构学报,2002,23(5):67-72.
    [30]Gu Z. On interference between two circular cylinders at supercritical Reynolds number[J]. Jounral of wind engineering and industrial aerodynamics,1996,62:175-190
    [31]Kareem A, Kijewski T, Lu P C. Investigation of interference effects for a group of finite cylinders. Journal of wind engineering and industrial aerodynamics[J],1998,77-78:50 3-520
    [32]Kubo Y, Nakahara T, Kato K. Aerodynamic behavior of multiple elastic circular cylinders with vicinity arrangement[J]. Journal of wind engineering and industrial aerodynamics,1995,54-55:227-237
    [33]Niemann H J, Kopper H D. Influence of adjacent buildings on wind effects on cooling towers.Engineering structures,1998,20 (10):874-880
    [34]Sockel H. Vibrations of two circular cylinders due to wind-excited interference effects[J]. Engineering and industrial aerodynamics,1998,74-76:1029-1036
    [35]刘若斐.大型冷却塔的抗风研究[D],杭州:浙江大学,2006
    [36]朱川海,顾明.体育场悬挑屋盖结构的风荷载及干扰影响的风洞试验研究[J].特种结构,2002,19(4):41-44.
    [37]谢壮宁,顾明,倪振华.高层建筑群静力干扰效应的试验研究[J].土木工程学报,2004,37(6):16-29.
    [38]杨洁.干扰效应对高层住宅建筑自然通风影响的研究[D],天津:天津大学,2003
    [39]刘志文,陈政清,刘高,邵新鹏.双幅桥面三分力系数气动干扰效应试验研究[J].湖南大学学报:自然科学版,2008,35(1):1620.
    [40]毕志献.超燃发动机进气道流场特性实验研究[D],北京:北京航空航天大学,2001
    [41]李军.用于外挂物分离特性研究的捕获轨迹风洞试验技术研究[D],南京:南京航空航天大学,2000
    [42]罗华.长安汽车空气动力特性试验分析研究[D],重庆:重庆大学,2001
    [43]阎成.1.2m风洞大攻角控制系统研制[D].北京:国防科学技术大学,2003
    [44]徐恭义,舒思利.4座预应力混凝土板式加劲梁悬索桥的设计[J].桥梁建设,2003(3):25-27)
    [45]谢旭,朱越峰.CFRP拉索设计对大跨度斜拉桥力学特性的影响[J].工程力学,2007,24(11):113-120)
    [46]王波,徐丰,张海龙.高墩连续刚构桥线性抖振时程响应分析[J].中国市政工程,2007(3):44-46
    [47]祝志文,陈政清.YZ22型车辆与铁路T型简支梁桥的风荷载研究[J].湖南大学学报,2001,28(1):93-97
    [48]付彦峰.高墩大跨曲线连续刚构桥最大悬臂施工阶段抖振响应分析[D].天津:天津大学,2007
    [49]刘琳娜.CFD方法在大跨度桥梁气动控制措施研究中的应用[D].武汉理工大学,2007
    [50]陈政清,刘小兵刘志文.双幅桥面桥梁三分力系数的气动干扰效应[J].工程力学,2008,25(7):87-93
    [51]刘志文,陈政清,胡建华,贺拴海.大跨度双幅桥面桥梁气动干扰效应[J].长安大学学报,2008,28(6):55-59
    [52]陈政清,牛华伟,刘志文.双幅桥面桥梁主梁气动干扰效应研究[J].桥梁建设,2007(6):9-12
    [53]韩万水,陈艾荣,马如进,周志勇.高墩大跨刚构桥施工阶段的抗风分析[J].同济大学学报,2007,35(2):166-170)
    [54]司学通,郭文华.高墩大跨连续刚构桥最大悬臂阶段风致响应及其对施工人员的影响[J].铁道科学与工程学报,2007,4(4):17-22)
    [55]程兆君.大跨度连续刚构桥抗风分析[D].武汉:武汉理工大学,2006)
    [56]高峰,徐丹.大跨度连续刚构桥最大双悬臂施工状态的风致内力分析[J].吉林交通科技,2008,34(5):29-33
    [57]张鹏.高墩大跨连续刚构桥的风致响应分析[D].武汉:华中科技大学,2006
    [58]孙延国.连续刚构桥最大悬臂状态风载内力及抖振实用计算方法研究[D].成都:西南交通大学,2008
    [59]韩艳,陈政清,王建辉,汪志昊.贵阳小关桥双肢薄壁墩抖振响应试验与影响因素分析[J].土木工程学报,2009,42(1):41-48
    [60]李黎,胡亮,樊剑.某高墩大跨连续刚构桥抖振时域分析[J].华中科技大学学报,2006,23(1):1-4
    [61]汪斌,李永乐,郝超,欧阳韦.大跨度连续刚构桥钝化主梁气动特性数值分析[J].四川建筑科学研究,2008(3):24--26
    [62]陈艾荣,项海帆.大跨刚构桥梁气动弹性试验及分析[J].振动工程学报,1999,12(4):535-539
    [63]吴裕平.CFD在舰船甲板流场计算与特性研究中的应用[J].直升机技术,2006,147(3):1-4
    [64]袁章新,屠海洋,丁林森.“H1002”船开锚系泊系统抗台安全论证[J].交通部上海船舶运输科学研究所学报,2004,27(1):14-33
    [65]隋江华.AND—OR模糊神经网络研究及在船舶控制中的应用[D].大连:大连海事大学,2006
    [66]梁新莉.POD推进方式大型船舶的运动建模与仿真[D].大连:大连海事大学,2008
    [67]毕明路.60°风向角是天线面的危险姿态吗?[C].2005年机械电子学术会议论文集,2005:265--268
    [68]赵仕桥.CFD技术在重庆大剧院风荷载数值模拟中的应用[D].重庆:重庆大学,2007
    [69]陆锋.大跨度平屋面结构的风振响应和风振系数研究[D].杭州:浙江大学,2001
    [70]金虎.X型超高层建筑三维风荷载与风致响应研究[D].杭州:浙江大学,2008
    [71]王飞,罗永峰,贾宝荣,陈晓明,沈祖炎.北京摩天轮设计验算与分析[J].结构工程师,2009,25(2):10-14
    [72]金晓飞.AFST30米模型健康监测系统研究[D].哈尔滨:哈尔滨工业大学,2006
    [73]符龙彪,夏育颖,肖从真.北京当代MOMA风载及风环境数值模拟研究[J].土木工程学报,2008,41(3):71-74
    [74]陈政清,柳成荫,倪一清,王修勇,伏晓宁.洞庭湖大桥拉索风雨振中的风场参数[J].铁道科学与工程学报,2004,1(1):52-57
    [75]柳成荫,陈政清,倪一清,王修勇,伏晓宁.洞庭湖大桥风雨振现场观测实验研究[C].第十一届全国结构缝工程学术会议论文集,2003:477-82
    [76]顾明,杜晓庆.不同风向角下斜拉桥拉索模型测压试验研究[J].振动与冲击,2005,24(6):5-8
    [77]陈政清,刘慕广.H形吊杆大攻角下颤振稳定性研究[J].世界桥梁,2008(3):48-51
    [78]马存明,廖海黎,郑史雄,李佳圣.H型截面吊杆气动性能的风洞试验[J].中国铁道科学,2005,26(4):42-46
    [79]郑史雄,廖海黎,周述华.大跨度刚构桥悬臂施工状态的抗风性能研究[J].西南交 通大学学报,2001,36(1):8-11
    [80]郝负洪.风灾害对工程结构的影响及工程抗风设计[C].2008(沈阳)国际安全科学与技术学术研讨会论文集,2008:253-258
    [81]叶财景.大跨度平屋盖结构风振响应计算与参数分析[D].南京航空航天大学硕士论文,2007
    [82]高玲.大型冷却塔塔群效应的研究与探讨[J].武汉大学学报(工学版),2007,40(增):428-32
    [83]焦(?)烽.低层四坡屋面房屋风特件及相互干扰的数值模拟[D].杭州:浙江大学,2005
    [84]米福生.干煤棚风致响应及干扰效应研究[D].上海:同济大学,2007
    [85]杨伟,黄鹏,顾明.高层建筑风致静力干扰效应的试验与数值研究[J].同济大学学报,2004,32(2):152-156
    [86]黄东梅,朱乐东,丁泉顺.邻近建筑对超高层建筑风振响应的干扰效应[J].同济大学学报,2009,37(3):297-291
    [87]李寿英,陈政清.泉州中芸洲海景花园建筑群体的干扰效应研究[J].建筑结构学报,2008,29(2):19-24
    [88]张敏,楼文娟,何鸽俊,沈国辉,陈水福.群体高层建筑风荷载干扰效应的数值研究[J].工程力学,2008,25(1):179-185
    [89]傅小坚.双塔高层建筑风荷载干扰效应的数值模拟研究[D].杭州:浙江大学,2007
    [90]傅小坚,严晓萍,许明辉.双塔高层建筑风荷载干扰效应的数值研究[J].工程建设,2007,39(1):1-9)
    [91]中交公路规划设计院.公路桥涵设计通用规范[S].北京:人民交通出版社,2004
    [92]中交公路规划设计院.公路桥梁抗风设计规范[S].北京:人民交通出版社,2004
    [93]何艳丽,李燕,刘高.单层筒壳的风振响应及实用抗风设计方法[J].空间结构,2006,12(3):7-11.
    [94]VALENTIN ADRIAN JEAN BUTOESCU and FLORICA POPESCU,Aerodynamic interference between a system of bodies of revolution in an unsteady subsonic flow. Nonlinear Analysis, Theory, Mefhods &Applications, Vol.30, No.4, pp.1959-1968.1997
    [95]Jubaaj Sahu,Karen R.Heavey & Eael N. Ferry,Computatioal modeling of multibo dy aerodynamic interference.Advances in Engineering Software Vol 29, No.3-6,p p.383-388,1998
    [96]Masaru Matsumotoa, Hiromichi Shiratoa, Tomomi Yagia,Rikuma Shijob, Akitos Eguchia, Hitoshi TamakiaEffects of aerodynamic interferences between heaving and torsional vibration of bridge decks:the case of Tacoma Narrows Bridge Journal of Wind Engineering and Industrial Aerodynamics 91 (2003) 1547-1557
    [97]R.M. Ardito Marrettaa,*,1, G. Davia, G. Lombardib, A. MilazzoaHybrid numerical technique for evaluating wing aerodynamic loading with propeller interference Computers & Fluids 28 (1999) 923±950
    [98]I. Kronkea, H. Sockel, Measurement of extreme aerodynamic interference forces acting on circular cylinders in turbulent boundary layers Journal of Wind Engineering and Industrial Aerodynamics 95 (2007) 1229-1241
    [99]马保林,高墩大跨连续刚构[M].北京:人民交通出版社,2001
    [100]长安大学风洞实验室.洛河大桥抗风性能试验研究报告[R].2005
    [101]长安大学风洞实验室.骑骡沟大桥抗风性能试验研究报告[R].2008
    [102]M.Mastsumoto.Vortex shedding of bluff bodies:a review[J]Journal of fluids and structure.1999.13:791-811
    [103]刘娜,周斌,汤池.某双幅桥梁三分力系数的数值模拟研究[J].中国科技信息,2007,11,45-46
    [104]Taniike, Y. and Inaoka, H. Aeroelastic behavior of tall buildings in wakes. J. Wind Engng Indust., Aerodynam,1998,28:317-327
    [105]GARCIA-FOGEDA & LIU D D., Analysis of unsteady aerodynamics for elashc bodies In supersonic flow, J.Aircraft,Vol.24, No.12, pp.833840 (dec 1987)
    [106]WU, M-SH, GARCIA-FOGEDA, LIU D.D., Potential flow over bodies of revoiuhon in unsteady motion, AIAA J.,Vol.27, No.6, pp 725-733 (June 1989).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700