悬浮控制中的信号滤波算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低速磁浮列的悬浮系统是一个典型的非线性开环不稳定系统,由于电磁环境的复杂性和运行状态参数的不确定性,滤波降噪算法一直是悬浮控制的技术难点。本文围绕滤波算法在悬浮控制中的对比应用展开研究,采用理论分析与仿真实验相结合的方法,主要完成了以下工作:
     首先,建立了单点悬浮系统的数学模型,研究了电流环和位置环的设计问题,并通过时域和频域工具相结合的方法分析了控制系统各个参数对悬浮系统稳定性的影响。另外,通过实验方法建立了悬浮系统的噪声模型,并用功率谱密度描述噪声的频率特性。
     其次,分析了系统中常规的几种低通滤波器对系统抗干扰能力的性能情况,分析了陷波器在抑制窄带宽交流噪声方面的应用效果。此外,从系统的稳定性角度分析了低通滤波器和陷波器对系统稳定性的影响。
     然后,针对悬浮系统中存在的噪声特点采用了卡尔曼滤波方法。对卡尔曼滤波器在悬浮控制系统中的应用做了理论分析和仿真实验。仿真实验表明悬浮控制系统采用卡尔曼滤波器后能够有效地减小噪声带来的影响、提高鲁棒性。
     最后,将最小二乘自适应滤波器应用到悬浮控制系统以抑制系统噪声,并通过递推最小二乘算法以减少程序的运算量。仿真实验表明该滤波器对噪声具有良好的抑制作用。
     通过对上述几种滤波算法的分析比较,提出了适合于磁浮列实际运行需要的滤波算法,对悬浮控制算法的设计提供了重要的参考。
The suspension system of the low-speed maglev train is a typical non-linear open-loop unstable system, and research on filtering and noise-reducing algorithms is a key technology in suspension control because of the complicacy of the electromagnetic environment and the uncertainties of the operational state parameters. This dissertation concentrates on the comparison of the application of different filtering algorithms in the suspension control system, using theoretical analysis as well as simulations and experiments. The main jobs are listed as follows:
     Firstly, a dynamic model of a single electro-magnet suspension system is established, and a current loop and a position control loop are designed. Analyses of the impacts to the stability of the whole system due to control parameters are undertaken in both the time domain and the frequency domain, and the noise model of the suspension system is introduced. Moreover, a model is estabilished in the experimental way to discribe the nosie of the suspension system, and the Power Spectral Density (PSD) is employed to describe the frequency characteristics of the noise.
     Secondly, the anti-interference performance of several low-pass filters in common use is explored, and the performance of the notch filter in suppressing the nerrow-band alternating-current noise is dicussed. In addition, the influences of the low-pass filter and the notch filter on the stability of the suspension control system are also analyzed.
     Thirdly, considerring the characteristics of the noise in the suspension control system, the Kalman filter is used. Theoretical analysis and simulation validation have been undertaken on the application of the Kalman Filter in the suspension control system. The simulation result indicates that using the Kalman filter, the suspension control system can significantly reduce the impact of the noise and its robustness is therefore improved.
     Finally, the Least Squares (LS) adaptive filter is applied to the suspension control system to suppress the noise, and the Recursive Least Squares (RLS) algorithm is applied to reduce the computational complicacy. Simulation shows that the adaptive filter performs well in suppressing the noise.
     According to the analysis and comparison of the algorithms listed above, filtering algorithm which meets the requirements of the maglev train is proposed, which provides a significant referrence for the suspension control algorithm.
引文
[1]吴祥明.磁浮列[M].上海科学技术出版社, 2003.
    [2]刘德生. EMS型低速磁浮列模块悬浮控制问题研究[D].国防科技大学博士学位论文, 2006.
    [3]周丹峰. EMS型磁浮列车车轨共振机理研究[D].国防科技大学硕士学位论文,2006.
    [4]李云钢,常文森.磁浮列悬浮系统的串级控制[J].自动化学报, 1999, 25(2): 247~251
    [5]张文清.基于磁通反馈的悬浮控制方法研究及实现[D].国防科技大学硕士学位论文,2009.
    [6]朱付景.基于双位置环反馈的悬浮控制研究[D].国防科技大学硕士学位论文,2007.
    [7]邓自立.卡尔曼滤波与维纳滤波[M].哈尔滨工业大学出版社, 2001.
    [8]李晓龙,张志洲,佘龙华,常文森.基于卡尔曼滤波的磁浮列悬浮系统控制算法研究[J].系统仿真学报, 2008.
    [9]胡寿松.自动控制原理[M].科学出版社, 2001.
    [10] Shinichi Kusagawa, Jumpei Baba, Katsuhiko Shutoh, Eisuke Masada. Comparison of total performances for high-speed EMS-type magnetically levitated railway vehicle[J]. Maglev’2004 proceedings, Shanghai, China, 2004, pp942-952.
    [11]夏玮. MATLAB控制系统仿真与实例详解[M].人民邮电出版社, 2008.
    [12]薛定宇,陈阳泉.控制数学问题的MATLAB求解[M].清华大学出版社, 2007.
    [13]远坂俊昭.测量电子电路设计[M].科学出版社, 2006.
    [14]武建军,郑晓静,周又和.磁悬浮体-单跨弹性轨道耦合控制系统的动力稳定性分析[J].兰州大学学报(自然科学版), 2003, 39(3): 22~26
    [15]李云钢,常文森,龙志强. EMS磁浮列的轨道共振和悬浮控制系统设计[J].国防科技大学学报, 1999, 21(2): 93~96
    [16]王彦琴,盛美萍,孙进才.多自由度主系统多模态动力吸振的优化设计[J].振动与冲击, 2004, 23(4)
    [17]李德葆,陆秋海.试验模态分析及其应用[M].科学出版社, 2001
    [18]雷晓燕,圣小珍.铁路交通噪声与振动[M].科学出版社, 2005
    [19]武建军,郑晓静,周又和.弹性轨道上二自由度磁悬浮列的动力特性分析[J].振动工程学报, 1999, 12(4), 439~446
    [20] Y. Cai, S.S. Chen. Control of Maglev Suspension Systems[J]. Journal of Vibration and Control, 1996, 2: 349~368
    [21] B.V. Jayawant, P.K. Sinha. Low-Speed Vehicle Dynamics and Ride Quality Using Controlled D.C. Electromagnets[J]. Automatic, Vol.13. pp605~610
    [22] M. Morita, M. Fujino. State of levitation of linimo (HSST system) during EXPO2005[J] . Journal of Vibration and Control, 2005, 2: 349~368
    [23] Minoru Morita, Mitsuru Iwaya, Masaaki Fujino. The Characteristics of the Levitation System of Linimo (HSST system)[J] . Journal of Vibration and Control, 2007, 2: 349~368
    [24]李莉,孟光.电磁型磁悬浮列动力学研究综述[J].铁道学报, 2003,25(4): 110~114
    [25]刘豹.现代控制理论[M].机械工业出版社, 2005
    [26]谢云德,常文森,尹力明.磁悬浮列系统轨道动力学分析与试验研究[J].国防科技大学学报, 1997, 19(5): 58~63
    [27] Jintai Chung. Vibration Absorber for Reduction of the In-plane Vibration in an Optical Disk Drive[J]. IEEE Transactions on Consumer Electronics, Vol. 50, No. 2, May 2004
    [28] Mohammed Ferdjallah, Ronald E. Barr. Adaptive Digital Notch Filter Design on the Unit Circle for the Removal of Powerline Noise from Biomedical Signals[J]. IEEE Transactions on Biomedical Engineering, 41(6), June 1994
    [29] Daniel Olguín Olguín, Frantz Bouchereau, Sergio Martínez. Adaptive Notch Filter for EEG signals Based on the LMS Algorithm with Variable Step-Size Parameter[J]. 2005 Conference on Information Science and Systems, March 2005
    [30]曾佑文,王少华,张昆仑. EMS磁浮列-轨道垂向耦合动力学研究[J].铁道学报, 1999, 21(2): 21~25
    [31]刘延柱,陈文良,陈立群.振动力学[M].高等教育出版社, 2000
    [32]赵春发,翟婉明,蔡成标.磁浮辆/高架桥垂向耦合动力学研究[J].铁道学报, 2001, 23(5): 27~33
    [33]曾佑文,王少华,张昆仑.磁浮列车车辆-轨道耦合振动及悬挂参数研究[J].西南交通大学学报, 1999, 34(2): 168~173
    [34]方明霞,屠娟,冯奇,马星.弹性行道上磁悬浮列系统的动力学研究[J].噪声与振动控制, 2001.12
    [35]徐志胜,翟婉明,王开云.基于Timoshenko梁模型的辆-轨道耦合振动分析[J].西南交通大学学报, 2003, 38(1): 22~27
    [36]吴多义,黄志开,段吉安.梁的支承刚度对模态频率的影响的分析[J].机械, 2001年第28卷增刊: 24~25
    [37]刘恒坤.常导高速磁浮列双转向架搭接结构的悬浮控制问题研究[D].湖南长沙:国防科技大学博士论文, 2005.12.
    [38]武建军,郑晓静,周又和.两级悬浮EMS型磁悬浮控制系统的非线性动力学特性[J].固体力学学报, 2003, 24(1): 68~74
    [39]时瑾,魏庆朝.常导磁悬浮铁路磁轨关系研究[J].北方交通大学学报, 2004, 28(4): 41~44
    [40]李瀚荪.电路分析基础(第三版)[M].高等教育出版社, 1993
    [41]高桥健二[日]著,赵长奎等译.实用晶体管电路设计[M].国防工业出版社, 1979
    [42]付梦印,钟秋海.现代控制理论与应用[M].机械工业出版社, 1997.
    [43]戚国庆,陈黎.去相关卡尔曼滤波算法在视频跟踪中的应用[J].计算机仿真, 2008, 11-0218-04
    [44]邱云. Kalman滤波理论及其在通信与信号处理中的应用[D].山东大学硕士学位论文, 2008.
    [45]秦勤.交管雷达改进目标跟踪算法的研究[D].大连海事大学硕士学位论文, 2006.
    [46]王彦琴,盛美萍,孙进才.变截面梁式动力吸振器的带宽吸振机理[J].振动工程学报, 2004, 17(4): 473~476
    [47] Kazuo Yoshida, Kohji Fukui, Taku Watanabe. Active Vibration Control System for Buildings Subjected to Horizontal and Vertical Large Seismic Excitation[J]. Proceedings of the 35th Conference on Decision and Control. 1996, 664~669
    [48]周又和,武建军,郑晓静.磁浮列的动力稳定性分析与Liapunov指数[J].力学学报, 2000, 32(1): 42~51
    [49]邓永权,罗世辉.单磁铁系统的稳定性与仿真分析[J].电力机与城轨辆, 2005, 28(5): 44~46
    [50]龙志强,郝阿明,常文森.考虑轨道周期性不平顺的磁浮列悬浮控制系统设计[J].国防科技大学学报, 2003, 25(2): 84~89
    [51]洪华杰,李杰,张锰. EMS型磁浮列系统滚动稳定性研究[J].控制工程, 2006, 13(4): 314~316
    [52] Hong Huajie, Li Yungang. The Design of a Magnetic Levitation Controller Based on the study of Coupling Vibration[J]. Proc. of Maglev’2004, 1012~1018
    [53] Rechard C. Dorf, Robert H. Bishop著,谢红卫等译.现代控制系统(第八版)[M].高等教育出版社, 2001
    [54] Katsuhiko Ogata著,卢伯英,于海勋等译.现代控制工程(第三版)[M].电子工业出版社, 2000
    [55] Rob H.B. Fey, Joris H. Bonsel, Henk Nijmeijer. Passive Vibration Control of A Piecewise Linear Beam System[C]. XXIICTAM, 2004
    [56]同长虹,张雷涛. TMD吸振原理及其参数优化[J].甘肃高师学报, 2004, 9(5)
    [57]曾宪武,韩大建.双频率调谐质量阻尼器在桥梁抖振控制中的应用.华南理工大学学报(自然科学版)[J], 2005, 33(9)
    [58]陈炎,黄小清,马友发.车桥系统的耦合振动[J].应用数学和力学, 2004, 25(4)
    [59]汪正兴,任文敏,苏继宏,徐海鹰.多重调谐质量阻尼器参数优化的一种改进算法及其应用[J].工程力学, 22(5), 2005.10
    [60]叶正强,李爱群,丁幼亮.某大跨人行天桥的消能减振设计(一)[J].特种结构, 2003, 20(1)
    [61] Marc Bodson, Scott C. Douglas. Adaptive Algorithms for the Rejection of Sinusoidal Disturbances with Unknown Frequency. Automatica, 1997, 33(12)
    [62] M. Karimi-Ghartemani, A. R. Bakhshai, M. Mojiri. Estimation of Power System Frequency Using Adaptive Notch Filter[J]. IMTC 2005- Instrumentation and Measurement Technology Conference, May 2005
    [63] A. A. (Louis) Beex, James R. Zeidler. Interference Suppression with Minimal Signal Distortion[J]. IEEE ICASSP 2003: 225~228
    [64] Simon Haykin.郑宝玉等译.自适应滤波器原理[M].电子工业出版社, 2003.
    [65]李正周. MATLAB数字信号处理与应用[M].清华大学出版社, 2008.
    [66]张世平,赵永平,张绍卿,李德胜.一种基于自适应陷波器的电网频率测量新方法[J].中国电机工程学报, 2003, 23(7): 81~83
    [67]徐科军等.基于自适应陷波的涡街流量计信号处理系统[J].计量学报, 2000,21(3): 199~204
    [68]张磊,刘永光,付永领,何琳.基于自适应陷波器的主动隔振仿真研究[J].系统仿真学报, 2005, 17(1): 234~237
    [69]徐田华,罗海福,季刚.自适应陷波器在远场涡流检测中的应用[J].传感器技术, 2001, 20(7): 17~19
    [70]王保强,窦文,白红.高精度测频方案设计[J].成都信息工程学院学报, 2002, 17(2): 77~81
    [71]童诗白,华成英.模拟电子技术基础(第三版)[M].高等教育出版社, 2001
    [72]杨开.配网低压LC滤波器[J].电工技术, 2002.2
    [73]黄海.谐波的危害及抑制措施[J].四川冶金, 2002.6: 45~47
    [74] Donald M.Rote. Passive Damping in EDS Maglev Systems[J]. MAGLEV’2002, 17th Int. Conf. on Maglev Systems, 2002
    [75] Shunsuke Ohashi. Effect of the Damper Coils on the Rotational Motion of the Superconducting Magnetically Levitated Bogie[J]. IEEE Trans. on Magnetics, 2000, 36(5): 3680~3682
    [76] S. Ohashi, H. Ohsaki, E. Masada. Effect of the Active Damper Coil System on the Lateral Displacement of the Magnetically Levitated Bogie[J]. IEEE Trans. on Magnetics, 1999, 35(5): 4001~4003
    [77]赵志苏,尹力明,罗昆.磁悬浮列转向机构运动分析与设计[J].机电传动. 2000, 6: 11~13
    [78]张锟,李杰,常文森.磁悬浮列转向架的结构解耦分析[J].机电传动. 2005(1): 22~23
    [79]洪华杰,李杰,李淑娟.基于虚拟样机的磁悬浮列动力学仿真研究[J].机电传动. 2005(2): 40~44.
    [80]曹建福,韩崇昭,方洋旺.非线性系统理论及应用[M].西安交通大学出版社. 2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700