C_(60)衍生物的超分子组装及其生物活性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
富勒烯一经被人们发现,就引起了科学工作者极高的研究热情,由于其自身独特的结构,使得它具有超导、铁磁、润滑、光电导体、催化、生物制药等性质。有着“自由基海绵”之称的富勒烯,具有能够淬灭多种自由基的能力,而且其效能已经超过了传统的抗氧化剂,这使得它在生物制药领域有着很高的研究价值,C_(60)作为富勒烯家族的主要代表,自然成为这方面研究的重点对象。然而C_(60)具有强疏水的性质,这大大阻碍了人们对它生物活性的研究,因此,如何得到水溶性较好的富勒烯便成为人们要解决的首要问题。为了解决其水溶性,化学工作者们用多种水溶性基团对富勒烯进行修饰,以达到使其水溶的目的。
     近年来,随着超分子科学和纳米科学的深入发展,利用纳米尺度的富勒烯作为构筑基元来设计复杂的超分子复合物成为很重要的研究领域。基于对超分子自组装和抗氧化酶的理解,我们开展了C_(60)衍生物的超分子组装工作,并研究了这些超分子复合物的抗氧化生物活性:
     1.温度响应的C_(60)超分子复合物的构建
     环糊精和金刚烷作为一对经典的主客体分子,已被广泛的应用于各种超分子结构的构筑。近年来,具有刺激响应性质的聚合物成为了聚合物领域研究的又一热点,因此,我们将这一概念引入到我们的体系中,以期望得到具有刺激响应的超分子复合物。为此,我们设计合成了带有环糊精单体的温敏性聚合物,和带有金刚烷基团的C_(60)衍生物,通过溶剂极性的调节使聚合物中的环糊精对金刚烷部分进行识别和包结,从而形成超分子复合物,并且这种复合物继承了聚合物温度响应的性质。由于复合物中C_(60)极强的疏水性质,使得其在水相中能够自聚集成囊泡结构,而且由于复合物具有温敏性质,这种囊泡结构可以随着温度的变化而发生改变,成为实心球状粒子。
     富勒烯都具有很强的淬灭自由基的能力,我们所制备的C_(60)复合物同样也具备这样的功能。我们以淬灭羟基自由基为例,发现复合物可以有效的消除Fenton反应中产生的羟基自由基,并且随着温度变化引起的聚集体形貌变化还会影响到其淬灭效率。除此之外,我们还在亚细胞水平研究了复合物的生物学效应,证明这种复合物一定程度上可以保护线粒体免受自由基的损害。
     2.两亲性C_(60)衍生物的自组装
     大多数两亲性的富勒烯衍生物,在水相中能够自发的形成自聚集体,全碳的富勒烯球的强疏水性成为了其自组装的主要驱动力,因而很多富勒烯衍生物可以在水相中形成一定的组装结构。我们所制备的C_(60)衍生物tetra-Ad-C_(60),由于在支链上连有缩醇基团,因此它也具备两亲性,并在水相中的聚集体以一定形貌存在。通过DLS、SEM和TEM的表征,证明tetra-Ad-C_(60)在水中自聚集成囊泡结构。此外,通过桥联环糊精的作用,还可以将水相中的囊泡连接起来,形成更大的聚集结构。
     3.基于超分子组装构建具有GPx活性的C_(60)衍生物
     利用环糊精与金刚烷间经典的主客体识别作用,可以将C_(60)溶于水相中,而环糊精较易容易修饰,可以将很多功能基团键联在环糊精分子上,因此,我们将GPx酶的活性位点引入其中,进而制备出具有双功能的C_(60)复合物。这种复合物同样能够有效的淬灭体系中的羟基自由基,保护线粒体免受损伤,同时该酶模型也展现出了较高的GPx催化活力,与著名小分子硒酶模拟物Ebselen相比,有了24倍的提高。与先前报道的同类酶模型相比,该酶模型制备简单,催化活性显著,充分体现了以自组装方法构筑人工酶的优势。
Fullerene, as the third carbon allotrope, has attracted increasing attention because of its exciting physical and chemical properties, which endow fullerene-containing materials with broad and promising applications in superconductor, ferromagnet, lubrication, photoconductor, catalysts, and molecular medicines. C60, the most representative member of the fullerene family, has been studied in various fields of biomedicine for its unique properties. As a“free radical sponge”, C60 has been demonstrated excellent ability to quench various free radicals more efficiently than conventional antioxidants. Furthermore, many fullerene-based compounds prepared artificially have shown potential practical value, for instance, reduction of injury on ischemic reperfusion of the intestine, a decrease in number of cells undergoing apoptosis, reduction in free radical levels in organ perfusate, and neurprotective effects. Though, in recent years, people are having much more interest in studying potential bioactive water-soluble fullerene derivatives emphasizing on their capacity to quench free radicals, the extreme hydrophobicity is a serious barricade for the broad prospects on bio-medical research and application. Therefore, a mass of representative works focus on functionalizing fullerene with negatively charged carboxylic, positively charged quaternary ammolonium, and non-charged functional group as ethylene glycol groups and polymers, etc. to enhance the water solubility of fullerenes. Another approach to overcome the insolubility is to encapsulate the respective monomer species in supramolecular structure with host moiety, such as cyclodextrin, surfactants, gels, or polymers, etc. Besides those approaches, fullerene can be stabilized in water as nano-scale colloidal assemblies through routes. For example, nanoscale colloid of C60 can be formed in the following steps. Firstly, dissolve C60 in water-miscible polar organic solvents such as tetrahydrofuran (THF) and mix with water, subsequently remove the transfer solvent via distillation or dialysis. However, the first two avenues seemed to be more promising in application of fullerene in biomaterial field.
     For the extreme hydrophobicity of C60, most of water-soluble derivatives of C60 are amphiphilic, while amphiphilic molecular organization is one of the widely used methods in supramolecular chemistry to construct nano-architectures. This method uses the balanced hydrophilic-hydrophobic structural motifs to give rise to micells, bilayers and further vesiclar structures, and its advantage makes it possible to solubilize the extremely hydrophobic C60 in polar media and to utilize the propensity of amphiphilic fullernenes to form prominent assemblies.
     1. Supramolecular complex of C60 derivative with ability of thermo-response
     We applied thermo-responsive copolymer consisting of host sites, which could recognize guest molecules, to conjugate insoluble derivative of C60 in contrast to conventional water-soluble C60, for the purpose of realizing its solubility. The fabrication of thermo-responsive assemblies was based on the complex consisting of thermo-responsive polymer and derivative of fullerene with adamantyl moiety. The complex can self-assemble to vesicles for its amphiphilic structure.
     It is noteworthy that the morphology of assemblies could be tuned reversibly from vesicles to nano-spheres when temperature changed. Furthermore, the assemblies have an excellent ability to scavenge hydroxyl radicals of biological system due to the introduction of the derivative of fullerene into the complex, and the scavenging efficiency could be obviously influenced by the change of temperature owing to the thermo-responsive property of the supramolecualr complex.
     2. Self-assambly of amphiphilic C60 derivative
     Lots of fullerene derivatives can self-assemble as some morphology in aqueous, because the all-carbon fullerene is completely hydrophobic and hydrphobicity can be the force to form assemblies. Tetra-Ad-C60, as a derivative of C60 that we synthetized, can self-assemble in aqueous for the ethylene glycol group which is hydrophilic. It was proved that tetra-Ad-C60 can self-assemble as vesicle in the method of DLS, SEM and TEM.. Furthermore, the vesicles can assemble as higher degree assemblies in the case of the presence of bridged cyclodextrin.
     3. Supramolecular derivative of C60 with GPx activity
     Beacuase cyclodextrin is easy to be derivated and many functional groups can be linked on it, we synthetized a derivative of cyclodextrin with GPx active site to construct supramolecules with C60 derivative. The complex we constructed can quench hydroxyl radicals efficiently for the fullerene moiety, and it can protect mitochondria from oxidative damage. Furthermore, the complex as a model of enzyme showed a high GPx activity and a remarkable rate enhancement of 24-fold compared to the well-known GPx mimic ebselen was observed. Compared with other bifunctional enzyme mimics, this supramolecular artificial enzyme has its obvious advantage: simple preparation process and remarkable catalytic activity.
引文
[1] Kroto, H. W.; Heath, J. R.; O’Brein, S. C.; Curl, R. F.; Smalley, R. E. C_(60): buckminsterfullerene. Nature 1985, 318, 162–163.
    [2] Kratschmer, W.; Lamb, L. D.; Fostiropoulos, K.; Huffman, D. R. Solid C_(60): a new form of carbon. Nature 1990, 347, 354–358.
    [3] Bosi, S.; Da Ros, T.; Spalluto, G.; Prato, M. Fullerene derivatives: an attractive tool for biological applications. Eur. J. Med. Chem. 2003, 38, 913–923.
    [4] Satoh, M.; Takayanagi, I. Pharmacological studies on fullerene (C_(60)), a novel carbon allotrope, and its derivatives. J. Pharmacol. Sci. 2006, 100, 513–518.
    [5] Krusic, P. J.;Wasserman, E.; Keizer, P. N.; Morton, J. R.; Preston, K. F. Radical reactions of C_(60). Science 1991, 254, 1183–1185.
    [6] Arbogast, J. A.; Darmanyan, A. P.; Foote, C. S.; Rubin, Y.; Diederich, F. N; Alvarez, M. M., et al. Photophysical properties of C_(60). J. Phys. Chem. 1991, 95, 11–12.
    [7] Guldi, D. M.; Prato, M. Excited-state properties of C_(60) fullerene derivatives. Acc. Chem. Res. 2000, 33, 695–703.
    [8] Briviba, K.; Klotz, L. O.; Sies, H. Toxic and signaling effects of photochemically or chemically generated singlet oxygen in biological systems. Biol. Chem. 1997, 378, 1259–1265.
    [9] Williams, D. The relationship between biomaterials and nanotechnology. Biomaterials 2008, 29, 1737–1738.
    [10] Mulliken, R. S. The assignment of quantum numbers for electrons in molecules. Phys. Rev. 1928, 32, 186–222.
    [11] Ellis, J. W.; Kneser, H. O. Kombinationsbeziehungen im absorptionsspektrum des flussigen sauerstoffes. Z Phys 1933, 86, 583–591.
    [12] Clo′, E.; Snyder, J. W.; Ogilby, P. R.; Gothelf, K. V. Control and selectivity of photosensitizedsinglet oxygen production: challenges in complex biological systems. Chembiochem. 2007, 8, 475–481.
    [13] Leach, S.; Vervloet, M.; Hare, J. P.; Dennis, T. J., et al. Electronic spectra and transitions of the fullerene C_(60). Chem. Phys. 1992, 160 451–466.
    [14] Yamakoshi, Y.; Sueyoshi, S.; Fukuhara, K.; Miyata, N.; Masumizu, T.; Kohno, M. O?H andO_2~- generation in aqueous C_(60) and C70 solutions by photoirradiation: an EPR study. J. Am. Chem. Soc. 1998, 120, 12363–12364.
    [15] Yamakoshi, Y.; Umezawa, N.; Ryu, A.; Arakane, K.; Miyata, N.; Goda, Y., et al. Active oxygen species generated from photoexcited fullerene (C_(60)) as potential medicines: ??O 2versus 1O2. J. Am. Chem. Soc. 2003, 125, 12803–12809.
    [16] Black, G.; Dunkle, E.; Dorko, E. A.; Schlie, L. A. O2 (1Δg) production and quenching by C_(60) and C70. J. Photochem. Photobiol. A 1993, 70, 147–151.
    [17] Zeynalov, E. B.; Friedrich, J. F. Anti-radical activity of fullerenes and carbon nanotubes in reactions of radical polymerization and polymer thermal/thermo-oxidative degradation. Materialprufung 2007, 49, 265–270.
    [18] Chiang, L. Y.; Wang, L. Y.; Swirczewski, J. W.; Soled, S.; Cameron, S. Efficient synthesis of polyhydroxylated fullerene derivatives via hydrolysis of polycyclosulfated precursors. J. Org. Chem. 1994, 59, 3960–3968.
    [19] Brettreich, M.; Hirsch, A. A highly water-soluble dendro[60]fullerene. Tetrahedron. Lett. 1998, 39, 2731–2734.
    [20] Bosi, S.; Feruglio, L.; Da Ros, T.; Spalluto, G.; Gregoretti, B.; Terdoslavich, M., et al. Hemolytic effects of water-soluble fullerene derivatives. J. Med. Chem. 2004, 47, 6711–6715.
    [21] Husebo, L. O.; Sitharaman, B.; Furukawa, K.; Kato, T.; Wilson, L. J. Fullerenols revisited as stable radical anions. J. Am. Chem. Soc. 2004, 126, 12055–12064.
    [22] Braun, T.; Buvari-Barcza, A.; Barcza, L.; Konkoly-Thege, I.; Fodor, M.; Migali, B. Mechanochemistry: a novel approach to the synthesis of fullerene compounds. Water soluble buckminsterfullerene–γ-cyclodextrin inclusion complexes via a solid-solid reaction. Solid State Ionics 1994, 74, 47–51.
    [23] Janot, J. M.; Seta, P.; Bensasson, R. V.; Enes, R. F., et al. [60]Fullerene and three
    [60]fullerene derivatives in membrane model environments. J. Chem. Soc. Perkin. Trans. 2 2000, 301–306.
    [24] Makha, M.; Purich, A.; Raston, C. L.; Sobolev, A. N. Structural diversity of host-guest and intercalation complexes of fullerene C_(60). Eur. J. Inorg. Chem. 2006, 3, 507–517.
    [25] Deguchi, S.; Mukai, S. A.; Tsudome, M.; Horikoshi, K. Facile generation of fullerene nanoparticles by hand-grinding. Adv. Mater. 2006, 18, 729–732.
    [26] Deguchi, S.; Alargova, R. G.; Tsujii, K. Stable dispersions of fullerenes, C_(60) and C70, in water. Preparation and characterization. Langmuir 2001, 17, 6013–6017.
    [27] Lyon, D. Y.; Adams, L. K.; Falkner, J. C.; Alvarez, P. J. Antibacterial activity of fullerenewater suspensions: effects of preparation method and particle size. Environ. Sci. Technol. 2006, 40, 4360–4366.
    [28] Fortner, J. D.; Lyon, D. Y.; Sayes, C. M.; Boyd, A. M.; Falkner, J. C.; Hotze, E. M., et al. C_(60) in water: nanocrystal formation and microbial response. Environ. Sci. Technol. 2005, 39, 4307–4316.
    [29] Andrievsky, G. V.; Kosevich, M. V.; Vovk, O. M.; Shelkovsky, V. S.; Vashchenko, L. A. On the production of an aqueous colloidal solution of fullerenes. Chem. Commun. 1995, 1281–1282.
    [30] Brant, J. A.; Labille, J.; Bottero, J.; Wiesner, M. R. Characterizing the impact of preparation method on fullerene cluster structure and chemistry. Langmuir 2006, 22, 3878–3885.
    [31] Oberdorster, E.; Zhu, S.; Blickley, T. M.; McClellan-Green, P.; Haasch, M. L. Ecotoxicology of carbon-based engineered nanoparticles: effects of fullerene (C_(60)) on aquatic organisms. Carbon 2006, 44, 1112–1120.
    [32] Coleman, A. W.; Nicolis, I.; Keller, N.; Dalbiez, J. P. Aggregation of cyclodextrins: an explanation of the abnormal solubility ofβ-cyclodextrin. J. Inclusion Phenom. Mol. Recog. Chem. 1992, 13, 139–143.
    [33] Jeng, U. S.; Lin, T. L.; Chang, T. S.; Lee, H. Y.; Hsu, C. H.; Hsieh, Y. W., et al. Comparison of the aggregation behavior of water-soluble hexa(sulfobutyl) fullerenes and polyhydroxylated fullerenes for their free-radical scavenging activity. Prog. Colloid Polym. Sci. 2001, 118, 232–237.
    [34] Brant, J. A.; Labille, J.; Robichaud, C. O.; Wiesner, M. Fullerol cluster formation in aqueous solutions: implications for environmental release. J. Colloid Interface Sci. 2007, 314, 281–288.
    [35] Bensasson, R. V.; Berberan-Santos, M. N.; Brettreich, M.; Frederiksen, J.; Hirsch, A., et al. Triplet state properties of malonic acid C_(60) derivatives C_(60)[C(COOR)2]n; R = H, Et; n = 1–6. Phys. Chem. Chem. Phys. 2001, 3, 4679–4683.
    [36] Vileno, B.; Sienkiewicz, A.; Lekka, M.; Kulik, A. J., et al. In vitro assay of singlet oxygen generation in the presence of water-soluble derivatives of C_(60). Carbon 2004, 42, 1195–1198.
    [37] Vileno, B.; Marcoux, P. R.; Lekka, M.; Sienkiewicz, A., et al. Spectroscopic and photophysical properties of a highly derivatized C_(60) fullerol. Adv. Funct. Mater. 2006, 16, 120–128.
    [38] Pickering, K.; Wiesner, M. R. Fullerol-sensitized production of reactive oxygen species in aqueous solution. Environ. Sci. Technol. 2005, 39, 1359–1365.
    [39] Mikata, Y.; Takagi, S.; Tanahashi, M.; Ishii, S.; Obata, M.; Miyamoto, Y., et al. Detection of1270 nm emission from singlet oxygen and photocytotoxic property of sugar-pendant [60] fullerenes. Bioorg. Med. Chem. Lett. 2003, 13, 3289–3292.
    [40] Yu, C.; Canteenwala, T.; El-Khouly, M. E.; Araki, Y.; Pritzker, K.; Ito, O., et al. Efficiency of singlet oxygen production from self-assembled nanospheres of molecular micelle-like photosensitizers FC4S. J. Mater. Chem. 2005, 15, 1857–1864.
    [41] Enes, R. F.; Tome, A. C.; Cavaleiro, J. A. S.; El-Agamey, A.; McGarvey, D. J. Synthesis and solvent dependence of the photophysical properties of [60]fullerene–sugar conjugates. Tetrahedron 2005, 61, 11873–11881.
    [42] Prat, F.; Stackow, R.; Bernstein, R.; Qian, W.; Rubin, Y.; Foote, C. S. Triplet-state properties and singlet oxygen generation in a homologous series of functionalized fullerene derivatives. J. Phys. Chem. A 1999, 103, 7230–7235.
    [43] Chin, K. K.; Chuang, S. C.; Hernandez, B.; Campos, L. M.; Selke, M.; Foote, C. S., et al. Photophysical properties of non-homoconjugated 1,2-dihydro, 1,2,3,4-tetrahydro and 1,2,3,4,5,6-hexahydro-C_(60) derivatives. Photochem. Photobiol. Sci. 2008, 7, 49–55.
    [44] Anderson, J. L.; An, Y. Z.; Rubin, Y.; Foote, C. S. Photophysical characterization and singlet oxygen yield of a dihydrofullerene. J. Am. Chem. Soc. 1994, 116, 9763–9764.
    [45] Foley, S.; Bosi, S.; Larroque, C.; Prato, M.; Janot, J. M.; Seta, P. Photophysical properties of novel water soluble fullerene derivatives. Chem. Phys. Lett. 2001, 350, 198–205.
    [46] Lu, C. Y.; Yao, S. D.; Lin, W. Z.;Wang, W. F.; Lin, N. Y.; Tong, Y. P., et al. Studies on the fullerol of C_(60) in aqueous solution with laser photolysis and pulse radiolysis. Radiat. Phys. Chem. 1998, 53, 137–143.
    [47] Bensasson, R. V.; Brettreich, M.; Frederiksen, J.; Hirsch, A.; Land, E. J., et al. Reactions of ?e aq, CO 2??, HO ?, O 2?? and O2(1Δg) with a dendro[60]fullerene and C_(60)[C(COOH)2]n (n =2–6). Free Radic. Biol. Med. 2000, 29, 26–33.
    [48] Ali, S. S.; Hardt, J. I.; Quick, K. L.; Kim-Han, J. S.; Erlanger, B. F.; Huang, T. T., et al. A biologically effective fullerene (C_(60)) derivative with superoxide dismutase mimetic properties. Free Radic. Biol. Med. 2004, 37, 1191–1202.
    [49] Xiao, L.; Takada, H.; Maeda, K.; Haramoto, M.; Miwa, N. Antioxidant effects of water-soluble fullerene derivatives against ultraviolet ray or peroxylipid through their action of scavenging the reactive oxygen species in human skin keratinocytes. Biomed. Pharmacother. 2005, 59, 351–358.
    [50] Hurst, J. R.; Schuster, G. B. Nonradiative relaxation of singlet oxygen in solution. J. Am. Chem. Soc. 1983, 105, 5756–5760.
    [51] NDRL Radiation Chemistry Data Center: http://www.rcdc.nd.edu.
    [52] Guldi, D. M.; Asmus, K. D. Activity of water-soluble fullerenes towards ? OH-radicals and molecular oxygen. Radiat. Phys. Chem. 1999, 56, 449–456.
    [53] Kamat, J. P.; Devasagayam, T. P.; Priyadarsini, K. I.; Mohan, H.; Mittal, J. P. Oxidative damage induced by the fullerene C_(60) on photosensitization in rat liver microsomes. Chem. Biol. Interact. 1998, 114, 145–159.
    [54] Prat, F.; Nonell, C. S.; Zhang, X.; Foote, C. S.; Moreno, R. G.; Bourdelande, J. L., et al. Fullerene-based materials as singlet oxygen C_(60) O2(1Δg) photosensitizers: a time-resolved near-IR luminescence and optoacoustic study. Phys. Chem. Chem. Phys. 2001, 3, 1638–1643.
    [55] Liu, J.; Ohta, S. I.; Sonoda, A.; Yamada, M.; Yamamoto, M.; Nitta, N., et al. Preparation of PEG-conjugated fullerene containing Gd3+ ions for photodynamic therapy. J. Controlled Release 2007, 117, 104–110.
    [56] Ungurenasu, C.; Airinei, A.; Highly stable C_(60)/polyvinylpyrrolidone chargetransfer complexes afford new predictions for biological applications of underivatized fullerenes. J. Med. Chem. 2000, 43, 3186–3188.
    [57] Dimitrijevic, N. M.; Kamat, P. V. Excited-state behavior and one-electron reduction of fullerene C_(60) in aqueousγ-cyclodextrin solution. J. Phys. Chem. 1993, 97, 7623–7626.
    [58] Ulanski, P.; Bothe, E.; Rosiak, J. M.; Von Sonntag, C. OH-radical-induced crosslinking and strand breakage of polyvinyl alcohol in aqueous solution in the absence and presence of oxygen. A pulse radiolysis and product study. Macromol. Chem. Phys. 1994, 195, 1443–1461.
    [59] Sayes, C. M.; Fortner, J. D.; Guo, W.; Lyon, D.; Boyd, A. M.; Ausman, K. D., et al. The differential cytotoxicity of water-soluble fullerenes. Nano Lett. 2004, 4, 1881–1887.
    [60] Sayes, C. M.; Gobin, A. M.; Ausman, K. D.; Mendez, J.; West, J. L.; Colvin, V. L. Nano-C_(60) cytotoxicity is due to lipid peroxidation. Biomaterials 2005, 26, 7587–7595.
    [61] Markovic, Z.; Todorovic-Markovic, B.; Kleut, D.; Nikolic, N.; Vranjes-Djuric, S.; Misirkic, M., et al. The mechanism of cell-damaging reactive oxygen generation by colloidal fullerenes. Biomaterials 2007, 28, 5437–5448.
    [62] Andrievsky, G.; Klochkov, V.; Derevyanchenko, L. Is the C_(60) fullerene molecule toxic?! Fullerenes Nanotubes Carbon Nanostruct. 2005, 13, 363–376.
    [63] Isakovic, A.; Markovic, Z.; Nikolic, N.; Todorovic-Markovic, B.; Vranjes-Djuric, S.; Harhaji, L., et al. Inactivation of nanocrystalline C_(60) cytotoxicity byγ-irradiation. Biomaterials 2006, 27, 5049–5058.
    [64] Belousova, I. M.; Mironova, N. G.., et al. A mathematical model of the photodynamicfullerene– oxygen action on biological tissues. Optics. Spectrosc. 2005, 98, 349–356.
    [65] Lee, J.; Fortner, J. D.; Hughes, J. B.; Kim, J. H. Photochemical production of reactive oxygen species by C_(60) in the aqueous phase during UV irradiation. Environ. Sci. Technol. 2007, 41, 2529–2535.
    [66] Kempf, C., et al. Photodynamic inactivation of enveloped viruses by buckminsterfullerene. Antiviral Res. 1997, 34, 65–70.
    [67] Foley, S.; Crowley, C.; Smaihi, M.; Bonfils, C.; Erlanger, B. F.; Seta, P., et al. Cellular localisation of a water-soluble fullerene derivative. Biochem. Biophys. Res. Commun. 2002, 294, 116–119.
    [68] Chirico, F.; Fumelli, C.; Marconi, A.; Tinari, A.; Straface, E.; Malorni, W., et al. Carboxyfullerenes localize within mitochondria and prevent the UVB-induced intrinsic apoptotic pathway. Exp. Dermatol. 2007, 16, 429–436.
    [69] Porter, A. E.; Muller, K.; Skepper, J.; Midgley, P.; Welland, M. Uptake of C_(60) by human monocyte macrophages, its localization and implications for toxicity: studied by high resolution electron microscopy and electron tomography. Acta Biomater. 2006, 2, 409–419.
    [70] Porter, A. E.; Gass, M.; Muller, K.; Skepper, J. N.; Midgley, P.; Welland, M. Visualizing the uptake of C_(60) to the cytoplasm and nucleus of human monocyte-derived macrophage cells using energy-filtered transmission electron microscopy and electron tomography. Environ. Sci. Technol. 2007, 41, 3012–3017.
    [71] Qiao, R.; Roberts, A. P.; Mount, A. S.; Klaine, S. J.; Ke, P. C. Translocation of C_(60) and its derivatives across a lipid bilayer. Nano Lett. 2007, 7, 614–619.
    [72] Shen, L.; Ji, H. F.; Zhang, H. Y. A theoretical elucidation on the solvent-dependent photosensitive behaviors of C_(60). Photochem. Photobiol. 2006, 82, 798–800.
    [73] Peters, G.; Rodgers, M. A. On the feasibility of electron transfer to singlet oxygen from mitochondrial components. Biochem. Biophys. Res. Commun. 1980, 96, 770–776.
    [74] Bubici, C.; Papa, S.; Dean, K.; Franzoso, G.. Mutual cross-talk between reactive oxygen species and nuclear factor-κB: molecular basis and biological significance. Oncogene 2006, 25, 6731–6748.
    [75] Clempus, R. E.; Griendling, K. K. Reactive oxygen species signaling in vascular smooth muscle cells. Cardiovasc. Res. 2006, 71, 216–225.
    [76] Perry, J. J.; Fan, L.; Tainer, J. A. Developing master keys to brain pathology, cancer and aging from the structural biology of proteins controlling reactive oxygen species and DNA repair. Neuroscience 2007, 145, 1280–1299.
    [77] Zorov, D. B.; Bannikova, S. Y.; Belousov, V. V.; Vyssokikh, M. Y.; Zorova, L. D.; Isaev, N.K.,et al. Reactive oxygen and nitrogen species: friends or foes? Biochemistry (Mosc) 2005, 70, 215–221.
    [78] Nelson, M. A.; Domann, F. E.; Bowden, G. T.; Hooser, S. B.; Fernando, Q.; Carter, D. E. Effects of acute and subchronic exposure of topically applied fullerene extracts on the mouse skin. Toxicol. Ind. Health 1993, 9, 623–630.
    [79] Yamago, S.; Tokuyama, H.; Nakamura, E.; Kikuchi, K.; Kananishi, S.; Sueki, K., et al. In vivo biological behavior of a water-miscible fullerene: 14C labeling, absorption, distribution, excretion and acute toxicity. Chem. Biol. 1995, 2, 385–389.
    [80] Moussa, F.; Trivin, F.; Ceolin, M.; Hadchousel, P. Y.; Sizaret, V.; Greugny, V., et al. Early effects of C_(60) administration in Swiss mice: a preliminary account for in vivo C_(60) toxicity. Fullerene Sci. Technol. 1996, 4, 21–29.
    [81] Baierl, T.; Drosselmeyer, E.; Seidel, A.; Hippeli, S. Comparison of immunological effects of fullerene C_(60) and raw soot from fullerene production on alveolar macrophages and macrophage like cells in vitro. Exp. Toxicol. Pathol. 1996, 48, 508–511.
    [82] Jia, G.; Wang, H.; Yan, L.; Wang, X.; Pei, R.; Yan, T., et al. Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environ. Sci. Technol. 2005, 39, 1378–1383.
    [83] Mori, T.; Takada, H.; Ito, S.; Matsubayashi, K.; Miwa, N.; Sawaguchi, T. Preclinical studies on safety of fullerene upon acute oral administration and evaluation for no mutagenesis. Toxicology 2006, 225, 48–54.
    [84] Kolosnjaj, J.; Smarc, H.; Moussa, F. Toxicity studies of fullerenes and derivatives. Adv. Exp. Med. Biol. 2007, 620, 168–180.
    [85] Baker, G. L.; Gupta, A.; Clark, M. L.; Valenzuela, B. R.; Staska, L. M.; Harbo, S. J., et al. Inhalation toxicity and lung toxicokinetics of C_(60) fullerene nanoparticles and microparticles. Toxicol. Sci. 2008, 101, 122–131.
    [86] Kamat, J. P.; Devasagayam, T. P.; Priyadarsini, K. I.; Mohan, H. Reactive oxygen species mediated membrane damage induced by fullerene derivatives and its possible biological implications. Toxicology 2000, 155, 55–61.
    [87] Oberdorster, E. Manufactured nanomaterials (fullerenes, C_(60)) induce oxidative stress in the brain of juvenile largemouth bass. Environ. Health Perspect. 2004, 112, 1058–1062.
    [88] Isakovic, A.; Markovic, Z.; Todorovic-Markovic, B.; Nikolic, N.; Vranjes-Djuric, S.; Mirkovic, M., et al. Distinct cytotoxic mechanisms of pristine versus hydroxylated fullerene. Toxicol. Sci. 2006, 91, 173–183.
    [89] Zhu, S.; Oberdorster, E.; Haasch, M. L. Toxicity of an engineered nanoparticle (fullerene,C_(60)) in two aquatic species, daphnia and fathead minnow. Mar. Environ. Res. 2006, 62, 5–9.
    [90] Gharbi, N.; Pressac, M.; Hadchouel, M.; Szwarc, H.; Wilson, S. R.; Moussa, F. [60]fullerene is a powerful antioxidant in vivo with no acute or subacute toxicity. Nano Lett. 2005, 5, 2578–2585.
    [91] Henry, T. B.; Menn, F. M.; Fleming, J. T.; Wilgus, J.; Compton, R. N.; Sayler, G. S. Attributing effects of aqueous C_(60) nano-aggregates to tetrahydrofuran decomposition products in larval zebrafish by assessment of gene expression. Environ. Health Perspect. 2007, 115, 1059–1065.
    [92] Sayes, C. M.; Marchione, A. A.; Reed, K. L.; Warheit, D. B. Comparative pulmonary toxicity assessments of C_(60) water suspensions in rats: few differences in fullerene toxicity in vivo in contrast to in vitro profiles. Nano Lett. 2007, 7, 2399–2406.
    [93] Yamawaki, H.; Iwai, N. Cytotoxicity of water-soluble fullerene in vascular endothelial cells. Am. J. Physiol. Cell Physiol. 2006, 290, 1495–1502.
    [94] Roberts, J. E.; Wielgus, A. R.; Boyes, W. K.; Andley, U.; Chignell, C. F. Phototoxicity and cytotoxicity of fullerol in human lens epithelial cells. Toxicol. Appl. Pharmacol. 2008, 228, 49–58.
    [95] Ueng, T. H.; Kang, J. J.; Wang, H. W.; Cheng ,Y. W.; Chiang, L. Y. Suppression of microsomal cytochrome P450-dependent monooxygenases and mitochondrial oxidative phosphorylation by fullerenol, a polyhydroxylated fullerene C_(60). Toxicol. Lett. 1997, 93, 29–37.
    [96] Chen, H. H.; Yu, C.; Ueng, T. H.; Chen, S.; Chen, B. J.; Huang, K. J., et al. Acute and subacute toxicity study of water-soluble polyalkylsulfonated C_(60) in rats. Toxicol. Pathol. 1998, 26, 143–151.
    [97] Rajagopalan, P.; Wudl, F.; Schinazi, R. F.; Boudinot, F. D. Pharmacokinetics of a water-soluble fullerene in rats. Antimicrob. Agents Chemother. 1996, 40:, 2262–2265.
    [98] Tsuchiya, T.; Oguri, I.; Yamakoshi, Y. N.; Miyata, N. Novel harmful effects of [60]fullerene on mouse embryos in vitro and in vivo. FEBS Lett. 1996, 393, 139–145.
    [99] Baun, A.; Rasmussen, R. F.; Hartmann, N. B.; Koch, C. B., et al. Toxicity and bioaccumulation of xenobiotic organic compounds in the presence of aqueous suspensions of aggregates of nano-C_(60). Aquat. Toxicol. 2007, 86, 379–387.
    [100] Dhawan, A.; Taurozzi, J. S.; Pandey, A. K.; Shan, W.; Miller, S. M.; Hashsham, S. A., et al. Stable colloidal dispersions of C_(60) fullerenes in water: evidence for genotoxicity. Environ. Sci. Technol. 2006, 40, 7394–7401.
    [101] Flohe, L.; Gunzler, E. A.; Schock, H. H., Glutathione peroxidase: a selenoenzyme. FEBSLett. 1973, 32, 132-134.
    [102] Mugesh, G.; du Mont, W. W.; Sies, H., Chemistry of biologically important synthetic organoselenium compounds. Chem. Rev. 2001, 101, 2125-2180.
    [103] Mugesh, G.; Singh, H. B., Heteroatom-Directed Aromatic Lithiation: A versatile route to the synthesis of organochalcogen (Se, Te) compounds. Acc. Chem. Res. 2002, 35, 226-236.
    [104] Rotruck, J. T.; Pope, A. L.; Ganther, H. E.; Swanson, A. B.; Hafeman, D. G.; Hoekstra, W. G., Selenium: biochemical role as a component of glutathione peroxidase. Science 1973, 179, 588-590.
    [105] Yamamato, Y.; Takahashi, K., Glutathione peroxidase isolated plasma reduces phospholipid hydroperoxides. Arch. Biochem. Biophys. 1993, 305, 541–545.
    [106] Roveri, A.; Maiorino, M.; Nissii, C.; Ursini, F., Purification and characterization of phospholipid hydroperoxide glutathione peroxidase from rat testis mitochondrial membranes. Biochem. Biophys. Acta. 1994, 1208, 211–221.
    [107] Akasaka, M.; Mizoguchi, J.; Takahashi, K., A Human cDNA sequence of a novel glutathione peroxidase-related protein. Nucleic. Acids Res. 1990, 15, 4619–4625.
    [108] Flohé, L.; Loschen, G.; Günzler, W. A.; Eichele, E. Glutathione peroxidase, V the kinetic mechanism. Hoppe-Seyler's Z Physiol. Chem. 1972, 353, 987–999.
    [109] Sies, H.; Masumoto, H., Ebselen as a Glutathione peroxidase mimic and as a scavenger of peroxynitrite. Adv. Pharmacol. 1997, 38, 2229-2246.
    [110] Ostrovidov, S.; Franck, P.; Joseph, D.; Martarello, L.; Kirsch, G.; Belleville, F.; Nabet, P.; Dousset, B., Screening of new antioxidant molecules using flow cytometry. J. Med. Chem. 2000, 43, 1762-1769.
    [111] Nishibayashi, Y.; Singh, J. D.; Uemura, S.; Fukuzawa, S., Synthesis of [R,S;R,S]-and [S,R;S,R]-Bis[2-[1-(dimethylamino)ethyl]ferrocenyl] diselenides and their application to asymmetric selenoxide elimination and [2,3]sigmatropic rearrangement. J. Org. Chem. 1995, 60, 4114–4120.
    [112] Iwaoka, M.; Tomoda, S., A model study on the effect of an amino group on the antioxidant activity of glutathione peroxidase. J. Am. Chem. Soc. 1994, 116, 2557-2561.
    [113] Back, T. G.; Kuzma, D.; Parvez, M., Aromatic derivatives and tellurium analogues of cyclic seleninate esters and spirodioxyselenuranes that act as glutathione peroxidase mimetics. J. Org. Chem. 2005, 9230–9236.
    [114] Zade, S. S.; Panda, S.; Singh, H. B.; Sunoj, R. B.; Butcher, R. J., Intramolecular interactions between chalcogen atoms: organoseleniums derived from 1-bromo-4-tert-butyl-2,6-di(formyl)benzene. J. Org. Chem. 2005, 70, 3693-3704.
    [115] Szabo, K. J.; Frisell, H.; Engman, L.; Piatek, M.; Oleksyn, B.; Sliwinski, J.,α-(Phenylselenenyl)ketones―structure, molecular modelling and rationalization of their glutathione peroxidase-like activity. J. Mol. Struct. 1998, 448, 21-28.
    [116] Engman, L.; Stern, D.; Cotgreave, I. A.; Andersson, C. M., Thiol peroxidase activity of diaryl ditellurides as determined by a 1H NMR method. J. Am. Chem. Soc. 1992, 114, 9737-9743.
    [117] Kanda, T.; Engman, L.; Cotgreave, I. A.; Powis, G., Novel water-soluble diorganyl tellurides with thiol peroxidase and antioxidant activity. J. Org. Chem. 1999, 64, 8161-8169.
    [118] McNaughton, M.; Engman, L.; Birmingham, A.; Powis, G.; Cotgreave, I. A., Cyclodextrin-derived diorganyl tellurides as glutathione peroxidase mimics and inhibitors of thioredoxin reductase and cancer cell growth. J. Med. Chem. 2004, 47, 233-239.
    [119] Dong, Z. Y.; Liu, J. Q.; Mao, S. Z.; Huang, X.; Yang, B.; Ren, X. J.; Luo, G. M.; Shen, J. C., Aryl thiol substrate 3-carboxy-4-nitrobenzenethiol strongly stimulating thiol peroxidase activity of glutathione peroxidase mimic 2, 2'-ditellurobis(2-deoxy-beta-cyclodextrin). J. Am. Chem. Soc. 2004, 126, 16395-16404.
    [120] Villalonga, R.; Cao, R.; Fragoso, A., Supramolecular chemistry of cyclodextrins in enzyme technology. Chem. Rev. 2007, 107, 3088-3116.
    [121] Harada, A.; Hashidzume, A.; Yamaguchi, H.; Takashima, Y., Polymeric rotaxanes. Chem. Rev. 2009, 109, 5974-6023.
    [122] Liu, Y.; Chen, Y., Cooperative binding and multiple recognition by bridged bis(β-cyclodextrin)s with functional linkers. Acc. Chem. Res. 2006, 39, 681-691.
    [123] Daffe, V.; Fastrez, J., Enantiomeric enrichment in the hydrolysis of oxazolones catalyzed by cyclodextrins or proteolytic enzymes. J. Am. Chem. Soc. 1980, 102, 3601-3605.
    [124] Khan, A. R.; Forgo, P.; Stine, K. J.; D'Souza, V. T., Methods for selective modifications of cyclodextrins. Chem. Rev. 1998, 98, 1977-1996.
    [125] Li, S.; Purdy, W. C., Cyclodextrins and their applications in analytical chemistry. Chem. Rev. 1992, 92, 1457-1470.
    [126] Liu, Y.; Han, B. H.; Li, B.; Zhang, Y. M.; Zhao, P.; Chen, Y. T.; Wada, T.; Inoue, Y., Molecular recognition study on supramolecular system. 14.1 synthesis of modified cyclodextrins and their inclusion complexation thermodynamics with l-tryptophan and some naphthalene derivatives. J. Org. Chem. 1998, 63, 1444-1454.
    [127] Liu, Y.; Li, B.; Li, L.; Zhang, H. Y., Synthesis of organoselenium-modified -cyclodextrins possessing a 1,2-benzisoselenazol-3(2H)-one moiety and their enzyme-mimic study. Helv.Chim. Acta 2002, 85, 9-18.
    [128] Ren, X. J.; Liu, J. Q.; Luo, G. M.; Zhang, Y.; Luo, Y. M.; Yan, G. L.; Shen, J. C., A novel selenocystine-beta-cyclodextrin conjugate that acts as a glutathione peroxidase mimic. Bioconjugate Chem. 2000, 11, 682-687.
    [129] Ren, X. J.; Xue, Y.; Zhang, K.; Liu, J. Q.; Luo, G. M.; Zheng, J.; Mu, Y.; Shen, J. C., A novel dicyclodextrinyl ditelluride compound with antioxidant activity. Febs Lett. 2001, 507, 377-380.
    [130] Ren, X. J.; Yang, L. Q.; Liu, J. Q.; Su, D.; You, D. L.; Liu, C. P.; Zhang, K.; Luo, G. M.; Mu, Y.; Yan, G. L.; Shen, J. C., A novel glutathione peroxidase mimic with antioxidant activity. Arch. Biochem. Biophys. 2001, 387, 250-256.
    [131] Ren, X. J.; Xue, Y.; Liu, J. Q.; Zhang, K.; Zheng, J.; Luo, G.; Guo, C. H.; Mu, Y.; Shen, J. C., A novel cyclodextrin-derived tellurium compound with glutathione peroxidase activity. Chembiochem 2002, 3, 356-363.
    [132] Dong, Z. Y.; Li, X. Q.; Liang, K.; Mao, S. Z.; Huang, X.; Yang, B.; Xu, J. Y.; Liu, J. Q.; Luo, G. M.; Shen, J. C., Telluroxides exhibit hydrolysis capacity. J. Org. Chem. 2007, 72, 606-609.
    [133] Wulff, G.; Sarhan, A., Use of polymers with enzyme analogues structures for the resolution of enantiomers. Angew. Chem. Int. Ed. Engl. 1972, 11, 341-344.
    [134] Ibrahim, M. N. M.; Sipaut, C. S.; Yusof, N. N. M., Purification of vanillin by a molecular imprinting polymer technique. Sep. Purif. Technol. 2009, 66, 450-456.
    [135] Chou, T. C.; Rick, J.; Weng, Y. C., Nanocavity Protein Biosensor - Fabricated by Molecular Imprinting. 2007 7th Ieee Conference on Nanotechnology, Vol 1-3 2007, 16-20,1353.
    [136] Li, X.; Husson, S. M., Two-dimensional molecular imprinting approach to produce optical biosensor recognition elements. Langmuir 2006, 22, 9658-9663.
    [137] Lou, Z. L.; Meng, Z. H.; Wang, P.; Meng, W. J., Application of molecular imprinting technology to enzyme mimics and molecular reaction vessels. Chinese J. Org. Chem. 2009, 29, 1744-1749.
    [138] Jakubiak, A.; Kolarz, B. N.; Jezierska, J., Catalytic activity of copper(II) enzyme-like catalysts, prepared by molecular imprinting technique in oxidation of phenols. Macromol. Symp. 2006, 235, 127-135.
    [139] Yamazaki, T.; Ohta, S.; Yanai, Y.; Sode, K., Molecular imprinting catalyst based artificial enzyme sensor for fructosylamines. Anal. Lett. 2003, 36, 75-89.
    [140] Cui, A.; Singh, A.; Kaplan, D. L., Enzyme-based molecular imprinting with metals.Biomacromolecules 2002, 3, 1353-1358.
    [141] Mosbach, K.; Yu, Y. H.; Andersch, J.; Ye, L., Generation of new enzyme inhibitors using imprinted binding sites: The anti-idiotypic approach, a step toward the next generation of molecular imprinting. J. Am. Chem. Soc. 2001, 123, 12420-12421.
    [142] Frolkis, V. V.; Paramonova, G. I.; Limareva, A. A., Changes of rats lifespan under influence of enzyme imprinting by phenobarbital. Zhurnal Obshchei Biologii 2000, 61, 439-444.
    [143] Frolkis, V. V.; Paramonova, G. I., Effect of enzyme imprinting of liver microsomal monooxygenases upon lifespan of rats. Mechanisms of Ageing and Development 1999, 109, 35-41.
    [144] Ohya, Y.; Miyaoka, J.; Ouchi, T., Recruitment of enzyme activity in albumin by molecular imprinting. Macromol. Rapid Commun. 1996, 17, 871-874.
    [145] Liu, J.; Luo, G.; Gao, S.; Zhang, K.; Chen, X.; Shen, J., Generation of glutathione peroxidase-like mimic by using bioimprinting and chemical mutation. Chem. Commun. 1999, 199-200.
    [146] Huang, X.; Liu, Y.; Liang, K.; Tang, Y.; Liu, J. Q., Construction of the active site of glutathione peroxidase on polymer-based nanoparticles. Biomacromolecules 2008, 9, 1467-1473.
    [147] Huang, X.; Yin, Y.; Liu, Y.; Bai, X.; Zhang, Z.; Xu, J.; Shen, J.; Liu, J., Incorporation of glutathione peroxidase active site into polymer based on imprinting strategy. Biosens. Bioelectron. 2009, 25, 657-660.
    [148] Valerio, C.; Fillaut, J. L.; Ruiz, J.; Guittard, J.; Blais, J. C.; Astruc, D., The dendritic effect in molecular recognition: ferrocene dendrimers and their use as supramolecular redox sensors for the recognition of small inorganic anions. J. Am. Chem. Soc. 1997, 119, 2588-2589.
    [149] Percec, V.; Imam, M. R.; Peterca, M.; Wilson, D. A.; Heiney, P. A., Self-assembly of dendritic crowns into chiral supramolecular spheres. J. Am. Chem. Soc. 2008, 131, 1294-1304.
    [150] Gillies, E. R.; Jonsson, T. B.; Frechet, J. M. J., Stimuli-responsive supramolecular assemblies of linear-dendritic copolymers. J. Am. Chem. Soc. 2004, 126, 11936-11943.
    [151] Martin, A. L.; Li, B.; Gillies, E. R., Surface functionalization of nanomaterials with dendritic groups: toward enhanced binding to biological targets. J. Am. Chem. Soc. 2008, 131, 734-741.
    [152] Ceroni, P.; Paolucci, F.; Paradisi, C.; Juris, A.; Roffia, S.; Serroni, S.; Campagna, S.; Bard,A. J., Dinuclear and dendritic polynuclear ruthenium(II) and osmium(II) polypyridine complexes: electrochemistry at very positive potentials in liquid SO2. J. Am. Chem. Soc. 1998, 120, 5480-5487.
    [153] Garber, S. B.; Kingsbury, J. S.; Gray, B. L.; Hoveyda, A. H., Efficient and recyclable monomeric and dendritic Ru-based metathesis catalysts. J. Am. Chem. Soc. 2000, 122, 8168-8179.
    [154] Garber, S. B.; Kingsbury, J. S.; Gray, B. L.; Hoveyda, A. H., Efficient and recyclable monomeric and dendritic Ru-based metathesis catalysts [J. Am. Chem. Soc. 2000, 122, 8168?8179]. J. Am. Chem. Soc. 2001, 123, 3186-3186.
    [155] Zaupa, G.; Scrimin, P.; Prins, L. J., Origin of the dendritic effect in multivalent enzyme-like catalysts. J. Am. Chem. Soc. 2008, 130, 5699-5709.
    [156] Fresco, Z. M.; Suez, I.; Backer, S. A.; Frechet, J. M. J., AFM-induced amine deprotection: triggering localized bond cleavage by application of tip/substrate voltage bias for the surface self-assembly of nanosized dendritic objects. J. Am. Chem. Soc. 2004, 126, 8374-8375.
    [157] Campagna, S.; Giannetto, A.; Serroni, S.; Denti, G.; Trusso, S.; Mallamace, F.; Micali, N., Aggregation in fluid solution of dendritic supermolecules made of ruthenium(II)- and osmium(II)-polypyridine building blocks. J. Am. Chem. Soc. 1995, 117, 1754-1758.
    [158] Shamis, M.; Lode, H. N.; Shabat, D., Bioactivation of self-immolative dendritic prodrugs by catalytic antibody 38C2. J. Am. Chem. Soc. 2004, 126, 1726-1731.
    [159] Wang, L.; Yamauchi, Y., Block copolymer mediated synthesis of dendritic platinum nanoparticles. J. Am. Chem. Soc. 2009, 131, 9152-9153.
    [160] Higuchi, M.; Tsuruta, M.; Chiba, H.; Shiki, S.; Yamamoto, K., Control of stepwise radial complexation in dendritic polyphenylazomethines. J. Am. Chem. Soc. 2003, 125, 9988-9997.
    [161] Song, Y.; Yang, Y.; Medforth, C. J.; Pereira, E.; Singh, A. K.; Xu, H.; Jiang, Y.; Brinker, C. J.; van Swol, F.; Shelnutt, J. A., Controlled synthesis of 2-D and 3-D dendritic platinum nanostructures. J. Am. Chem. Soc. 2003, 126, 635-645.
    [162] Li, W. S.; Jiang, D. L.; Suna, Y.; Aida, T., Cooperativity in chiroptical sensing with dendritic zinc porphyrins. J. Am. Chem. Soc. 2005, 127, 7700-7702.
    [163] Miller, T. M.; Neenan, T. X.; Kwock, E. W.; Stein, S. M., Dendritic analogs of engineering plastics: a general one-step synthesis of dendritic polyaryl ethers. J. Am. Chem. Soc. 1993, 115, 356-357.
    [164] Jansen, J. F. G. A.; Meijer, E. W.; de Brabander-van den Berg, E. M. M., The dendritic box:shape-selective liberation of encapsulated guests. J. Am. Chem. Soc. 1995, 117, 4417-4418.
    [165] Kleij, A. W.; Gossage, R. A.; Klein Gebbink, R. J. M.; Brinkmann, N.; Reijerse, E. J.; Kragl, U.; Lutz, M.; Spek, A. L.; van Koten, G., A“dendritic effect”in homogeneous catalysis with carbosilane-supported arylnickel(II) catalysts: observation of active-site proximity effects in atom-transfer radical addition. J. Am. Chem. Soc. 2000, 122, 12112-12124.
    [166] Jiang, X.; Lim, Y. K.; Zhang, B. J.; Opsitnick, E. A.; Baik, M.-H.; Lee, D., Dendritic molecular switch: chiral folding and helicity inversion. J. Am. Chem. Soc. 2008, 130, 16812-16822.
    [167] Mo, Y. J.; Jiang, D. L.; Uyemura, M.; Aida, T.; Kitagawa, T., Energy funneling of IR photons captured by dendritic antennae and acceptor mode specificity: anti-stokes resonance raman studies on iron(III) porphyrin complexes with a poly(aryl ether) dendrimer framework. J. Am. Chem. Soc. 2005, 127, 10020-10027.
    [168] Wang, B. B.; Zhang, X.; Jia, X. R.; Li, Z. C.; Ji, Y.; Yang, L.; Wei, Y., Fluorescence and aggregation behavior of poly(amidoamine) dendrimers peripherally modified with aromatic chromophores: the effect of dendritic architectures. J. Am. Chem. Soc. 2004, 126, 15180-15194.
    [169] Percec, V.; Dulcey, A. E.; Peterca, M.; Adelman, P.; Samant, R.; Balagurusamy, V. S. K.; Heiney, P. A., Helical pores self-assembled from homochiral dendritic dipeptides based on l-tyr and nonpolarα-amino acids. J. Am. Chem. Soc. 2007, 129, 5992-6002.
    [170] Buhleier, E.; Wehner, W.; V?gtle, F.,“Cascade”and“nonskid-chain-like”synthesis of molecular cavity topologies. Synthesis 1978, 2, 155-158.
    [171] Zhang, X.; Xu, H. P.; Dong, Z. Y.; Wang, Y. P.; Liu, J. Q.; Shen, J. C., Highly efficient dendrimer-based mimic of glutathione peroxidase. J. Am. Chem. Soc. 2004, 126, 10556-10557.
    [172] Menger, F. M., Molecular conformations in surfactant micelles. Nature 1985, 313, 603-606.
    [173] Menger, F. M., The structure of micelles. . Acc. Chem. Res. 1997, 12, 111-117.
    [174] Vriezema, D. M.; Aragones, M. C.; Elemans, J. A. A. W.; Cornelissen, J. J. L. M.; Rowan, A. E.; Nolte, R. J. M., Self-assembled nanoreactors. Chem. Rev. 2005, 105, 1445-1490.
    [175] Menger, F. M.; Shi, L., Exposure of self-assembly interiors to external elements. a kinetic approach. J. Am. Chem. Soc. 2006, 128, 9338-9339.
    [176] Huang, X.; Dong, Z. Y.; Liu, J. Q.; Mao, S. Z.; Xu, J. Y.; Luo, G. M.; Shen, J. C., Selenium-mediated micellar catalyst: An efficient enzyme model for glutathioneperoxidase-like catalysis. Langmuir 2007, 23, 1518-1522.
    [177] Huang, X.; Dong, Z. Y.; Liu, J. Q.; Mao, S. Z.; Luo, G. M.; Shen, J. C., Tellurium-based polymeric surfactants as a novel seleno-enzyme model with high activity. Macromol. Rapid Commun. 2006, 27, 2101-2106.
    [178] Tasdelen, B.; Kayaman-Apohan, N.; Guven, O.; Baysal, B. M., Anticancer drug release from poly(N-isopropylacrylamide/itaconic acid) copolymeric hydrogels. Rad. Phys. Chem. 2005, 73, 340-345.
    [179] Li, F.; Wu, H.; Zhang, H.; Li, F.; Gu, C. H.; Yang, Q., Antitumor drug Paclitaxel-loaded pH-sensitive nanoparticles targeting tumor extracellular pH. Carbohyd. Polym. 2009, 77, 773-778.
    [180] Wu, D. Q.; Sun, Y. X.; Xu, X. D.; Cheng, S. X.; Zhang, X. Z.; Zhuo, R. X., Biodegradable and pH-sensitive hydrogels for cell encapsulation and controlled drug release. Biomacromolecules 2008, 9, 1155-1162.
    [181] Liu, S. Q.; Wiradharma, N.; Gao, S. J.; Tong, Y. W.; Yang, Y. Y., Bio-functional micelles self-assembled from a folate-conjugated block copolymer for targeted intracellular delivery of anticancer drugs. Biomaterials 2007, 28, 1423-1433.
    [182] Cheng, C.; Wei, H.; Shi, B. X.; Cheng, H.; Li, C.; Gu, Z. W.; Cheng, S. X.; Zhang, X. Z.; Zhuo, R. X., Biotinylated thermoresponsive micelle self-assembled from double-hydrophilic block copolymer for drug delivery and tumor target. Biomaterials 2008, 29, 497-505.
    [183] Shiraishi, K.; Sugiyama, M.; Okamura, Y.; Sugiyama, K., Cholesteryl moiety terminated amphiphilic polymethacrylates containing nucleic acid bases for drug delivery. J. Appl. Polym. Sci. 2007, 103, 3064-3075.
    [184] Zhang, L.; Xu, T. W.; Lin, Z., Controlled release of ionic drug through the positively charged temperature-responsive membranes. J. Membr. Sci. 2006, 281, 491-499.
    [185] Zhang, J. L.; Srivastava, R. S.; Misra, R. D. K., Core-shell magnetite nanoparticles surface encapsulated with smart stimuli-responsive polymer: synthesis, characterization, and LCST of viable drug-targeting delivery system. Langmuir 2007, 23, 6342-6351.
    [186] Li, J.; Zhai, M. L.; Yi, M.; Gao, H. C.; Ha, H. F., Radiation grafting of thermo-sensitive poly(NIPAAm) onto silicone rubber. Rad. Phys. Chem. 1999, 55, 173-178.
    [187] Ramkissoon-Ganorkar, C.; Liu, F.; Baudys, M.; Kim, S. W., Effect of molecular weight and polydispersity on kinetics of dissolution and release from pH/temperature-sensitive polymers. J. Biomater. Sci. Polym. Ed. 1999, 10, 1149-1161.
    [188] Yasuda, N.; Yamamoto, M.; Amemiya, K.; Takahashi, H.; Kyan, A.; Ogura, K., Tracksensitivity and the surface roughness measurements of CR-39 with atomic force microscope. Radiation Measurements 1999, 31, 203-208.
    [189].Shtanko, N. I.; Kabanov, V. Y.; Apel, P. Y.; Yoshida, M.; Vilenskii, A. I., Preparation of permeability-controlled track membranes on the basis of 'smart' polymers. J. Membr. Sci. 2000, 179, 155-161.
    [190] Huang, X.; Yin, Y.; Tang, Y.; Bai, X.; Zhang, Z.; Xu, J.; Liu, J.; Shen, J., Smart microgel catalyst with modulatory glutathione peroxidase activity. Soft Matter 2009, 5, 1905-1911.
    [191] Huang, X.; Yin, Y.; Jiang, X.; Tang, Y.; Xu, J.; Liu, J.; Shen, J., Construction of smart glutathione peroxidase mimic based on hydrophilic block copolymer with temperature responsive activity. Macromol. Biosci. 2009, 9, 1202-1210.
    [192] Bell, I. M.; Hilvert, D., Peroxide dependence of the semisynthetic enzyme selenosubtilisin. Biochemistry 1993, 32, 13969-13973.
    [193] Ren, X. J.; Jemth, P.; Board, P. G.; Luo, G. M.; Mannervik, B.; Liu, J. Q.; Zhang, K.; Shen, J. C., A semisynthetic glutathione peroxidase with high catalytic efficiency: Selenoglutathione transferase. Chem. Biol. 2002, 9, 789-794.
    [194] Mao, S. Z.; Dong, Z. Y.; Liu, J. Q.; Li, X. Q.; Liu, X. M.; Luo, G. M.; Shen, J. C., Semisynthetic tellurosubtilisin with glutathione peroxidase activity. J. Am. Chem. Soc. 2005, 127, 11588-11589.
    [195] Liu, X. M.; Silks, L. A.; Liu, C. P.; Ollivault-Shiflett, M.; Huang, X.; Li, J.; Luo, G. M.; Hou, Y. M.; Liu, J. Q.; Shen, J. C., Incorporation of tellurocysteine into glutathione transferase generates high glutathione peroxidase efficiency. Angew. Chem. Int. Ed. 2009, 48, 2020-2023.
    [196] Yu, H. J.; Liu, J. Q.; August, B.; Li, J.; Luo, G. M.; Shen, J. C., Engineering glutathione transferase to a novel glutathione peroxidase mimic with high catalytic efficiency. J. Biol. Chem. 2005, 280, 11930-11935.
    [197] Cramer, F.; Saenger, W.; Spatz, H.-C. Inclusion compounds. XIX. the formation of inclusion compounds ofα-cyclodextrin in aqueous solutions. Thermodynamics and kinetics. J. Am. Chem. Soc. 1967, 89, 14-20.
    [198] Cromwell, W. C.; Bystrom, K.; Eftink, M. R. Cyclodextrin-adamantanecarboxylate inclusion complexes: studies of the variation in cavity size. J. Phys. Chem. 1985, 89, 326-332.
    [199] Gelb, R. L.; Schwartz, L. M. J. Inclusion Phenom. Mol. Recognit. Chem. 1989, 7, 537.
    [200] Eftink, M. R.; Andy, M. L.; Bystrom, K.; Perlmutter, H. D.; Kristol, D. S. Cyclodextrin inclusion complexes: studies of the variation in the size of alicyclic guests. J. Am. Chem.Soc. 1989, 111, 6765-6772.
    [201] Isnin, R.; Salam, C.; Kaifer, A. E. Bimodal cyclodextrin complexation of ferrocene derivatives containing n-alkyl chains of varying length. J. Org. Chem. 1991, 56, 35-41.
    [202] Ueno, A.; Suzuki, I.; Osa, T. Host-guest sensory systems for detecting organic compounds by pyrene excimer fluorescence. Anal. Chem. 1990, 62, 2461-2466.
    [203] V?gtle, F.; Muller, W. M. Complexes ofγ-cyclodextrin with crown ethers, cryptands, coronates, and cryptates. Angew. Chem., Int. Ed. Engl. 1979, 18, 623-624.
    [204] Kamitori, S.; Hirotsu, K.; Higuchi, T. Crystal and molecular structures of double macrocyclic inclusion complexes composed of cyclodextrins, crown ethers, and cations. J. Am. Chem. Soc. 1987, 109, 2409-2414.
    [1] Koto, H. W.; Heath, J. R.; O’Brein, S. C.; Curl, R. F. Solid C_(60): a new form of carbon. Nature1985, 318, 162-163.
    [2] Krusic, P. J.; Wasserman, E.; Keizer, P. N.; Morton, J. R.; Preston, K. F. Radical reactions ofC_(60). Science 1991, 254, 1183-1185.
    [3] Bisaglia, M.; Natalini, B.; Pellicciari, R.; Straface, E.; Malorni, W.; Monti, D.; Franceschi,C.; Schettini, G. C3-fullero-tris-methanodicarboxylic acid protects cerebellar granule cellsfrom apoptosis. J. Neurochem. 2000, 74, 1197-1204.
    [4] Lai, H. S.; Chen, W. J.; Chiang, L. Y. Free radical scavenging activity of fullerenol on theischemia-reperfusion intestine in dogs. World J. Surg. 2000, 24, 450-454.
    [5] Chueh, S.C.; Lai, M.K.; Lee, M.S.; Chiang, L.Y.; Ho, T.I.; Chen, S.C. Decrease of freeradical level in organ perfusate by a novel water-soluble carbon-sixty,hexa(sulfobutyl)fullerenes. Transplant Proc. 1999, 31, 1976-1977.
    [6] Dugan, L. L.; Turetsky, D. M.; Du, C.; Lobner, D.; Wheeler, M.; Almli, R.; Shen, C. K. F.;Luh, T.Y.; Choi, D. W.; Lin, T. S. Carboxyfullerenes as neuroprotective agents. Proc. Natl.Acad. Sci. USA 1997, 94, 9434-9439.
    [7] Nakamura, E.; Isobe, H. Functionalized Fullerenes in Water. The First 10 years of theirchemistry, biology, and nanoscience. Acc. Chem. Res. 2003, 36, 807-815, and referencetherein.
    [8] Gharbi, N.; Burghardt, S.; Brettreich, M., et al. Chromatographic separation and identificationof a water-soluble dendritic methano[60]fullerene octadecaacid. Anal. Chem. 2003, 75,4217-4222.
    [9] Maierhofer, A. P.; Brettreich, M.; Burghardt, S.; Vostrowsky, O.; Hirsch, A.; Langridge, S.;Bayerl T. M. Structure and electrostatic interaction properties of monolayers of amphiphilicmolecules derived from C_(60)-fullerenes: a film balance, neutron-, and infrared reflectionstudy. Langmuir 2000, 16, 8884-8891.
    [10] Masuda, K.; Abe, T.; Benten, H.; Ohkita, H.; Ito, S. Fabrication and conductive properties ofmultilayered ultrathin films designed by layer-by-layer assembly of water-solublefullerenesr. Langmuir 2010, 26, 13472-13478.
    [11] Isobe, H.; Nakanishi, W.; Tomita, N.; Jinno, S.; Okayama, H.; Nakamura, E. Nonviral Genedelivery by tetraamino fullerene. Mol. Pharmaceutics 2006, 3, 124-134.
    [12] Bosi, S.; Feruglio, L.; Da Ros, T.; Spalluto, G.; Gregoretti, B.; Terdoslavich, M.; Decort, G.;Passamonti, S.; Moro, S.; Prato, M. Hemolytic effects of water-soluble fullerene derivatives.J. Med. Chem. 2004, 47, 6711-6715.61
    [13] Verma, S.; Hauck, T.; El-Khouly, M. E.; Padmawar, P. A.; Canteenwala, T.; Pritzker, K.; Ito,O.; Chiang, L. Y. Self-assembled photoresponsive amphiphilic diphenylaminofluorene?C_(60)conjugate vesicles in aqueous solution. Langmuir 2005, 21, 3267-3272.
    [14] Segura, J. L.; Priego, E. M.; Martin, N.; Luo, C. P.; Guldi, D. M. A new photoactive andhighly soluble C_(60)TTFC_(60) dimer: charge separation and recombination. Org. Lett. 2000,2, 4021-4024.
    [15] Diederich, F.; Gomez-Lopez, M. Supramolecular fullerene chemistry. Chem. Soc. ReV. 1999,28, 263-277, and reference therein.
    [16] Murthy, C. N.; Geckeler, K. E. The water-soluble beta-cyclodextrin-[60]fullerene complex.Chem. Commum. 2001, 1194-1195.
    [17] Lee, E.; Kim, J. K.; Lee, M. Tubular Stacking of water-soluble toroids triggered by guestencapsulation. J. Am. Chem. Soc. 2009, 131, 18242-18243.
    [18] Mountrichas, G.; Pispas, S.; Xenogiannopoulou, E.; Aloukos, P.; Couris, S. Aqueousdispersions of C_(60) fullerene by use of amphiphilic block copolymers: preparation andnonlinear optical properties. J. Phys. Chem. B 2007, 111, 4315-4319.
    [19] Narumi, A.; Kaga, H.; Otsuka, I.; Satoh, T.; Kaneko, N.; Kakuchi, T. Polystyrene microgelamphiphiles with maltohexaose. synthesis, characterization, and potential applications.Biomacromolecules 2006, 7, 1496-1501.
    [20] Fortner, J. D.; Lyon, D. Y.; Sayes, C. M.; Boyd, A. M.; Falkner, J. C.; Hotze, E. M.;Alemany, L. B.; Tao, Y. J.; Guo, W.; Ausman, K. D.; Colvin, V. L.; Hughes, J. B. C_(60) inWater: Nanocrystal formation and microbial response. Environ. Sci. Technol. 2005, 39,4307-4316.
    [21] Lee, J.; Song, W. H.; Jang, S. S.; Fortner, J. D.; Alvarez, P. J. J.; Cooper, W. J.; Kim, J. H.Stability of water-stable C_(60) clusters to ?OH radical oxidation and hydrated electronreduction. Environ. Sci. Technol. 2010, 44, 3786-3792.
    [22] Avdeev, M. V.; Khokhryakov, A. A.; Tropin, T. V.; Andrievsky, G. V.; Klochkov, V. K.;Derevyanchenko, L. I.; Rosta, L.; Garamus, V. M.; Priezzhev, V. B.; Korobov, M. V.;Aksenov, V. L. Structural features of molecular-colloidal solutions of C_(60) fullerenes inwater by small-angle neutron scattering. Langmuir 2004, 20, 4363-4368.
    [23] Babu, S. S.; Mohwald, H.; Nakanishi, T. Recent progress in morphology control ofsupramolecular fullerene assemblies and its applications. Chem. Soc. ReV. 2010, 39,4021-4035, and references therein.
    [24] Homma, T.; Harano, K.; Isobe, H.; Nakamura, E. Nanometer-sized fluorous fullerenevesicles in water and on solid surfaces. Angew. Chem., Int. Ed. Engl. 2010, 49, 1665-1668.
    [13] Verma, S.; Hauck, T.; El-Khouly, M. E.; Padmawar, P. A.; Canteenwala, T.; Pritzker, K.; Ito, O.; Chiang, L. Y. Self-assembled photoresponsive amphiphilic diphenylaminofluorene?C_(60) conjugate vesicles in aqueous solution. Langmuir 2005, 21, 3267-3272.
    [14] Segura, J. L.; Priego, E. M.; Martin, N.; Luo, C. P.; Guldi, D. M. A new photoactive and highly soluble C_(60)?TTF?C_(60) dimer: charge separation and recombination. Org. Lett. 2000, 2, 4021-4024.
    [15] Diederich, F.; Gomez-Lopez, M. Supramolecular fullerene chemistry. Chem. Soc. ReV. 1999, 28, 263-277, and reference therein.
    [16] Murthy, C. N.; Geckeler, K. E. The water-soluble beta-cyclodextrin-[60]fullerene complex. Chem. Commum. 2001, 1194-1195.
    [17] Lee, E.; Kim, J. K.; Lee, M. Tubular Stacking of water-soluble toroids triggered by guest encapsulation. J. Am. Chem. Soc. 2009, 131, 18242-18243.
    [18] Mountrichas, G.; Pispas, S.; Xenogiannopoulou, E.; Aloukos, P.; Couris, S. Aqueous dispersions of C_(60) fullerene by use of amphiphilic block copolymers: preparation and nonlinear optical properties. J. Phys. Chem. B 2007, 111, 4315-4319.
    [19] Narumi, A.; Kaga, H.; Otsuka, I.; Satoh, T.; Kaneko, N.; Kakuchi, T. Polystyrene microgel amphiphiles with maltohexaose. synthesis, characterization, and potential applications. Biomacromolecules 2006, 7, 1496-1501.
    [20] Fortner, J. D.; Lyon, D. Y.; Sayes, C. M.; Boyd, A. M.; Falkner, J. C.; Hotze, E. M.; Alemany, L. B.; Tao, Y. J.; Guo, W.; Ausman, K. D.; Colvin, V. L.; Hughes, J. B. C_(60) in Water: Nanocrystal formation and microbial response. Environ. Sci. Technol. 2005, 39, 4307-4316.
    [21] Lee, J.; Song, W. H.; Jang, S. S.; Fortner, J. D.; Alvarez, P. J. J.; Cooper, W. J.; Kim, J. H. Stability of water-stable C_(60) clusters to ?OH radical oxidation and hydrated electron reduction. Environ. Sci. Technol. 2010, 44, 3786-3792.
    [22] Avdeev, M. V.; Khokhryakov, A. A.; Tropin, T. V.; Andrievsky, G. V.; Klochkov, V. K.; Derevyanchenko, L. I.; Rosta, L.; Garamus, V. M.; Priezzhev, V. B.; Korobov, M. V.; Aksenov, V. L. Structural features of molecular-colloidal solutions of C_(60) fullerenes in water by small-angle neutron scattering. Langmuir 2004, 20, 4363-4368.
    [23] Babu, S. S.; Mohwald, H.; Nakanishi, T. Recent progress in morphology control of supramolecular fullerene assemblies and its applications. Chem. Soc. ReV. 2010, 39, 4021-4035, and references therein.
    [24] Homma, T.; Harano, K.; Isobe, H.; Nakamura, E. Nanometer-sized fluorous fullerene vesicles in water and on solid surfaces. Angew. Chem., Int. Ed. Engl. 2010, 49, 1665-1668.
    [25] Villalonga, R.; Cao, R.; Fragoso, A. Supramolecular chemistry of cyclodextrins in enzyme technology. Chem. ReV. 2007, 107, 3088-3116.
    [26] Hapiot, F.; Tilloy, S.; Monflier, E. Cyclodextrins as supramolecular host for organometallic complexes. Chem. ReV. 2006, 106, 767-781.
    [27] Riess, G. Micellization of block copolymers. Prog. Polym. Sci. 2003, 28, 1107-1170
    [28] Gil, E. S.; Hudson, S. A. Stimuli-responsive polymers and their bioconjugates. Prog. Polym. Sci. 2004, 29, 1173-1222.
    [29] Li, S.; Gong, S. A positively temperature-responsive, substrate-selective Ag nanoreactor J. Phys. Chem. B 2009, 113, 16501-16507.
    [30] Chen, S.; Li, Y.; Guo, C.; Wang, J.; Ma, J. H.; Liang, X. F.; Yang, L. R.; Liu, H. Z. Temperature-responsive magnetite/PEO?PPO?PEO block copolymer nanoparticles for controlled drug targeting delivery. Langmuir 2007, 23, 12669-12676.
    [31] Lai, J. J.; Hoffman, J. M.; Ebara, M.; Hoffman, A. S.; Estournes, C.; Wattiaux, A.; Stayton, P. S. Dual magnetic-/temperature-responsive nanoparticles for microfluidic separations and assays. Langmuir 2007, 23, 7385-7391.
    [32] Huber, D. L.; Manginell, R. P.; Samara, M. A.; Kim, B. -I.; Bunker, B. C. Programmed adsorption and release of proteins in a microfluidic device. Science 2003, 301, 352-354.
    [33] Schild, H. G. Poly(N-isopropylacrylamide): experiment, theory and application. Prog. Polym. Sci. 1992, 17, 163-249
    [34] Idziak, I.; Avoce, D.; Lessard, D.; Gravel, D.; Zhu, X. X. Thermosensitivity of aqueous solutions of poly(N,N-diethylacrylamide. Macromolecules 1999, 32, 1260-1263.
    [35] Maeda, Y.; Nakamura, T.; Ikeda, I. Change in Solvation of poly(N,N-diethylacrylamide) during phase transition in aqueous solutions as observed by IR spectroscopy. Macromolecules 2002, 35, 10172-10177.
    [36] Yu, S. J.; Yin, Y. Z.; Liu, J. Q. A modulatory bifunctional artificial enzyme with both SOD and GPx activities based on a smart star-shaped pseudo-block copolymer. Soft Matter 2010, 6, 5342-5350.
    [37] Yin, Y. Z.; Wang, L.; Liu, J. Q Construction of a smart glutathione peroxidase mimic with temperature responsive activity based on block copolymer. Soft Matter 2010, DOI: 10.1039/C0SM01081B.
    [38] De, P.; Gondi, S. R.; Sumerlin, B. S. Folate-conjugated thermoresponsive block copolymers: highly efficient conjugation and solution self-assembly. Biomacromolecules 2008, 9, 1064-1070.
    [39] Hawker, C. J.; Saville, P. M.; White, J. W. The synthesis and characterization of a self-assembling amphiphilic fullerene. J. Org. Chem. 1994, 59, 3503-3505.
    [40] Felder, D.; Nava, M. G.; Carreon, M. D.; Eckert, J. F.; Luccisano, M.; Schall, C.; Masson, P.; Gallani, J. L.; Heinrich, B.; Guillon, D.; Nierengarten, J. F. Synthesis of amphiphilic fullerene derivatives and their incorporation in Langmuir and Langmuir-Blodgett films. Helv. Chim. Acta 2002, 85, 288-319.
    [41] Jenekhe, S. A.; Chen, X. L. Self-assembled aggregates of rod-coil block copolymers and their solubilization and encapsulation of fullerenes. Science 1998, 279, 1903-1907.
    [42] Teoh, S. K.; Ravi, P.; Dai, S.; Tam, K. C. Self-assembly of stimuli-responsive water-soluble
    [60]fullerene end-capped ampholytic block copolymer. J. Phys. Chem. B 2005, 109, 4431-4438.
    [43] Ifuku, S.; Kadla, J. F. Preparation of a Thermosensitive highly regioselective cellulose/N-isopropylacrylamide copolymer through atom transfer radical polymerization. Biomacromolecules 2008, 9, 3308-3313.
    [44] Ta, T.; Convertine, A. J.; Reyes, C. R.; Stayton, P. S.; Porter, T. M. Thermosensitive liposomes modified with poly(N-isopropylacrylamide-co-propylacrylic acid) copolymers for triggered release of doxorubicin. Biomacromolecules 2010, 11, 1915-1920.
    [45] Harada, A.; Furue, M.; Nozakura, S. Cyclodextrin-containing polymers. Macromolecules 1976, 5, 701-704.
    [46] Lansman, R. A.; Shade, R. O.; Shapira, J. F.; Avise, J. C. Techniques and potential applications J. Mol. Evol. 1981, 17, 214-226.
    [47] Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248-254.
    [48] Hunter, F. E.; Scott, A.; Hoffsten, P. E.; Guerra, F.; Weinstein, J.; Schneider, A.; Schutz, B.; Fink, J.; Ford, L.; Smith, E. Studies on the mechanism of ascorbate-induced swelling and lysis of isolated liver mitochondria. J. Biol. Chem. 1964, 239, 604-613.
    [49] Sano, M.; Oishi, K.; Ishi-i, T.; Shinkai, S. Vesicle formation and its fractal distribution by bola-amphiphilic [60]fullerene. Langmuir 2000, 16, 3773-3776.
    [50] Bisaglia, M.; Natalini, B.; Pellicciari, R.; Straface, E.; Malorni, W.; Monti, D.; Franceschi, C.; Schettini, G. C3-Fullero-tris-methanodicarboxylic acid protects cerebellar granule cells from apoptosis. J. Neurochem. 2000, 74, 1197-1204.
    [51] Lai, H. S.; Chen, W. J.; Chiang, L. Y. Free radical scavenging activity of fullerenol on the ischemia-reperfusion intestine in dogs. World J. Surg. 2000, 24, 450-454.
    [52] Yin, J. J.; Lao, F.; Fu, P. P.; Wamer, W. G.; Zhao, Y. L.; Wang, P. C.; Qiu, Y.; Sun, B. Y.; Xing, G. M.; Dong, J. Q.; Liang, X. J.; Chen, C. Y. The scavenging of reactive oxygen species and the potential for cell protection by functionalized fullerene materials. Biomaterials 2009, 30, 611-621.
    [1] Kano, K.; Romero, A.; Fendler, J. H. Characterization of surfactant vesicles as membrane mimetic agents. 2. Temperature-dedpendent changes of the turbidity, viscosity, fluorescence polarization of 2-methylanthracene, and positron annihilation in sonicated dioctadecyldimethylammonium chlorid. J. Am. Chem. Soc., 1979, 101, 4030-4037
    [2] Carmona-Ribeiro, A. M.; Yoshida, L. S.; Chaimovich, H. Permeabilities and stabilities of large dihexadecylphosphate and dioctadecyldimethylammonium chloride vesicles. J. Colloid Interface Science, 1984, 100, 433-443
    [3] Hao, J.; Li, H.; Liu, W.; Hirsch, A. Well-defined self-assembling supramolecular structures in water containing a small amount of C_(60). Chem. Commun., 2004, 602-603.
    [4] Yang J, Li L, and Wang C Synthesis of a water soluble, monosubstituted C_(60) polymeric derivative and its photoconductive properties. Macromolecules, 2003, 36, 6060-6065.
    [5] Cassell, A. M.; Lee Asplund, C.; Tour, J. M. Self-assembling supramolecular nanostructures from a C_(60) derivative: nanorods and vesicles. Angew. Chem., Int. Ed. 1999, 38, 2403-2405.
    [6] Oh-ishi, K.;Okamura,J.; Ishi-i, T.; Sano, M.; Shinkai, S. Large monolayer domain formed by C_(60)?azobenzene derivative. Langmuir. 1999, 15, 2224-2226.
    [7] Sano, M.; Oishi, K.; Tshi-I, T.; Shinkai, S. Langmuir , Vesicle formation and its fractal distribution by bola-amphiphilic [60]fullerene. 2000, 16, 3773-3776.
    [8] Braun, M.; Hartnagel, U.; Ravanelli, E.; Schade, B.; Bo¨ttcher, C.; Vostrowsky, O.; Hirsch, A. Amphiphilic [5:1]- and [3:3]-hexakisadducts of C_(60). Eur. J. Org. Chem., 2004, 1983-2001.
    [9] Georgakilas, V.; Pellarini, F.; Prato, M.; Guldi, D. M.; Melle-Franco, M.; Zerbetto, F. Physicalsciences - chemistry - supramolecular chemistry and self-assembly special feature. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 5075-5080.
    [10] Felder, D.; Nava, M. G.; Carreon, M.; Eckert, J.-F.; Luccisano, M.; Schall, C.; Masson, P.; Gallani, J.-L.; Heinrich, B.; Guillon, D.; Nierengarten, J.-F. Synthesis of amphiphilic fullerene derivatives and their incorporation in Langmuir and Langmuir-Blodgett films. Helv. Chim. Acta, 2002, 85, 288-319.
    [11] Song, T.; Dai, S.; Tam, K. C.; Lee, S. Y.; Goh, S. H. Aggregation behavior of C_(60)-end-capped poly(ethylene oxide)s. Langmuir, 2003, 19, 4798-4803.
    [1] Diederich, F.; Gomez-Lopez, M. Supramolecular fullerene chemistry. Chem. Soc. Rev., 1999, 28, 263-277, and reference therein.
    [2] Murthy, C. N.; Geckeler, K. E. The water-soluble beta-cyclodextrin-[60]fullerene complex. Chem. Commum., 2001, 1194-1195.
    [3] Lee, E.; Kim, J. K.; Lee, M. Tubular Stacking of water-soluble toroids triggered by guest encapsulation. J. Am. Chem. Soc., 2009, 131, 18242-18243.
    [4] Mountrichas, G.; Pispas, S.; Xenogiannopoulou, E.; Aloukos, P.; Couris, S. Aqueous dispersions of C_(60) fullerene by use of amphiphilic block copolymers: preparation and nonlinear optical properties. J. Phys. Chem. B, 2007, 111, 4315-4319.
    [5] Narumi, A.; Kaga, H.; Otsuka, I.; Satoh, T.; Kaneko, N.; Kakuchi, T. Polystyrene microgel amphiphiles with maltohexaose. synthesis, characterization, and potential applications. Biomacromolecules, 2006, 7, 1496-1501
    [6] Jenekhe, S. A.; Chen, X. L. Self-assembled aggregates of rod-coil block copolymers and their solubilization and encapsulation of fullerenes. Science, 1998, 279, 1903-1907.
    [8] Cadenas, E.; Davies, K. J. A. Mitochondrial free radical generation, oxidativestress and aging [J]. Free Radic Biol. Med., 2000, 29, 222-230.
    [9] Radi, R.; Cassina, A.; Hodara, R. et al. Peroxynitrite reactions and formation in mitochondria [J]. Free Radical Biol. Med., 2002, 33, 1451-1464.
    [10] Turrens, J. F. Superoxide production by the mitochondrial respiratory chain [J]. Biosci. Rep., 1997, 17, 3-8.
    [11] Fu, H.; Zhou, Y. H.; Chen, W. L.; Deqing, Z. G.; Tong, M. L.; Ji, L. N.; Mao, Z. W., Complexation, structure, and superoxide dismutase activity of the imidazolate-bridged dinuclear copper moiety withβ-cyclodextrin and its guanidinium-containing derivative. J. Am. Chem. Soc., 2006, 128, 4924-4925.
    [12] Dong, Z. Y.; Liu, J. Q.; Mao, S. Z.; Huang, X.; Yang, B.; Ren, X. J.; Luo, G. M.; Shen, J. C., Aryl thiol substrate 3-carboxy-4-nitrobenzenethiol strongly stimulating thiol peroxidase activity of glutathione peroxidase mimic 2, 2'-ditellurobis(2-deoxy-beta-cyclodextrin). J. Am. Chem. Soc., 2004, 126, 16395-16404.
    [13] Villalonga, R.; Cao, R.; Fragoso, A., Supramolecular chemistry of cyclodextrins in enzyme technology. Chem. Rev., 2007, 107, 3088-3116.
    [14] Harada, A.; Hashidzume, A.; Yamaguchi, H.; Takashima, Y., Polymeric rotaxanes. Chem. Rev., 2009, 109, 5974-6023.
    [15] Liu, Y.; Chen, Y., Cooperative binding and multiple recognition by bridged bis(β-cyclodextrin)s with functional linkers. Acc. Chem. Res., 2006, 39, 681-691.
    [16] Ren, X. J.; Liu, J. Q.; Luo, G. M.; Zhang, Y.; Luo, Y. M.; Yan, G. L.; Shen, J. C., A novel selenocystine-beta-cyclodextrin conjugate that acts as a glutathione peroxidase mimic. Bioconjugate Chem., 2000, 11, 682-687.
    [17] Ren, X. J.; Xue, Y.; Zhang, K.; Liu, J. Q.; Luo, G. M.; Zheng, J.; Mu, Y.; Shen, J. C., A novel dicyclodextrinyl ditelluride compound with antioxidant activity. Febs Lett., 2001, 507, 377-380.
    [18] Ren, X. J.; Yang, L. Q.; Liu, J. Q.; Su, D.; You, D. L.; Liu, C. P.; Zhang, K.; Luo, G. M.; Mu, Y.; Yan, G. L.; Shen, J. C., A novel glutathione peroxidase mimic with antioxidant activity. Arch. Biochem. Biophys., 2001, 387, 250-256.
    [19] Ren, X. J.; Xue, Y.; Liu, J. Q.; Zhang, K.; Zheng, J.; Luo, G.; Guo, C. H.; Mu, Y.; Shen, J. C., A novel cyclodextrin-derived tellurium compound with glutathione peroxidase activity. Chembiochem., 2002, 3, 356-363.
    [20] Dong, Z. Y.; Li, X. Q.; Liang, K.; Mao, S. Z.; Huang, X.; Yang, B.; Xu, J. Y.; Liu, J. Q.; Luo, G. M.; Shen, J. C., Telluroxides exhibit hydrolysis capacity. J. Org. Chem., 2007, 72, 606-609.
    [21] Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 1976, 72, 248-254.
    [22] Wu, Z. P.; Hilvert, D., Selenosubtilisin as a glutathione peroxidase mimic. J. Am. Chem. Soc., 1990, 112, 5647-5648.
    [23] Bell, I. M.; Fisher, M. L.; Wu, Z. P.; Hilvert, D., Kinetic studies on the peroxidase activity of selenosubtilisin. Biochemistry, 1993, 32, 3754-3762.
    [24] Bell, I. M.; Hilvert, D., Peroxide dependence of the semisynthetic enzyme selenosubtilisin. Biochemistry, 1993, 32, 13969-13973.
    [25] Teoh, S. K.; Ravi, P.; Dai, S.; Tam, K. C. Self-assembly of stimuli-responsive water-soluble
    [60]fullerene end-capped ampholytic block copolymer. J. Phys. Chem. B, 2005, 109, 4431-4438.
    [26] Ifuku, S.; Kadla, J. F. Preparation of a Thermosensitive highly regioselective cellulose/N-isopropylacrylamide copolymer through atom transfer radical polymerization. Biomacromolecules, 2008, 9, 3308-3313.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700