环糊精的纳米界面组装及分子识别性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生命存在的最基本过程是发生在纳米尺度的表界面环境中的一系列分子识别过程,因此,对纳米表界面分子识别与作用机制的研究是从分子水平研究和探索生命现象的重要途径。结合超分子主-客体高选择性识别性能与纳米材料的特性,设计和制备各种高效、灵敏、便捷的功能材料,成为智能传感体系的重要发展方向。环糊精是一种环状低聚糖,具有独特的结构和分子识别特性。本论文在概述了环糊精的分子识别性能以及基于环糊精建立的传感界面的研究背景及最新进展的基础上,着眼于高性能的环糊精功能化的纳米界面的设计与分子识别研究。充分融合纳米材料独特的物理化学性质和环糊精良好的识别性能,建立高效传感方法,研究环糊精功能材料界面的分子间相互作用与信号转换机制,为建立环境、生命复杂体系中的高灵敏测试方法提供理论依据。具体内容如下:
     1.介绍了了环糊精独特的结构和特性,以及基于环糊精超分子主体化合物功能化的纳米传感器的研究进展,简述了半导体量子点、贵金属纳米粒、纳米通道的性质及其在传感分析中的应用和原理,并由此提出了本论文的设想和研究思路。
     2.创新性的提出了一种简单的超声振荡方法,将母体环糊精快速组装到量子点表面,使量子点从疏水性转变为亲水性。所制备的超分子纳米复合体同时具有量子点的优良的光学性能和环糊精的分子识别能力,表现出对酚类异构体较好的选择性识别性能。在所考察的8种酚类异构体中(包括邻硝基苯酚、间硝基苯酚、对硝基苯酚、邻甲基苯酚、间甲基苯酚、对甲基苯酚、1-荼酚、2-禁酚),α-、β-环糊精修饰的量子点可以分别对对硝基苯酚和1-萘酚选择性识别,检测限分别为7.92×10-9M和4.83×10-9 M。研究表明,该类探针选择性好,灵敏度高,且制作简单,操作方便。通过对实际环境中的水样进行检测,证明检测探针具有很好的抗干扰性和实用性。
     3.利用环糊精内在的手性和良好的主-客体包结性能,建立了一种以量子点为荧光探针的手性识别新方法。我们通过简单的组装方法,分别把具有手性识别性能的α-和β-环糊精引入到CdSe/ZnS量子点表面,该类传感器能够有效灵敏地对蛋氨酸和酪氨酸进行手性识别。在一定浓度范围内,L-型的氨基酸使环糊精修饰的量子点荧光强度显著增强,而D-型的氨基酸对量子点的荧光影响不大。环糊精功能化的量子点可以显著提高对手性化合物的对映选择性,对今后手性传感器以及手性识别分析方法的应用和发展都具有重要的意义。
     4.基于纳米银表面等离子共振性质,建立了一种高选择性稀土离子的识别新方法。以p-环糊精/4,4'-联吡啶(β-CD/4-DPD)超分子配合物为稳定剂和功能基团制备出稳定的、单分散的银纳米粒探针,通过离子加入后引起的纳米溶胶颜色、UV-vis光谱及微观形态的变化来研究纳米探针对稀士离子的识别作用。其中Yb3+离子的加入,使单分散的银纳米逐渐组装成链状的网状纳米结构,颜色由黄色向红色转变,同时吸收波长红移,而La3+、Ce3+、Pr3+、Nd3+、Sm3+和Eu3+离子对溶胶的颜色和UV-vis光谱都没有影响,从而建立了一种高选择性的、新型的稀土离子比色传感方法。
     5.利用环糊精内在的手性微环境,将其组装到纳米通道内,开发出一个高选择性的手性检测体系。首先通过重离子轰击加径迹化学刻蚀方法(track-etching technique)制备出的单锥形聚合物纳米通道,利用化学蚀刻过程表面产生的羧基将具有手性识别性能的β-环糊精分子修饰到纳米通道内,基于离子电流的不同变化,实现了对组氨酸的手性识别,并可以对异构体进行定量分析。此检测体系具有较好的选择性和重现性,为研究和模拟生物体的手性识别提供了一种新的思路,为新型的手性传感器的设计提供了一种新的方法。
The fundamental process of life is a series of molecular recognition at the nanoscale interface, therefore, the study of molecular recognition and mechanism of action at the nanoscale interface is important for exploration of the biological phenomena at the molecular level. The combination of the excellent properties of nanomaterials and the molecular recognition ability of host molecules to design intelligent sensing system is an active line of research, and has contributed to creating a variety of efficient, sensitive, convenient sensing system. Cyclodextrins (CDs) are a class of cyclic oligosaccharides, has a unique structure and molecular recognition characteristics. On the basis of reviewing the molecular recognition properties of CDs and their applications in chemical sensors, this thesis is focused on fabricating novel and efficient CD-functionalized nano-interfaces and exploring their potential applications in molecule recognition.
     The main contents are shown as following:
     1. The unique structure and characteristics of cyclodextrin were introduced. The properties and application of semiconductor quantum dots, metal nanoparticles, and nanochannel were outlined. On the basis of the above review we put forward our design ideas and research topics.
     2. A simple, rapid sonochemical procedure for the preparation of highly fluorescent and water-soluble CdSe/ZnS quantum dots (QDs) usingα-,β-, andγ-CD as surface-coating agents was reported. The functional QDs retained the excellent optical properties of QDs and engaging molecular recognition ability of CDs. These receptor-modified QDs afforded a very sensitive detection system for analysis of phenol isomers. It was found that theα-CD-QDs andβ-CD-QDs were selectively sensitive toward p-nitrophenol and 1-naphthol, respectively. Under optimal conditions, the relative fluorescence intensities ofα-CD-QDs andβ-CD-QDs both decreased linearly with increasing p-nitrophenol and 1-naphthol in the concentration range of 0.01-100μM, with the corresponding detection limits (3σ) of 7.92×10-9 M and 4.83×10-9 M, respectively. However, the sensitivity toward other phenols, including o-nitrophenol, m-nitrophenol, 2-naphthol, o-cresol, m-cresol and p-cresol, were negligible. The results showed that the CD-QDs had a good specificity and excellent anti-disturbance ability.
     3. A novel chiral fluorescence sensor based on quantum dots was constructed using CD as chiral selector. CDs, with a capability of chiral recognition, were introduced on the surface of CdSe/ZnS QDs by using a simple and convenient sonochemical approach. It has been demonstrated that the CD-QDs can carry out highly enantioselective fluorescent recognition of tyrosine and methionine. Within a certain concentration range, one enantiomer of the chiral amino acids can increase the fluorescence intensity of the CD-QDs, whereas the other enantiomer scarcely influences the fluorescence. Such unusually high enantioselective responses make these CD-QDs very attractive as fluorescent sensors in determining enantiomeric compounds.
     4. A new colorimetric method base on the surface plasmon resonance of silver nanoparticles (Ag NPs) was demonstrated for determination of rare earth (RE) ions in aqueous solution with high sensitivity and selectivity. A well-stable and dispersed Ag NP probe was synthesized using theβ-cyclodextrin/4,4'-dipyridine (β-CD/4-DPD) supramolecular inclusion complex system as a stable ligand. The recognition ability ofβ-CD/4-DPD-modified Ag NPs for RE ions could be realized by monitoring the UV-vis spectra and color changes of the Ag NPs solution before and after addition of various RE ions. In the presence of Yb3+, Yb3+-induced assembly of theβ-CD/4-DPD-modified Ag NPs to form chainlike supramolecular aggregates, gives a distinct color change from yellow to red and dramatic increase in the absorbance intensity at-610 nm. However, the addition of other RE ions, including Pr3+, Nd3+, Sm3+and Eu3+, no changes in the UV-vis spectra and color of Ag NPs were observed.
     5. A simple enantioselective sensing nanodevice based on a single conical nanochannel was fabricated in a PET membrane. Chiral recognition elements (β-CD molecules) were incorporated into the channel by directly exploiting the carboxyl groups generated during the track-etching process. The modified nanochannel provided a novel sensing platform to discriminate chiral His based on rectified ionic currents. This successful study is a potential step toward the ability to simulate the process of chiral recognition in living organisms. The artificial nanochannel systems offer real promise for preparing practical chiral-sensing devices that could be employed in a biological environment.
引文
[1]Ariga, K.; Hill, J. P.; Endo, H. Developments in molecular recognition and sensing at interfaces. Int. J. Mol. Sci.,2007,8,864-883.
    [2]Yamamura, H.; Rekharsky, M. V.;Ishihara, Y.; Kawai, M.; Inoue, Y. Factors controlling the complex architecture of native and modified cyclodextrins with dipeptide (Z-Glu-Tyr) studied by microcalorimetry and NMR spectroscopy:critical effects of peripheral bis-trimethylamination and cavity size. J. Am. Chem. Soc.,2004,126,14224-14233.
    [3]Dentuto, P. L.; Catucci, L.; Cosma, P.; Fini, P.; Agostiano, A.; Daccolti, L. Effect of cyclodextrins on the physicochemical properties of chlorophyll a in aqueous solution. J. Phys. Chem. B.,2005, 109,1313-1317.
    [4]Szejtli J. Cyclodextrin Technology. Dordrecht:Kluwer Academic Publisher,1988,450.
    [5]Harada, A. Cyclodextrins. In Large Ring Molecules; Semlyen, J. A., Ed.; Wiley:Chichester,1996.
    [6]Ortega-Caballero, F.; Rousseau, C.; Christensen, B.; Petersen, T. E.; Bols, M. Remarkable supramolecular catalysis of glycoside hydrolysis by a cyclodextrin cyanohydrin. J. Am. Chem. Soc0,2005,127,3238-3239.
    [7]Lehn, J.-M. Supramolecular chem is try-scope and perspectives molecules, super-molecules, and molecular devices (Nobel Lecture). Angew Chem.,1988,27,89-112.
    [8]陈丽娟,杨明星,林深.主-客体化学研究进展.合成化学,2002,10,205-210.
    [9]刘育,尤长城,张衡益.超分子化学-合成受体的分子识别与组装,天津:南开大学出版社,2002.
    [10]刘育,尤长城.超分子化学,天津:南开大学出版社,2000.
    [11]Mrozek, J.; Banecki, B.; Karolczak, J.; Wiczk, W. Influence of the separation of the charged groups and aromatic ring on interaction of tyrosine and phenylalanine analogues and derivatives with β-cyclodextrin. Biophys. Chem.,2005,116,237-250.
    [12]Yoshida, A.; A rima, H.; Uekama, K., Pitha, J. Pharmaceutical evaluation of hydroxyalkyl ethers of β-cyclodextrins. Int. J. Pharm.,1988,46,217-222.
    [13]Wang, Y. H., Fu, Y.; Zhang, H. M.; Ye, J. P.; Guo Q. X. Photoinduced electron transfer reaction of mono-(6-deoxy-p-nitrobenzylamino)-β-cyclodextrin with naphthalene derivatives. Res. Chem. Intermed.,2003,29,169-180.
    [14]Parrot-Lopez H. Vectorised transport of drugs:synthesis of a new glycosyl derivative of betacyclodextrin. Tetrahedron Lett.,1992,33,209-212.
    [15]La, S.; Ahn, S.; Kim, J. H.; Goto, J.; Choi, O. K.; Kim, K. R. Enantioseparation of chiral aromatic amino acids by capillary electrophoresis in neutral and charged cyclodextrin selector modes. Electrophoresis,2002,23,4123-4131.
    [16]张国梅,双少敏,钞建宾,潘景浩.环糊精超分子化学在生命科学研究中的新进展.分析科学学报,2005,4,200-204.
    [17]刘育,历斌,张毅民,卜显和,李玉梅,陈荣悌.超分子体系的分子识别研究—环糊精双核铜配合物对芳香氨基酸的手性识别.科学通报,1995,40,1858-1861.
    [18]Narita, M.; Itoh, J.; Hamada, F. A high sensitivity fluorescent chemo-sensory system based on β-cyclodextrin dimer modified with dansyl moieties. J. Incl. Phenom. Macrocyclic Chem.,2002, 42,107-114.
    [19]Liu, Y.; Liang, P.; Chen, Y.; Spectrophotometric study of fluorescence sensing and selective binding of biochemical substrates by 2,2'-bridged bis(β-cyclodextrin) and its water-soluble fullerene conjugate.J. Phys. Chem. B,2005,109,23739-23744.
    [20]Liu, Y.; Chen, Y. Cooperative binding and multiple recognition by bridged bis(β-cyclodextrin)s with functional linkers. Ace. Chem. Res.,2006,39,681-691.
    [21]Liu, Y.; Chen, Y.; Li, B.; Wada, T.; Inoue, Y. Cooperative multipoint recognition of organic dyes by bis(β-cyclodextrin)s with 2,2'-bipyridine-4,4'-dicarboxy tethers. Chem. Eur. J.2001,7, 2528-2535.
    [22]陈湧,李莉,刘育.有机硒桥联环糊精对染料分子的尺寸和形状识别.高等学校化学学报,2002,23,1091-1093.
    [23]张国梅,双少敏,钞建宾,潘景浩.环糊精超分子化学在生命科学研究中的新进展.分析科学学报,2005,21,200-204.
    [24]Ghosh-Mukerji, S.; Haick, H.; Paz, Y. J. Controlled mass transport as a means for obtaining selective photocatalysis. Photochem. Photobiol. A.,2003,160,77-85.
    [25]Schiller, S. M.; Naumann, R.; Lovejoy, K.; Kunz, H.; Knoll, W. Archaea analogue thiolipids for tethered bilayer lipid membranes on ultrasmooth gold surfaces. Angew. Chem., Int. Ed.,2003,42, 208-211.
    [26]Rojas, M. T.; Kiiniger, R.; Stoddart, J. F.; Kaifer, A. E. Supported monolayers containing preformed binding sites. Synthesis and interfacial binding properties of a thiolated β-cyclodextrin derivative. J. Am. Chem. Soc.,1995,117,336-343.
    [27]Lee J. Y.; Park S. M. Electrochemistry of guest molecules in thiolated cyclodextrin self-assembled monolayers:an implication for size-selective sensors. J. Phys. Chem. B.,1998, 102,9940-9945.
    [28]Choi S. J.; Choi B. G.; Park S. M. Electrochemical sensor for electrochemically inactive β-D(+)-glucose using a-cyclodextrin template molecules. Anal. Chem.,2002,74,1998-2002.
    [29]Maeda Y.; Fukuda T.; Yamamoto H.; Kitano H. Regio-and stereoselective complexation by a self-assembled monolayer of thiolated cyclodextrin on a gold electrode. Langmuir,1997,13, 4187-4189.
    [30]Fukuda T.; Maeda Y.; Kitano H. Stereoselective inclusion of DOPA derivatives by a self-assembled monolayer of thiolated cyclodextrin on a gold electrode. Langmuir,1999,15, 1887-1890.
    [31]Kitano H.; Taira Y.; Yamamoto H. Inclusion of phthalate esters by a self-assembled monolayer of thiolated cyclodextrin on a gold electrode. Anal.Chem.,2000,72,2976-2980.
    [32]Ortiz, M.; Torrens, M.; Canela, N.; Fragoso, A.; O'Sullivan, C. Supramolecular confinement of polymeric electron transfer mediator on gold surface for picomolar detection of DNA. Soft Matter,2011,7,10925-10930.
    [33]Domi, Y.; Ikeura, K.; Okamura, K.; Shimazu, K.; Porter, M. D. Strong inclusion of inorganic anions into β-cyclodextrin immobilized to gold electrode. Langmuir,2011,27,10580-10586.
    [34]鞠熀先,戴宗,Leeh, D自组装层界面环糊非电活性客的电化学测定.中国化学(B辑),2002,32,40-45.
    [35]Wan, P. B.; Xing,Y. B.; Chen, Y. Y.; Chi, L. F.; Zhang, X. Host-guest chemistry at interface for photo switchable bioelectrocatalysis. Chem. Commun.,2011,47,5994-5996.
    [36]Alivisatos, A. P. Semiconductor clusters, nanocrystals, and quantum dots. Science,1996,271, 933-937.
    [37]Chan, W. C. W.; Nie, S. M. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science,1998,281,2016-2018.
    [38]Clapp, A. R.; Mauro, J. M.; Mattoussi, H. Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors. J. Am. Chem. Soc.,2004,126,301-310.
    [39]Alivisatos, A. P. Colloidal quantum dots. From scaling laws to biological applications. Pure. Appl. Chem.,2000,72,3-9.
    [40]Han, M. Y.; Gao, X. H.; Su, J. Z. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat. Biotechnol.,2001,19,631-635.
    [41]Ooba, H. Synthesis of unique high quality Fluorescence quantum dots for the biochemical measurements. AIST Today,2006,6,26-27
    [42]Deng, D. W.; Zhang, W. H.; Chen, X. Y.; Liu, F.; Zhang, J.; Gu, Y. Q.; Hong, J. M. Facile synthesis of high-quality, water-soluble, near-infrared-emitting PbS quantum dots. Eur. J. Inorg. Chem.,2009,23,3440-3446.
    [43]Zimmer, J. P.; Kim, S. W.; Ohnishi, S.; Tanaka, E.; Frangioni, J. V.; Bawendi, M. G. Size series of small indium arsenide-zinc selenide core-shell nanocrystals and their application to in vivo imaging. J. Am. Chem. Soc.,2006,128,2526-2527.
    [44]Xie, R.; Peng, X. G. Synthetic scheme for high-quality InAs nanocrystals based on self-focusing and one-pot synthesis of InAs-based core-shell nanocrystals. Angew. Chem. Int. Ed.,2008,47, 7677-7680.
    [45]Xie, R. G.; Chen, K.; Chen, X. Y.; Peng, X. G. InAs/InP/ZnSe core/shell/shell quantum dots as near-infrared emitters:bright, narrow-band, non-cadmium containing, and biocompatible. Nano Res.,2008,1,457-464.
    [46]Resch-Genger, U.; Grabolle, M.; Cavaliere-Jaricot, S.; Nitschke, R.; Nann, T. Quantum dots versus organic dyes as fluorescent labels. Nature Methods,2008,5,763-775.
    [47]Rajh, T.; Micic, O. I.; Nozik, A. J. Synthesis and characterization of surface-modified colloidal CdTe quantum dots. J. Phys. Chem.,1993,97,11999-12003.
    [48]Gaponik, G.; Talapin, D. V.; Rogach, A. L.; Hoppe, K.; Shevchenko, E. V.; Kornowski, A.; Eychmuller, A.; Weller, H. Thiol-capping of CdTe nanocrystals:an alternative to organometallic synthetic routes. J. Phys. Chem. B,2002,106,7177-7185.
    [49]Chemseddine, A.; Weller, H. Highly monodispersed quantum sized CdS particles by size selective precipitation. Ber. Bunsenges. Phy. Chem.,1993,97,636-639.
    [50]Bao, H.; Gong, Y.; Li, Z.; Gao, M. Y. Enhancement effect of illumination on the photoluminescence of water-soluble CdTe nanocrystals:toward highly fluorescent CdTe/CdS core-shell structure. Chem. Mater.,2004,16,3853-3859.
    [51]Zou, L.; Gu, Z. Y.; Zhang, N.; Zhang, Y. L.; Fang, Z.; Zhu, W. H.; Zhong, X.H. Ultrafast synthesis of highly luminescent green-to near infrared-emitting CdTe nanocrystals in aqueous phase. J. Mater. Chem.,2008,18,2807-2815.
    [52]Rossetti, R. E.; llison J. L.; Gibson, J. M.; Brus, L. Size effects in the excitedelectronic states of small colloidal CdS crystallites. J. Chem. Phys.,1984,80,4464-4469.
    [53]Zhu, J. J.; Zhou, M. G.; Xu, J. Z. Preparation of CdS and ZnS nanoparticles using microwave irradiation. Mater. Lett.,2001,47,25-29.
    [54]Murray, C. B.; Norris, D. J.; Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E= sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc,1993,115,8706-8715.
    [55]Lakowiiez, L. R.; Grycznski,I.; Grycznski, Z.; Murphy, C. J. Luminescence spectral properties of CdS nanoparticles.J. Phys. Chem. B.,1999,103,7613-7620.
    [56]Lemon, B. L.; Crooks, R. M. Preparation and characterization of dendrimer-encapsulated CdS semiconductor quantum dots. J. Am. Chem. Soc,2000,122,12886-12887.
    [57]舒磊,俞书宏,钱逸泰.半导体硫化物纳米微粒的制备.无机化学学报,1999,15,1-7.
    [58]Murray, C. B.; Norris, D. J.; Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E= sulfur, selenium, tellurium) semiconductor nanocrystallites.J. Am. Chem. Soc.,1993,115,8706-8715.
    [59]Peng, Z. A.; Peng, X. G. Mechanisms of the shape evolution of CdSe nanocrystals. J. Am. Chem. Soc.,2001,123,1389-1395.
    [60]Peng, Z. A.; Peng, X. G.. Formation of high-quality CdTe, CdSe and CdS nanocrystals using CdO as precursor. J. Am. Chem. Soc.,2001,123,183-184.
    [61]Costa-Fernandez, J. M.; Pereiro, R.; Sanz-Medel, A. The use of luminescent quantum dots for optical sensing. Trends Anal.Chem.,2006,25,207-218.
    [62]Mitchell, G. P.; Mirkin, C. A.; Letsinger, R. L. The programmed assembly of DNA functionalized quantum dots. J Am. Chem. Soc.,1999,121,8122-8123.
    [63]Han, M.; Gao, X. H.; Su, J. Z.; Nie, S. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat. Biotechol.,2001,19,631-635.
    [64]Fan, H. Y.; Leve, E. W.; Scullin, C.; Gabaldon, J.; Talent, D.; Bunge, S.; Boyle, T.; Wilson, M. C.; Brinker, C. J. Surfactant-assisted synthesis of water-soluble and biocompatible semiconductor quantum dot micelles. Nano Lett.,2005, J,645-648.
    [65]Alivisatos P. The use of nanocrystals in biological detection. Nat. Biotechnol,2004,22,47-52.
    [66]Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S. Quantum dots for live cells, in vivo imaging, and diagnostics. Science,2005,307,538-544.
    [67]Zhong, W. Nanomaterials in fluorescence-based biosensing. Anal. Bioanal. Chem.,2009,394, 47-59.
    [68]Murphy, C. J. Optical sensing with quantum dots. Anal. Chem.,2002,74,520A-526A.
    [69]Spanhel, L.; Haase, M.; Weller, H. Photochemistry of colloidal semiconductors. Surface modification and stability of strong luminescing CdS particles.J. Am. Chem. Soc.,1987,109, 5649-5655.
    [70]Chen, Y.; Rosenzweig, Z. Luminescent CdS quantum dots as selectiveion probes. Anal. Chem., 2002,74,5132-5138.
    [71]Liang, J. G.; Ai, X. P.; He, Z. K.; Pang, D. W. Functionalized CdSe quantum dots as selective silver ion chemodosimeter. Analyst,2004,129,619-622.
    [72]Fernandez-Arguelles, M. T.; Jin, W. J.; Costa-Fernandez, J. M. Surface-modified CdSe quantum dots for the sensitive and selective determination of Cu (Ⅱ) in aqueous solutions by luminescent measurements. Anal. Chim. Acta,2005,549,20-25.
    [73]Bo, C.; Ping, Z. A new determining method of copper(Ⅲ) ions at ng ml(') levels based on quenching of the water-soluble nanocrystals fluorescence. Anal. Bioanal. Chem.,2005,381, 986-992.
    [74]Ali, E. M.; Zheng, Y. G.; Yu, H. H.; Ying J. Y. Ultrasensitive Pb2+detection by glutathione-capped quantum dots. Anal. Chem.,2007,79,9452-9458.
    [75]Li, H. B.; Zhang Y.; Wang, X. Q. L-Carnitine capped quantum dots as luminescent probes for cadmium ions. Sens. Actuators B,2007,127,593-597.
    [76]Ren, H. B.; Wu, B. Y.; Chen, J. T.; Yan, X. P. Silica-coated S2--enriched manganese-doped ZnS quantum dots as a photoluminescence probe for imaging intracellular Zn2+ions. Anal. Chem., 2011,83,8239-8244.
    [77]Li, H. B.; Han, C. P.; Zhang, L. Synthesis of cadmium selenide quantum dots modified with thiourea type ligands as fluorescent probes for iodide ions. J. Mater. Chem.,2008,18, 4543-4548.
    [78]Jin, W. J.; Fernandez-Arguelles, M. T.; Costa-Fernandez, J. M. Photoactivated luminescent CdSe quantum dots as sensitive cyanide probes in aqueous solutions. Chem. Commun.,2005,883-885.
    [79]Shang, L.; Zhang, L. H.; Dong, S. J. Turn-on fluorescent cyanide sensor based on copper ion-modified CdTe quantum dots. Analyst,2009,134,107-113.
    [80]Mulrooney, R. C.; Singh, N.; Kaur, N.; Callan, J. F. An "off-on" sensor for fluoride using luminescent CdSe/ZnS quantum dots. Chem. Commun.,2009,686-688.
    [81]Carrillo-Carrion, C.; Cardenas, S.; Simonet, B.; Valcarcel, M. Selective quantification of carnitine enantiomers using chiral cysteine-capped CdSe(ZnS) quantum dots. Anal. Chem.,2009, 81,4730-4733.
    [82]Cavaliere-Jaricot, S.; Darbandi, M.; Kucur, E.; Nann, T. Silica coated quantum dots:a new tool for electrochemical and optical glucose detection. Microchim Acta,2008,160,375-383.
    [83]Li, H. B.; Qu, F. G Synthesis of CdTe quantum dots in sol-gel-derived composite silica spheres coated with calix[4]arene as luminescent probes for pesticides. Chem. Mater.,2007,19, 4148-4154.
    [84]Li, H. B.; Qu, F. G. Selective inclusion of polycyclic aromatic hydrocarbons (PAHs) on calixarene coated silica nanospheres englobed with CdTe nanocrystals. J. Mater. Chem.,2007, 17,3536-3544.
    [85]Chen, J. L.; Zhu, C. Q. Functionalized cadmium sulfide quantum dots as fluorescence probe for silver ion determination. Anal. Chim. Acta,2005,546,147-153.
    [86]Palaniappan, K.; Hackney, S. A.; Liu, J. Supramolecular control of complexation-induced fluorescence change of water-soluble, β-cyclodextrin-modified CdS quantum dots. Chem. Commun.,2004,23,2704-2705.
    [87]Palaniappan, K.; Xue, C.; Arumugam, G.; Hackney, S. A.; Liu, J.; Water-soluble, cyclodextrin-modified CdSe-CdS core-shell structured quantum dots. Chem. Mater.,2006,18, 1275-1280.
    [88]Medintz, I. L.; Clapp, A. R.; Mattoussi, H.; Goldman, E. R.; Fisher, B.; Mauro, J. M. Self-assembled nanoscale biosensors based on quantum dot FRET donors. Nat. Mater.,2003,2, 630-638.
    [89]Zhang, C.; Yeh, H.; Kuroki, M. T.; Wang, T. Single-quantum-dot-based DNA nanosensor. Nat. Mater.,2005,4,826-831.
    [90]Wang, S.; Masuedova, N.; Kovtov, N. A.; Chen, W.; Studer, J. Antigen/antibody immunocomplex from CdTe nanoparticle bioconjugates. Nano Lett.,2002,2,817-822.
    [91]Clapp, A. R.; Medintz, I. L.; Uyeda, H. T.; Fisher, B. R.; Goldman, E. R.; Bawendi, M. G.; Mattoussi, H. Quantum dot-based multiplexed fluorescence resonance energy transfer.J. Am. Chem. Soc.,2005,127,18212-18221.
    [92]Rakshit, S.; Vasudevan, S. Resonance energy transfer from β-cyclodextrin-capped ZnO:MgO nanocrystals to included nile red guest molecules in aqueous media. ACS nano,2008,2, 1473-1479.
    [93]Freeman, R.; Finder, T.; Bahshi, L.; Wiilner, I. (3-Cyclodextrin-modified CdSe/ZnS quantum dots for sensing and chiroselective analysis. Nano Lett.,2009,9,2073-2076.
    [94]Aguilera-Sigalat, J.; Casas-Solvas, J. M.; Morant-Minana, M. C.; Vargas-Berenguel, A.; Galian, R. E.; Perez-Prieto, J. Quantum dot/cyclodextrin supramolecular systems based on efficient molecular recognition and their use for sensing. Chem. Commun.,2012,48,2573-2575.
    [95]Liang, Y. Z.; Yua, Y.; Cao, Y J. Hu, X.G.; Wu, J. Z.; Wang, W. J.; Finlow, D. E. Recognition of DNA based on changes in the fluorescence intensity of CdSe/CD QDs-phenanthroline systems Spectrochimica Acta Part A,2010,75,1617-1623.
    [96]Jia, L. Xu, J.-P.; Li, D.; Pang, S.-P.; Fang, Y.; Song, Z.-G.; Ji, J. Fluorescence detection of alkaline phosphatase activity with β-cyclodextrin-modified quantum dots. Chem. Commun.,2010, 46,7166-7168.
    [97]Yang, J.; Xiang, J.; Chen, C.; Lu, D.; Xu, G. Effect of beta-Cyclodextrin on the photoinduced charge transfer in sodium 1-anilino-8-naphthalene sulfate (ANS)/CdS colloidal system. J. Colloid Interface Sci.,2001,240,425-431.
    [98]Qu, F. G.; Li, H. B. Selective molecular recognition of polycyclic aromatic hydrocarbons using CdTe quantum dots with cyclodextrin as supramolecular nano-sensitizers in water. Sensors Actuat. B-Chem.,2009,135,499-505.
    [99]Daniel, M. C.; Astruc D. Gold nanoparticles:assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev.,2004,104,293-346.
    [100]Elghanian, R.; Storhoff, J. J.; Mucic, R. C.; Letsinger, R. L.; Mirkin, C. A. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science,1997,277,1078-1081.
    [101]Storhoff, J. J.; Lucas, A. D.; Garimella,V.; Bao, Y. P.; Muller, U. R. Homogeneous detection of unamplified genomic DNA sequences based on colorimetric scatter of gold nanoparticle probes. Nat. Biotechnol.,2004,22,883-887.
    [102]Huang, C. C.; Huang, Y. F.; Cao, Z.; Tan, W.; Chang, H. T. Aptamer-modified gold nanoparticles for colorimetric determination of platelet-derived growth factors and their receptors. Anal. Chem.,2005,77,5735-5741.
    [103]Stoeva, S. I.; Lee, J. S.; Smith, J. E.; Rosen, S. T.; Mirkin, C. A. Multiplexed detection of protein cancer markers with biobarcoded nanoparticle probes. J. Am. Chem. Soc.,2006,128, 8378-8379.
    [104]Wei, H.; Chen, C. G.; Han, B. Y.; Wang, E. K. Enzyme colorimetric assay using unmodified silver nanoparticles. Anal. Chem.,2008,80,7051-7055.
    [105]Zheng, Q. L.; Han, C. P.; Li, H. B. Selective and efficient magnetic separation of Pb2+via gold nanoparticle-based visual binding enrichment, Chem. Commun.,2010,46,7337-7339.
    [106]Li, H. B.; Yao, Y.; Han, C. P.; Zhan, J. Y. Triazole-ester modified silver nanoparticles:click synthesis and Cd2+colorimetric sensing. Chem. Commun.,2009,4812-4814.
    [107]Patel, G.; Menon S. Recognition of lysine, arginine and histidine by novel p-sulfonato-calix[4]arene thiol functionalized gold nanoparticles in aqueous solution. Chem. Commun.2009, 3563-3565.
    [108]Xiong, D. J.; Li, H. B. Colorimetric detection of pesticides based on calixarene modified silver nanoparticles in water. Nanotechnology,2008,19,465502-465508.
    [109]Ai, K. L.; Liu, Y. L.; Lu, L. H. Hydrogen-bonding recognition-induced color change of gold nanoparticles for visual detection of melamine in raw milk and infant formula. J. Am. Chem. Soc., 2009,131,9496-9497.
    [110]Xiong, D. J.; Chen, M. L.; Li, H. B. Synthesis of para-sulfonatocalix [4] arene-modified silver nanoparticles as colorimetric histidine probes. Chem Commun,2008,880-882.
    [111]Han, C. P.; Li H. B. Visual detection of melamine in infant formula at 0.1 ppm level based on silver nanoparticles. Analyst,2010,135,583-588.
    [112]Zhou Y., Wang, S. X.; Zhang, K.; Jiang, X. Y. Visual detection of copper(Ⅱ) by azide-and alkyne-functionalized gold nanoparticles using click chemistry. Angew. Chem. Int. Ed.,2008,47, 7454-7456.
    [113]Daniel, W. L.; Han, M. S.; Lee, J. S.; Mirkin, C. A. Colorimetric nitrite and nitrate detecyion with gold nanoparticles probes and kinetic end points. J. Am. Chem. Soc.,2009,131,6362-6363.
    [114]Wei, H.; Li, B. L.; Li, J.; Wang, E. K.; Dong, S. J. Simple-and sensitive aptamer-based colorimetric sensing of protein using unmodified gold nanoparticle probes. Chem. Commun., 2007,3735-3737.
    [115]Link, S.; El-Sayed, M. A. Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J. Phys. Chem. B,1999,103,8410-8426.
    [116]Ray, P. C; Forther, A.; Darbha, G. K. Gold nanoparticle based FRET asssay for the detection of DNA cleavage. J. Phys. Chem. B,2006,110,20745-20748.
    [117]Chen, S. J.; Chang, H. T. Nile red-adsorbed gold nanoparticles for selective determination of thiols based on energy transfer and aggregation. Anal. Chem.,2004,76,3727-3734.
    [118]Grabar, K. C.; Reeman, R. G.; Hommer, M. B. Preparation and characterization of Au colloid monolayers. Anal. Chem.,1995,67,735-743.
    [119]Burda, C.; Chen, X.; Narayanan, R.; El-Sayed, M. A. Chemistry and properties of nanocrystals of different shapes. Chem. Rev.2005,105,1025-1102.
    [120]Kim, F.; Song, J. H.; Yang, P. Photochemical synthesis of gold nanorods. J. Am. Chem. Soc., 2002,124,14316-14317.
    [121]Bakshi, M. S. A simple method of superlattice formation:step-by-step evaluation of crystal growth of gold nanoparticles through seed-growth method. Langmuir,2009,25,12697-12705.
    [122]Shen, M.; Du, Y. K.; Rong, H. L. Preparation of hydrophobic gold nanoparticles with safe organic solvents by microwave irradiation method. Collo. Surf. A, Physicochem. Eng. Aspects, 2005,257-258,439-443.
    [123]Frens, G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat. Phys. Sci.,1973,241,20-23.
    [124]Sivaraman, S. K.; Kumar, S.; Santhanam, V. Monodisperse sub-10 nm gold nanoparticles by reversing the order of addition in Turkevich method-The role of chloroauric acid. J. Collo. Interf. Sci.,2011,361,543-547.
    [125]Ojea-Jimenez, I.; Bastus, N. G.; Puntes, V. Influence of the sequence of the reagents addition in the citrate-mediated synthesis of gold nanoparticles. J. Phys. Chem. C,2011,115,15752-15757.
    [126]Lee, P. C.; Meisel, D. Adsorption and surface-enhanced raman of silver and gold sols. J. Phys. Chem.1982,86,3391-3395.
    [127]Kimling, J.; Maier, M.; Okenve, B.; Kotaidis, V.; Ballot, H.; Plech, A. Turkevich method for gold nanoparticle synthesis revisited.J. Phys. Chem. B.,2006,110,15700-15707.
    [128]Brust, M.; Bethell, D.; Schiffrin, D. Synthesis of thiol-derivatized gold nanoparticles in a two-phase liquid-liquid system. Chem. Commun.,1994,7,801-802.
    [129]Glish, G. L.; Evans, N. D.; Murray, R. W. Alkanethiolate gold cluster molecules with core diameters from 1.5 to 5.2 nm:core and monolayer properties as a function of core size. Langmuir, 1998,14,17-30.
    [130]Brust, M.; Fink, J.; Bethell, D. Synthesis and reactions of functionalised gold nanoparticles. J. Chem. Soc. Chem. Commun.,1995,1655-1656.
    [131]Kanaras, A. G. Thioalkylated tetraethylene glycol:a new ligand for water soluble monolayer protected gold clusters. Chem. Commun.,2002,2294-2295.
    [132]Zheng, M.; Li, Z. G.; Huang, X. Y. Ethylene glycol monolayer protected nanoparticles: synthesis, characterization, and interactions with biological molecules. Langmuir,2004,20, 4226-4235.
    [133]Bhargava, S. K.; Booth, J. M.; Agrawal, S.; Coloe, P.; Kar, G. Gold nanoparticle formation during bromoaurate reduction by amino acids. Langmuir,2005,21,5949-5956.
    [134]Aslam, M. Novel one-step synthesis of amine-stabilized aquous colloid gold nanoparticles. J. Mater. Chem.,2004,14,1795-1797.
    [135]Wang, D. S.; Xie, T.; Peng Q. Ag, Ag2S, and Ag2Se nanocrystals:synthesis, assembly, and construction of mesoporous structures.J. Am. Chem. Soc.,2008,130,4016-4022.
    [136]Newman, J. D. S.; Blanchard, G. J. Formation of gold nanoparticles using amine reducing agents. Langmuir,2006,22,5882-5887.
    [137]Liu, J.; Mendoza, S.; Roman, E.; Lynn, M. J.; Xu, R. L.; Kaifer, A. E. Cyclodextrin-modified gold nanospheres host-guest interactions at work to control colloidal properties J. Am. Chem. Soc.,1999,121,4304-4305.
    [138]Liu, J.; Ong W.; Roman, E.; Lynn, M. J.; Kaifer, A. E. Cyclodextrin-modified gold nanospheres. Langmuir,2000,16,3000-3002.
    [139]Liu, J.; Alvarez, J.; Ong, W.; Roman, E.; Kaifer, A. E. Phase transfer of hydrophilic, cyclodextrin-modified gold nanoparticles to chloroform solutions. J. Am. Chem. Soc.,2001,123, 11148-11154.
    [140]Liu, J.; Ong, W.; Angel, E.; Kaifer. A. Macrocyclic effect on the formation of capped silver nanoparticles in DMF. Langmuir,2002,18,5981-5983.
    [141]Alvarez J.; Liu J.; Roman E.; Kaifer A. E. Water-soluble platinum and palladium nanoparticles modified with thiolated β-cyclodextrin. Chem. Commun.,2000,1151-1152.
    [142]Liu J.; Alvarez J.; Ong W.; Roman E.; Kaifer A. E. Tuning the catalytic activity of cyclodextrin-modified palladium nanoparticles through host-guest binding interactions. Langmuir,2001,17,6762-6764.
    [143]Wang, Y.; Wong, J. F.; Teng, X.; Lin, X. Z.; Yang, H. "Pulling" nanoparticles into water:phase transfer of oleic acid stabilized monodisperse nanoparticles into aqueous solutions of α-cyclodextrin. Nano Lett.,2003,3,1555-1559.
    [144]Li, X. Q.; Qi, Z. H.; Liang, K.; Bai, X. L.; Xu, J. Y.; Liu, J. Q.; Shen, J. C. An artificial supramolecular nanozyme based on β-cyclodextrin-modified gold nanoparticles. Catal. Lett., 2008,124,413-417.
    [145]Wang, H.; Chen, Y.; Li, X.Y.; Liu Y. Synthesis of oligo(ethylenediamino)-β-cyclodextrins modified gold nanoparticle as a DNA concentrator. Mol. Pharm.,2007,4,189-198.
    [146]Rezanka, P.; Navratilova, K.; Zvatora, P.; Sykora, D.; Matejka, P.; Miksk,I.; Kasicka, V.; Cyclodextrin modified gold nanoparticles-based opentubular capillary electrochromatographic separations of polyaromatic hydrocarbons. J. Nanopart Res.,2011,13,5947-5957.
    [147]Liu, Y.; Yang, Y. W.; Chen, Y. Thio[2-(benzoylamino)ethylamino]-β-CD fragment modified gold nanoparticles as recycling extractors for [60]fullerene. Chem. Commun.,2005,4208-4210.
    [148]李海兵,胡春秀,韩翠平,熊得军,田德美.β-环糊精修饰的银量子点合成及其对色氨酸的比色手性识别.中国科学B辑:化学,2009,39,629-633.
    [149]Chen, X.; Parker, S. G.; Zou, G. β-Cyclodextrin functionalized silver nanoparticles for the naked eye detection of aromatic isomers, ACS nano,2010,4,6387-6394.
    [150]Tang, B.; Cao, L. H.; Xu, K. H.; Zhuo, L. H.; Ge, J. C. Li, Q. L.; Yu, L. J. A new nanobiosensor for glucose with high sensitivity and selectivity in serum based on fluorescence resonance energy transfer (FRET) between CdTe quantum dots and Au nanoparticles. Chem. Eur. J.,2008,14, 3637-3644.
    [151]Zhang, N.; Liu, Y. Y; Tong, L. L.; Xu, K. H.; Zhuo, L.H.; Tang, B. A novel assembly of Au NPs-β-CDs-FL for the fluorescent probing of cholesterol and its application in blood serum. Analyst,2008,133,1176-1181.
    [152]Fabris, L.; Dante, M.; Nguyen, T. Q. SERS aptatags:new responsive metallic nanostructures for heterogeneous protein detection by surface enhanced raman spectroscopy. Adv. Funct. Mater., 2008,18,2518-2525.
    [153]Xie,Y. F.; Wang, X.; Han, X. X.; Xue, X. X.; Ji, W.; Qi, Z. H.; Liu, J. Q.; Zhao, B.; Ozaki, Y. Sensing of polycyclic aromatic hydrocarbons with cyclodextrin inclusion complexes on silver nanoparticles by surface-enhanced Raman scattering. Analyst,2010,135,1389-1394.
    [154]Horn, R. Conversation between voltage sensors and gates of ion channels. Biochemistry,2000, 39,15653-15658.
    [155]Wen, L. P.; Hou, X.; Tian, Y; Nie, F. Q.; Song, Y. L.; Zhai, J.; Jiang, L. Bioinspired smart gating of nanochannels toward photoelectric-conversion systems. Adv. Mater.,2010,22,1021-1024.
    [156]Bayley, H.; Cremer, P. S. Stochastic sensors inspired by biology. Nature,2001,413,226-230.
    [157]Howorka, S.; Cheley, S.; Bayley, H., Sequence-specific detection of individual DNA strands using engineered nanopores. Nat. Biotechnol.,2001,19,636-639.
    [158]Movileanu, L.; Howorka, S.; Braha, O.; Bayley, H. Detecting protein analytes that modulate transmembrane movement of a polymer chain within a single protein pore. Nat. Biotechnol., 2000,18,1091-1095.
    [159]Braha, O.; Gu, L. Q.; Zhou, L.; Lu, X. F.; Cheley, S.; Bayley, H. Simultaneous stochastic sensing of divalent metal ions. Nat. Biotechnol.,2000,18,1005-1007.
    [160]Kasianowicz, J. J.; Burden, D. L.; Han, L. C.; Cheley, S.; Bayley, H. Genetically engineered metal ion binding sites on the outside of a channel's transmembrane betabarrel. Biophy. J.,1999, 76,837-845.
    [161]Healy, K.; Schiedt, B.; Morrison, A. P. Solid-state nanopore technologies for nanopore-based DNA analysis. Nanomed.,2007,2,875-897.
    [162]Healy, K. Nanopore-based single molecule DNA analysis:a review. Nanomed.,2007,2, 459-481.
    [163]Dekker, C. Solid-state nanopores. Nat. Nanotechnol.,2007,2,209-215.
    [164]Phee, M.; Buruns, M. A. Nanopore sequencing technology:nanopore preparations. Trends Biotechnol.2007,25,174-181.
    [165]Harrell, C. C.; Siwy, Z. S.; Martin, C. R. Conical nanopore membranes:Controlling the nanopore shape. Small,2006,2,194-198.
    [166]Siwy, Z.; Apel, P.; Dobrev, D.; Neumann, R.; Spohr, R.; Trautmann, C.; Voss, K. Ion transport through asymmetric nanopores prepared by ion track etching. Nucl. Instrum. Methods Phys. Res. B,2003,208,143-148.
    [167]Apel, P. Track etching technique in membrane technology. Radial. Meas.,2001,34,559-566.
    [168]Apel, P. Y.; Blonskaya, I. V.; Didyk, A. Y.; Dmitriev, S. N.; Orelovitch, O. L.; Root, D.; Samoilova, L. I.; Vutsadakis, V. A. Surfactant-enhanced control of track-ttch pore morphology. Nucl. Instrum. Meth. B,2001,179,55-62.
    [169]Xia, F.; Guo, W.; Mao, Y. D.; Hou, X.; Xue, J. M.; Xia, H. W.; Wang, L.; Song, Y. L.; Ji, H.; Qi, O. Y.; Wang, Y. G.; Jiang, L., Gating of single synthetic nanopores by proton-driven DNA molecular motors. J. Am. Chem. Soc.,2008,130,8345-8350.
    [170]Ali, M.; Yameen, B.; Cervera, J.; Ramirez, P.; Neumann, R.; Ensinger, W.; Knoll, W.; Azzaroni, O. Layer-by-layer assembly of polyelectrolytes into ionic current rectifying solid-state nanopores: insights from theory and experiment. J. Am. Chem. Soc,2010,132,8338-8348.
    [171]Martin, C. R.; Nishizawa, M.; Jirage, K.; Kang, M. S.; Lee, S. B. Controlling ion-transport selectivity in gold nanotubule membranes. Adv. Mater.,2001,13,1351-1362.
    [172]郭志军,王家海,胡耀辉,汪尔康.基于仿生膜的功能化单纳米通道在分析化学中的应用.化学进展,2011,23,2103-2112.
    [173]Gu, L. Q.; Braha, O.; Conlan, S.; Cheley, S.; Bayley, H. Stochastic sensing of organic analytes by a pore-forming protein containing a molecular adapter. Nature,1999,398,686-690.
    [174]Gao, C. L.; Ding, S.; Tan, Q. L. Gu, L. Q. Method of creating a nanopore-terminated probe for single-molecule enantiomer discrimination. Anal. Chem.2009,81,80-86.
    [175]Ali, M.; Tahir, M. N.; Siwy, Z.; Neumann, R.; Tremel, W.; Ensinger, W. Hydrogen peroxide sensing with horseradish peroxidase-modified polymer single conical nanochannels. Anal. Chem., 2011,83,1673-1680.
    [176]Ali, M.; Nasir, S.; Nguyen, Q. H.; Sahoo, J. K.; Tahir, M. N.; Neumann, R.; Tremel, W. Ensinger, W. Ensinger metal ion affinity-based biomolecular recognition and conjugation inside synthetic polymer nanopores modified with iron-terpyridine complexes. J. Am. Chem. Soc.,2011, 133,17307-17314.
    [177]Ali, C. C.; Yameen, M. B.; Neumann, R.; Ensinger, W.; Knoll, W.; Azzaroni, O. Biosensing and supramolecular bioconjugation in single conical polymer nanochannels facile incorporation of biorecognition elements into nanoconfined geometries. J. Am. Chem. Soc.,2008,130, 16351-16357.
    [178]Hou, X.; Yang, F.; Li, L.; Song, Y.; Jiang, L.; Zhu, D. A Biomimetic potassium responsive nanochannel:G-quadruplex DNA conformational switching in a synthetic nanopore. J. Am. Chem. Soc.,2010,132,11736-11742.
    [179]Tian, Y; Hou, X.; Wen, L.; Guo, W.; Song, Y.; Sun, H.; Wang, Y.; Jiang, L.; Zhu, D. A biomimetic zinc activated ion channel. Chem. Commun.,2010,46,1682-1684.
    [180]Sun, Z. Y.; Han, C. P.; Wen, L.; Tian, D. M.; Li, H. B.; Jiang, L. pH gated glucose responsive biomimetic single nanochannels. Chem. Commun.,2012,48,3282-3284.
    [181]Ye, X. Y.; Kuklenyik, Z.; Needham, L. L.; Calafat, A. M. Automated on-line column-switching HPLC-MS/MS method with peak focusing for the determination of nine environmental phenols in urine. Anal. Chem.,2005,77,5407-5413.
    [182]Bagheri, H.; Mohammadi, A.; Salemi, A. On-line trace enrichment of phenolic compounds from water using a pyrrole-based polymer as the solid-phase extraction sorbent coupled with high-performance liquid chromatography. Anal. Chim. Acta,2004,513,445-449.
    [183]Faraji, H. β-Cyclodextrin-bonded silica particles as the solid-phase extraction medium for the determination of phenol compounds in water samples followed by gas chromatography with flame ionization and mass spectrometry detection. J. Chromatogr. A,2005,1087,283-288.
    [184]Bagheri, H.; Mohammadi, A. Pyrrole-based conductive polymer as the solid-phase extraction medium for the preconcentration of environmental pollutants in water samples followed by gas chromatography with flame ionization and mass spectrometry detection. J. Chromatogr. A,2003, 1015,23-30.
    [185]Ilyina, A. D.; Hernandez, J. L. M.; Benavides, J. E. M.; Lujan, B. H. L.; Bogatcheva, E. S.; Garcia, J. R.; Martinez, J. R. Determination of phenol using an enhanced chemiluminescent assay. Luminescence,2003,18,31-36.
    [186]Klarreieh E. Biologists join the dots. Nature,2001,413,450-452.
    [187]Bruchez, M. J.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P. Semiconductor nanocrystals as fluorescent biological labels. Science,1998,281,2013-2016.
    [188]Chen, C. Y.; Cheng, C. T.; Lai, C. W.; Wu, P. W.; Wu, K. C; Chou, P. T.; Choub, Y. H.; Chiu, H. T. Potassium ion recognition by 15-crown-5 functionalized CdSe/ZnS quantum dots in H2O. Chem. Commun.,2006,3,263-265.
    [189]Nelles, G.; Weisser, M.; Back, R.; Wohlfart, P.; Wenz, G.; Mittler-Neher, S. Controlled orientation of cyclodextrin derivatives immobilized on gold surfaces. J. Am. Chem. Soc.,1996, 118,5039-5046.
    [190]Fujita, K.-; Ueda, T.; Imoto, T.; Tabushi, I.; Toh, N.; Koga, T. Guest-induced conformational change of β-cyclodextrin capped with an environmentally sensitive chromophore. Bioorg. Chem., 1982,11,72-84.
    [191]Peng, Z. A.; Peng, X. G. Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor.J. Am. Chem. Soc.,2001,123,183-184.
    [192]Xie, H. Y.; Liang, J. G.; Liu, Y.; Zhang, Z. L.; Pang, D. W.; He, Z. K. Preparation and characterization of overcoated Ⅱ-Ⅵ quantum dots. J. Nanosci. Nanotechnol.,2005,5,880-882.
    [193]Kubin. R. F.; Fletcher, A. N. Fluorescence quantum yields of some rhodamine dyes. J. Luminescence,1982,27,455-462.
    [194]Kuno, M.; Lee, J. K.; Dabbousi, B. O.; Mikulec, F. V.; Bawendi, M. G. The band edge luminescence of surface modified CdSe nanocrystallites:Probing the luminescing state.J. Chem. Phys.,1997,106,9869-9882.
    [195]Lo Meo, P.; D'Anna, F.; Riela, S.; Gruttadauria, M.; Noto, R. Binding equilibria between β-cyclodextrin and p-nitro-aniline derivatives:the first systematic study in mixed water-methanol solvent systems. Tetrahedron,2009,65,2037-2042.
    [196]Landes, C.; Burda, C.; Braun, M.; El-Sayed, M. A. Photoluminescence of CdSe nanoparticles in the presence of a hole acceptor: n-Butylamine. J. Phys. Chem. B,2001,105,2981-2986.
    [197]Kalyuzhny, G.; Murray, R. W. Ligand effects on optical properties of CdSe nanocrystals. J. Phys. Chem. B,2005,109,7012-7021.
    [198]Munro, A. M.; Plante, I. J.; Ng, M. S.; Ginger D. S. Quantitative study of the effects of surface ligand concentration on CdSe nanocrystal photoluminescence. J. Phys. Chem. C,2007,111, 6220-6227.
    [199]Jursic, B. S.; Zdravkovski, Z; French, A. D.; Molecular modeling methodology of β-cyclodextrin inclusion complexes. J. Moi. Struct.,1996,366,113-117.
    [200]Inoue, Y.; Hakushi, T.; Liu, Y.; Tong, L. H.; Shen, B. J.; Jin, D. S. Thermodynamics of molecular recognition by cyclodextrins.1. Calorimetric titration of inclusion complexation of naphthalenesulfonates with α-, β-, and γ-cyclodextrins:enthalpy-entropy compensation. J. Am. Chem. Soc.,1993,115,475-481.
    [201]Armstrong, D. W.; Yang, X.; Han, S. M.; Menges, R. Direct liquid chromatographic separation of racemates with an a-Cyclodextrin bonded phase. Anal. Chem.,1987,59,2594-2596.
    [202]Yudiarto, A.; Dewi, E.; Kokugan, T. Separation of isomers by ultrafiltration using modified cyclodextrins. Sep. Purif. Technol.,2000,19,103-112.
    [203]Choi, S. H.; Ryu, E. N.; Ryoo, J. J.; Lee, K. P. FT-Raman spectra of o-, m-, and p-nitrophenol included in cyclodextrins. J. Incl. Phen. Macrocyclic Chem.,2001,40,271-274.
    [204]Rekharsky, M. V.; Inoue, Y. Complexation thermodynamics of cyclodextrins. Chem. Rev.,1998, 98,1875-1917.
    [205]Ye, X. Y.; Kuklenyik, Z.; Needham, L. L.; Calafat, A. M. Automated on-line column-switching HPLC-MS/MS method with peak focusing for the determination of nine environmental phenols in urine. Anal. Chem.,2005,77,5407-5413.
    [206]Faraji, H. (3-Cyclodextrin-bonded silica particles as the solid-phase extraction medium for the determination of phenol compounds in water samples followed by gas chromatography with flame ionization and mass spectrometry detection. J. Chromatogr. A,2005,1087,283-288.
    [207]Bruckner, H.; Westhauser, T. Chromatographic determination of L-and D-amino acids in plants. Amino Acids,2003,24,43-55.
    [208]Yokoyama, T.; Kan-No, N.; Ogata, T.; Kotaki, Y.; Sato, M. Nagahisa, E. Presence of free d-amino acids in microalgae. Biosci. Bitechnol. Biochem.,2003,67,388-392.
    [209]Erbe, T.; Bruckner, H. Studies on the optical isomerization of dietary amino acids in vinegar and aqueous acetic acid. Eur. Food Res. Technol.,2000,211,6-12.
    [210]Pu, L. Fluorescence of organic molecules in chiral recognition. Chem. Rev.,2004,104, 1687-1716.
    [211]Murray, C. B. Kagan, C. R. Bawendi, M. G. Synthesis and characterisation of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu. Rev. Mater. Sci.,2000,30, 545-610.
    [212]Leite, R. A.; Lino, A. C. S.; Takahata, Y. Inclusion compounds between α-, β-and γ-cyclodextrins:iron Ⅱ lactate:a theoretical and experimental study using diffusion coefficients and molecular mechanics. J. Mol. Struct.2003,644,49-53.
    [213]Gal, J. F.; Stone, M.; Lebrilla, C. B. Chiral recognition of non-natural α-amino acids original research article. Int. J. Mass Spectrometry,2003,222,259-267.
    [214]Dolezalova, M. Fanali, S. Enantiomeric separation of dihydroxyphenyl-alanine (DOPA), methyldihydroxyphenylalanine (MDOPA) and hydrazinomethyldihydroxyphenyl-alanine (CDOPA) by using capillary electrophoresis with sulfobutyl ether-β-cyclodextrin as a chiral selector. Electrophoresis,2000,21,3264-3269.
    [215]Fanali, S. Enantioselective determination by capillary electrophoresis with cyclodextrins as chiral selectors. J. Chromatogr. A,2000,875,89-122.
    [216]Liu, Y.; Li, L.; Li, X. Y.; Zhang, H. Y.; Wada, T.; Inoue, Y. Synthesis of phosphoryl-tethered β-CDs and their molecular and chiral recognition thermodynamics. J. Org. Chem.,2003,68, 3646-3657.
    [217]Liu, Y.; Yu, C. C.; Zhang, H. Y.; Zhao, Y. L. Enantioselective recognition of aliphatic amino acids by beta-cyclodextrin derivatives bearing aromatic organoselenium moieties on the primary or secondary side. Eur. J. Org. Chem.,2003,1415-1422.
    [218]Jiang, H.; Ju, H. X. Electrochemiluminescence sensors for scavengers of hydroxyl radical based on its annihilation in CdSe quantum dots film/peroxide system. Anal. Chem.,2007,79, 6690-6996.
    [219]Fan, H. Y.; Leve, E. W.; Scullin, C.; Gabaldon, J.; Talent, D.; Bunge, S.; Boyle, T.; Wilson, M. C.; Brinker, C. J. Surfactant-assisted synthesis of water-soluble and biocompatible semiconductor quantum dot micelles. Nano Lett.,2005,5,645-648.
    [220]Fan, H. Y.; Leve, E. W.; Scullin, C.; Gabaldon, J.; Talent, D.; Bunge, S.; Boyle, T.; Wilson, M. C.; Brinker, C. J. Surfactant-assisted synthesis of water-soluble and biocompatible semiconductor quantum dot micelles. Nano Lett.,2005,5,645-648.
    [221]Zhelev, Z.; Ohba, H.; Bakalova, R. Single quantum dot-micelles coated with silica shell as potentially non-cytotoxic fluorescentcll tracers. J. Am. Chem. Soc.,2006,128,6324-6325.
    [222]Brey, W. Physical Chemistry and Its Biological Applications; Academic Press:New York,1978.
    [223]Cramer, F.; Saenger, W.; Spatz, H. C. The fonnation of inclusion compounds of a-cyclodextrin in aqueous solutions. Thennodynamics and kinetics. J. Am. Chem. Soc.,1967,89,14-20.
    [224]Lee, J. A.; Mardyani, S.; Hung, A.; Rhee, A.; Klostranec, J.; Mu, Y.; Li, D.; Chan, W. C. W. Toward the accurate read-out of quantum dot barcodes:design of deconvolution algorithms and assessment of fluorescence signals in buffer. Adv. Mat.,2007,19,3113-3118.
    [225]Boldt, K.; Bruns, O. T.; Gaponik, N.; Eychmuller, A. Comparative examination of the stability of semiconductor quantum dots in various biochemical buffers. J. Phys. Chem. B,2006,110, 1959-1963.
    [226]Hiratani, T.; Konishi, K. Surface-cap-mediated host-guest chemistry of semiconductor CdS: Intercalative cation accumulation around a phenyl-capped CdS cluster and its notable effects on the cluster photoluminescence. Angew. Chem.,2004,116,6069-6072.
    [227]Herron, N.; Suna, A.; Wang, Y. Synthesis of≈10 A thiophenolate-capped CdS clusters. Observation of a sharp absorption peak. J. Chem. Soc. Dalton Trans.,1992,2329-2336.
    [228]Zhang, H.; Feng, J.; Feng, Zhu, W. F.; Liu, C. Q.; Xu, S. Q.; Xu, P. Shao, P.; Wu, D. S.; Yang, W. J.; Gu, J. H. Chronic toxicity of rare-earth elements on human beings Implications of blood biochemical indices in REE-high regions, South Jiangxi. Biol. Trace. Elem. Res.,2000,73,1-17.
    [229]Nakamura, Y.; Tsumura, Y.; Tonogai, Y.; Shibata, T.; Ito, Y. Differences in behavior among the chlorides of seven rare earth elements administered intravenously to rats. Fundam. Appl. Toxicol., 1997,37,106-116.
    [230]Liu, J. S.; Shen, Z. G.; Yang, W. D.; Che, J. Xie, L. M.; Lei, H. Y. Effect of long-term intake of rare earth in drinking water on trace elements in brains of mice. J. Rare Earth,2002,20, 562-564.
    [231]Hampel, C. A. The encyclopedia of chemical elements corporation. Reinhold, New York.1968.
    [232]江祖成,蔡汝秀,张华山.稀土元素分析化学.北京:科学出版社,2000.
    [233]Chen, Q. Q.; Lin, L.; Chen, H. M.; Yang, S. P.; Yang, L. Z.; Yu, X. B. Luminescence quenching of Ru(bpy)32+by nitrophenols in silicate thin films. J. Photochem. Photobiol. A-Chem., 2006,180,9-14.
    [234]Xia, W. S.; Schmehl, R. H.; Li, C. J. A fluorescent 18-crown-6 based luminescence sensor for lanthanide ions. Tetrahedron,2000,56,7045-7049.
    [235]Han, M. S.; Lytton-Jean, A. K. R.; Mirkin, C. A. A gold nanoparticle based approach for screening triplex DNA binders. J. Am. Chem. Soc.,2006,128,4954-4955.
    [236]Lee, J. S.; Ulmann, P. A.; Han, M. S.; Mirkin, C. A. A DNA-gold nanoparticle-based colorimetric competition assay for the detection of cysteine. Nano Lett.,2008,8,529-533.
    [237]Gonzalez, A. L.; Noguez, C.; Ortiz, G. P.; Rodriguez-Gattorno, G. R. Optical absorbance of colloidal suspensions on silver polyhedral nanoparticles. J. Phys. Chem. B,2005,109, 17512-17517.
    [238]Zheng, S. F.; Hu, J. S.; Zhong, L. S.; Wan, L. J.; Song, W. G. In situ one-step method for preparing carbon nanotubes and Pt composite catalysts and their performance for methanol oxidation. J. Phys. Chem. C,2007,111,11174-11179.
    [239]Losier, P.; Zaworotko, M. J. A noninterpenetrated molecular ladder with hydrophobic cavities. Angew, Chem. Int. Ed. Engl.,1996,35,2779-2782.
    [240]Yaghi, O. M.; Li, H. T-Shaped molecular building units in the porous structure of Ag(4,4'-bpy)·NO3. J. Am. Chem. Soc.,1996,118,295-296.
    [241]Bong, D. T.; Clark, T. D.; Granja, J. R. Ghadiri, M. R. Organische nanorohren durch selbstorganisation. Angew. Chem.,2001,113,1016-1041.
    [242]Raymo, F. M.; Stoddart, J. F. Interlocked macromolecules. Chem. Rev.,1999,99,1643-1663.
    [243]Zhao, Y. L.; Zhang,H. Y.; Guo, D. S.; Liu, Y. Nanoarchitectures constructed from resulting polypseudorotaxanes of the β-cyclodextrin/4,4'-dipyridine inclusion complex with Co2+and Zn2+ coordination centers. Chem. Mater.,2006,18,4423-4429.
    [244]Yang, Y. W.; Chen, Y. Liu, Y. Linear polypseudorotaxanes possessing many metal centers constructed from inclusion complexes of α-,β-, and γ-cyclodextrins with 4,4'-dipyridine. Inorg. Chem.,2006,45,3014-3022.
    [245]Malynych, S. Luzinov, I. Chumanov, G. Poly(vinyl pyridine) as a universal surface modifier for immobilization of nanoparticles. J. Phys. Chem. B,2002,106,1280-1285.
    [246]Renaud, F.; Piguet, C.; Bernardinelli, G.; Bunzli, J. C. Hopfgartner, G. In search for mononuclear helical lanthanide building blocks with predetermined properties:triple-stranded helical complexes with N,N,N',N'-tetraethylpyridine-2,6-dicarboxamide. Chem. Eur. J.,1997,3, 1646-1659.
    [247]Petoud, S.; Bunzli, J. C.; Renaud, F.; Piguet, C.; Schenk, K. J.; Hopfgartner, G. Stability and size-discriminating effects in mononuclear lanthanide triple-helical building blocks with tridentate aromatic ligands. Inorg. Chem.,1997,36,5750-5760.
    [248]Liu, Y.; Zhao, Y. L.; Zhang, H. Y.; Song, H. B. Polymeric rotaxane constructed from the inclusion complex of beta-cyclodextrin and 4,4'-dipyridine by coordination with Ni(II) ions. Angew. Chem. Int. Ed.,2003,42,3260-3263.
    [249]Li, Q.; Sun, B.; Kinloch, I. A.; Zhi, D.; Sirringhaus, H.; Windle, A. H. Enhanced self-assembly of pyridine-capped CdSe nanocrystals on individual single-walled carbon nanotubes. Chem. Mater.,2006,18,164-168.
    [250]Zheng, S. F.; Hu, J. S.; Zhong, L. S.; Wan, L. J.; Song, W. G. In situ one-step method for preparing carbon nanotubes and pt composite catalysts and their performance for methanol oxidation. J. Phys. Chem. C,2007,111,11174-11179.
    [251]Lin, M. Y. Lindsey, H. M. Weitz, D. A. Ball, R. C. Klein, R. Meakin, P. Universality in colloid aggregation. Nature,1989,339,360-361.
    [252]Giersig, M.; Pastoriza-Santosb, I.; Liz-Marzan, L. M. Evidence of an aggregative mechanism during the formation of sSilver nanowires in N,N-dimethylformamide. J. Mater. Chem.,2004,14, 607-610.
    [253]Wiley, B.; Herricks, T.; Sun, Y.; Xia, Y. Polyol synthesis of silver nanoparticles:Use of chloride and oxygen to promote the formation of single-crystal, truncated cubes and tetrahedrons. Nano Lett.,2004,4,1733-1739.
    [254]Yang, Y.; Shi, J.; Tanaka, T.; Nogami, M. Self-assembled silver nanochains for surface-enhanced Raman scattering. Langmuir,2007,23,12042-12047.
    [255]Hao, H.; Wang, G.; Sun, J. Enantioselective pharmacokinetics of ibuprofen and involved mechanisms. Drug Metab. Rev.,2005,37,215-234.
    [256]Brown, J. M.; Davies, S. G. Chemical asymmetric synthesis. Nature,1989,342,631-636.
    [257]Zhang, J.; Albelda, M. T.; Liu, Y.; Canary, J. W. Chiral nanotechnology. Chirality,2005,17, 404-420.
    [258]Breccia, P.; Gool, M. V.; Perez-Fernandez, R.; Martin-Santamaria, S.; Gago, F.; Prados, P.; Mendoza, J. Guanidinium receptors as enantioselective amino acid membrane carriers. J. Am. Chem. Soc.,2003,125,8270-8284.
    [259]Trojanowicz, M.; Kaniewska, M. Electrochemical chiral sensors and biosensors. Electroanalysis, 2009,21,229-238.
    [260]Meller, A.; Nivon, L.; Bmdin, E. Rapid naopore discrimination between single polynucleotide molecules. Proc. Natl. Acad. Sci.,2000,7,1079-10841.
    [261]Howorka, S.; Siwy, Z. in Handbook of single-molecule biophysics, ed. P. Hinterdorfer and A. M. Van Oijen, Springer, New York,2009.
    [262]Butler, T. Z.; Pavlenok, M.; Derrington, I. M.; Niederweis, M.; Gundlach, J. H.; Single-molecule DNA detection with an engineered MspA protein nanopore. Proc. Natl. Acad. Sci.,2008,105,20647-20652.
    [263]Howorka, S.; Nam, J.; Bayley, H.; Kahne, D. Stochastic detection of monovalent and bivalent protein-ligand interactions. Angew. Chem., Int. Ed.,2004,43,842-846.
    [264]Guan, X. Y.; Gu, L. Q.; Cheley, S.; Braha, O.; Bayley, H., Stochastic sensing of TNT with a genetically engineered pore. Chembiochem,2005,6,1875-1881.
    [265]Gu, L. Q.; Cheley, S.; Bayley, H. Capture of a single molecule in a nanocavity. Science,2001, 291,636-640.
    [266]Kang, X.; Cheley, S.; Guan, X.; Bayley, H. Stochastic detection of enantiomers. J. Am. Chem. Soc.,2006,128,10684-10685.
    [267]Iqbal, S. M.; Akin, D.; Bashir, R. Solid-state nanopore channels with DNA selectivity. Nat. Nanotech.2007,2,243-248.
    [268]Healy, K.; Schiedt, B.; Morrison, A. P. Solid-state nanopore technologies for nanopore-based DNA analysis. Nanomedicine,2007,2,875-897.
    [269]Ali, M.; Yameen, B.; Neumann, R.; Ensinger, W.; Knoll, W.; Azzaroni, O. Facile incorporation of biorecognition elements into nanoconfined geometries. J. Am. Chem. Soc.,2008,130, 16351-16357.
    [270]Ali, M.; Schiedt, B.; Neumann, R.; Ensinger, W. Biosensing with functionalized single asymmetric polymer nanochannels. Macromol. Biosci.,2010,10,28-32.
    [271]Heins, E. A.; Siwy, Z. S.; Baker, L. A.; Martin, C..R. Detecting single porphyrin molecules in a conically shaped synthetic nanopore. Nano Lett.,2005,5,1824-1829.
    [272]Wang, J.; Martin, C. R. A new drug-sensing paradigm based on ion-current rectification in a conically shaped nanopore. Nanomedicine,2008,3,13-20.
    [273]Busch, K. W.; Swawidoss, I. M.; Fakayode, S. O.; Busch, M. A. Determination of the enantiomeric composition of guest molecules by chemometric analysis of the UV-Visible spectra of cyclodextrin gues-host complexes. J. Am. Chem. Soc.,2003,125,1690-1691.
    [274]Ramirez, J.; He, F.; Lebrilla, C. B. Gas-phase chiral differentiation of amino acid guests in cyclodextrin hosts. J. Am. Chem. Soc.,1998,120,7387-7388.
    [275]Siwy, Z.; Dobrev, D.; Neumann, R.; Trautmann, C.; Voss, K. Electro-responsive asymmetric nanopores in polyimide with stable ion-current signal. Appl. Phys. A.,2003,76,781-785.
    [276]Ali, M.; Yameen, B.; Cervera, J.; Ramirez, P.; Neumann, R.; Ensinger, W.; Knoll, W.; Azzaroni, O. Layer-by-layer assembly of polyelectrolytes into ionic current rectifying solid-state nanopores: insights from theory and fxperiment. J. Am. Chem. Soc.,2010,132,8338-8348.
    [277]Daiguji, H.; Yang, P. D.; Majumdar, A. Ion transport in nanofluidic channels. Nano Lett.,2004, 4,137-142.
    [278]Staden, R.-I. S.; Holo, L. Enantioselective, potentiometric membrane electrodes based on cyclodextrins for the determination of 1-histidine. Sens. Actuat. B,2007,120,399-402.
    [279]D'Anna, F.; Riela, S.; Gruttadauria, M.; Lo Meo, P.; Noto, R. The binary pyrene/ heptakis-(6-amino-6-deoxy)-β-cyclodextrin complex:a suitable chiral discriminator. Spectrofluorimetric study of the effect of some a-amino acids and esters on the stability of the binary complex. Tetrahedron:Asymmetry,2002,13,1755-1760.
    [280]Campbell, M. K.; Farrell, S. O. Biochemistry,6th ed.; Brooks/Cole:Belmont, CA,2007,73-75.
    [281]Ermakova, L. E.; Sidorova, M. P.; Bezrukova, M. E. Filtration and electrokinetic characteristics of track membranes. Colloid J. Russ. Acad. Sci.,1998,60,705-712.
    [282]Ali, M; Bayer, V.; Schiedt, B.; Neumann, R.; Ensinger, W. N.; Ensinger W. Fabrication and functionalization of single asymmetric nanochannels for electrostatic/hydrophobic association of protein molecules. Nanotechnology,2008,19,485711-485719.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700