环糊精谷胱甘肽过氧化物酶模拟物的构建、催化机制及其生物学活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
谷胱甘肽过氧化物酶(GPX)属于硒蛋白家族,是生物体内重要的抗氧化酶之一,它可以消除体内的过氧化氢、脂质过氧化物等活性氧(ROS)物质,对于防治ROS引起的疾病,如动脉粥样硬化、辐射损伤、克山病和心血管疾病等有着巨大的药用价值。但长期以来,由于天然GPX存在不稳定(酶水解以及半衰期短)、来源有限、异源表达困难等诸多方面的缺陷,使得它的开发利用受到极大的限制。因而,对GPX的模拟以及开发治疗相关疾病的药物一直为国内外科学家所关注。
     我们从酶催化的本质(底物的识别、结合以及分子内催化)出发,利用超分子化学的原理与方法,选择主体分子——环糊精作为结合底物客体分子的骨架分子,构建了环糊精GPX模型体系。主要开展了以下工作:
     1.设计合成了三种具有GPX活性的2位碲桥联环糊精
     为了探究尺寸匹配效应对环糊精GPX模拟酶催化过程的重要性,我们选择以三种母体环糊精为模板,通过化学修饰在环糊精的次面引入催化基团碲构建了含碲环糊精GPX模型体系,并用三种不同结构的氢过氧化物,即过氧化氢(H_2O_2),叔丁基过氧化氢(t-BuOOH)和枯烯过氧化氢(CuOOH),考察含碲环糊精GPX模型体系的催化活性。研究结果发现:2位碲桥联γ-环糊精(2-Te-γ-CD)的催化活性最高,其催化GSH还原H_2O_2,t-BuOOH和CuOOH的活力分别是传统“小分子硒酶”Ebselen的80.5,333.3和118.3倍;含碲环糊精GPX模型体系对过氧化氢底物存在底物特异性,其中对CuOOH的结合最强,而对H_2O_2最差;通过考察三种模拟物催化GSH还原氢过氧化物反应的动力学,发现反应初速度对底物浓度的双倒数曲线为一组平行线,均表现出了米氏动力学特征,表明三种GPX模拟物以GSH为底物催化氢过氧化物的机理可能为乒乓机制,与天然酶的催化机理相似。
     2.研究了GPX模型2-Te-γ-CD的底物识别与催化机理
     首先利用UV-vis吸收光谱研究了GPX的2-Te-γ-CD与底物GSH的一个带有生色团的替代物——GSH-S-DNP相互作用的分子机制,结果表明2-Te-γ-CD能GSH-S-DNP形成化学计量比为1:1的复合物。其次,利用1H NMR技术研究了2-Te-γ-CD与底物GSH的相互作用机理。研究结果表明GSH与2-Te-γ-CD形成了化学计量比为1:2的复合物;(2-Te-γ-CD)_2/GSH的复合常数显示它们的复合能力属于中等强度,正是这些中等强度复合中间体的存在大大地提高了2-Te-γ-CD的GPX活性,这一研究揭示了2-Te-γ-CD拥有较高GPX活性的本质机理。再者,利用电喷雾质谱(ESI-MS)及串联质谱技术(ESI-MS/MS),在线监控了2-TeCD催化GSH还原H_2O_2的反应过程。通过将微型反应器与ESI离子源直接相连,实现了在极短时间内对反应体系中间体的快速筛选,利用该技术成功地捕获了2-TeCD催化反应过程中的三个关键性中间体,并对其结构进行了详细的分析。研究结果表明,2-TeCD是通过碲醇、次碲酸、碲硫化物来展现其GPX活性,与天然GPX的催化机制类似。
     3.构建了基于γ-环糊精的GPX模型体系
     利用化学手段合成了7种基于γ-环糊精的GPx模拟物,采用元素分析、红外光谱、13CNMR和1H NMR等对它们的结构进行了详细表征。GPX活性研究表明6,6’双碲桥联γ-环糊精(6-diTe-γ-CD)的GPX活性最高,其催化GSH还原H_2O_2,t-BuOOH和CuOOH的活力分别是Ebselen的147.3,1897.9和663.9倍。对6-diTe-γ-CD的稳态动力学研究表明,其催化机制为乒乓机制,与天然酶遵循相同的催化机理。催化过程中双底物GSH和ROOH对6-diTe-γ-CD有竞争性亲和结合作用。
     4.开展了环糊精GPX模拟物保护线粒体抗氧化损伤研究
     线粒体是体内ROS产生的主要场所,因而我们建立了线粒体的Fe2+/Vc诱导损伤体系来研究GPX模拟物的生物学效应。研究结果证明了受氧化损伤后的线粒体发生如下变化:膨胀度异常增大、脂质过氧化产物——丙二醛(MDA)大量生成、细胞色素氧化酶活性下降。环糊精GPX模拟酶能不同程度的降低MDA的生成、抑制线粒体的膨胀,抑制细胞色素氧化酶活性的下降。其中,6-diTe-γ-CD和2-Te-γ-CD保护线粒体免遭ROS损伤的能力强于其他GPX模拟酶及传统小分子硒酶“Ebselen”,因此有望成为治疗心血管疾病的新药前体化合物。
Glutathione peroxidase is an important mammalian selenoenzyme that function in cellularredox reactions and plays an essential role in the detoxification of hydroperoxides in vivo, therebyscavenging active oxygen, protecting biomembranes from oxidative stress. It is related to manydiseases and it is regarded as one of the most important antioxidant enzymes in living organisms.However, native GPx has some shortcomings, such as instability, antigenicity and pooravailability, which have limited its therapeutic use. In addition, it is extremely difficult tosynthesize selenium-containing proteins by traditional recombinant DNA methods; thereforeconsiderable effort has been spent to find other routes to compounds capable of imitating theproperties of GPx.
     On the basis of structure and catalytic mechanism understanding for GPX, we choosecyclodextrins as the scaffolds of enzyme models to establish the systems of GPX models based oncyclodextrin.
     1. Cyclodextrin-Derived Chalcogenides as Glutathione Peroxidase Mimics
     To elucidate the importance of the goodness of fit in complexes between substrates andglutathione peroxidise (GPX) mimics, we examined the decomposition of a variety of structurallydistinct hydroperoxides at the expense of glutathione (GSH) catalyzed by2,2’-ditellurobis(2-deoxy-γ-cyclodextrin)(2-Te-γ-CD) and by the corresponding derivatives ofβ-cyclodextrin (β-CD) and α-cyclodextrin. Hydroperoxides decomposing capacity of2-Te-γ-CDwas determined to be80.5,109.8,149.6U/μmol, respectively, with H_2O_2, t-BuOOH and CuOOH,which was almost80.5,333.3,118.3-fold than that of Ebselen. Furthermore, the catalytic constantand the combination with the best binding also exhibited the highest regioselectivity in thesubstrate decomposition. Saturation kinetics was observed and the catalytic reaction agreed with aping-pong mechanism, in analogy with natural GPX.
     2. Studies on the Molecular Recognition and Related Catalytic Mechanism of BridgedBis-cyclodextrins
     As the substitutes of glutathione (GSH), S-substituted dinitrophenyl glutathione(GSH-S-DNP) are used in the present study to explore the recognition mechanism between twoglutathione peroxidase (GPX) mimics and GSH. The effect of the addition of γ-CD, or2-Te-γ-CDto the phosphate buffer solutions of GSH-S-DNP has been fully investigated by means ofUltraviolet-visible (UV-vis) absorption. The stoichiometry of the inclusion complex wasdetermined to be of2:1host-to-guest. The value of stability constant Kcfor (2-Te-γ-CD)_2/GSH atroom temperature was calculated to be3.815×104M-2, which suggested that2-Te-γ-CD had amoderate ability to bind GSH. Importantly, the proposed mode of the (2-TeCD)2/GSH complexwas the possible important noncovalent interactions between enzymes and substrates ininfluencing catalysis and binding. Using electrospray ionization mass (and tandem) spectrometry(ESI-MS and ESI-MS/MS) spectrometric experiments, the decomposition of hydrogen peroxide atthe expense of GSH catalyzed by2-TeCD was monitored on-line. The key intermediates weresuccessfully intercepted and structurally characterized for the first time by coupling a microreactoron-line to the ESI ion source, which permitted the fast screening of intermediates directly fromsolution. The catalytic mechanism of2-TeCD catalysis has been elaborated based on massspectrometric data and exerted its peroxidase activity via tellurol, tellurenic acid, andtellurosulfide, in analogy with natural GPX.
     3. Gamma-Cyclodextrin-Derived Chalcogenides as Glutathione Peroxidase Mimics
     A series of novel glutathione peroxidase (GPx) mimics based on organochalcogencyclodextrin dimer were synthesized. Their GPx-like antioxidant activities were studied usingH_2O_2, t-BuOOH, and CuOOH as substrates and glutathione as thiol co-substrate. The resultsshowed that6A,6B-ditelluronic acid-A’,6B’-tellurium bridged γ-cyclodextrin (6-diTe-γ-CD) hadthe highest peroxidase activity, which was approximately670-fold higher than Ebselen, awell-known GPx mimic. Reduction of lipophilic CuOOH often proceeded much faster thanreduction of the more hydrophilic H_2O_2or t-BuOOH, which cannot bind into the hydrophobicinterior of the cyclodextrin. Saturation kinetics was observed and the catalytic reaction agreedwith a ping-pong mechanism, in analogy with natural GPX.
     4. Cyclodextrin Derivatives as Glutathione Peroxidase Mimics and Their Protection ofMitochondria against Oxidative Damage
     The biological activities were also evaluated for their capacity to protect mitochondriaagainst Ferrous sulfate/ascorbate-induced oxidative damage.6-diTe-γ-CD was the best inhibitor which significantly suppressed Ferrous sulfate/ascorbate-induced cytotoxicity as determined byswelling of mitochondria, lipid peroxidation and cytochrome c oxidase activity. Our data suggeststhat6-diTe-γ-CD and2-Te-γ-CD has potential pharmaceutical application in the treatment ofROS-mediated diseases.
引文
1沈家骢,孙俊奇.超分子科学研究进展[J].中国科学院院刊,2004,19:420-424
    2Ringsdorf H. Hermann Staudinger and the Future of Polymer Research Jubilees-BelovedOccasions for Cultural Piety. Angew. Chem., Int. Ed. Engl.,2004,43:1064-1076
    3Staudinger H. From Organic Chemistry to Macromolecules:A Scientific AutobiographyBased on My Original Papers, Wiley-Interscience: New York,1970
    4童林荟.环糊精化学——基础与应用[M].北京:科学出版社,2001
    5Pauling L. Molecular Architecture and Biological Reaction. Chem. Eng. News,1946,24:1375–1377
    6Koshland E. Application of a Theory of Enzyme Specificity to Protein Synthesis. Proc NatlAcad Sci USA.,1958,44:98–104
    7Cech T.R., Bass B.L. Biological Catalysis by RNA. Ann. Rev. Biochem.,1986,55:599–629
    8Lemieux R.U. How water provides the impetus for molecular recognition in aqueous solution.Acc. Chem. Res.,1996,29:373–380
    9Dunitz J.D. The Entropic Cost of Bound Water in Crystal and Biomolecules. Science,1994,264:670–671
    10Duga H., Penney C. Bioorganic Chemistry. New York:Springer-Verlag,1981:254
    11刘育,尤长城,张横益.超分子化学-合成受体的分子识别与组装[M].天津:南开大学出版社,2001
    12Aston K., Rath N., Naik A. et al. Computer-Aided Design (CAD) of Mn(II)Complexes:Superoxide Dismutase Mimetics with Catalytic Activity Exceeding the Native Enzyme.Inorg. Chem.,2001,40:1779-1789
    13Salvemini D., Wang Z.-Q., Zweier J. et al. A Nonpeptidyl Mimic of Superoxide Dismutasewith Therapeutic Activity in Rats. Science,1999,286:304-306
    14金征宇.环糊精化学——制备与应用[M].北京:化学工业出版社,2009
    15郭洪声.分子印迹聚合物的合成、识别机理及分析应用研究[D]:[博士学位论文].天津:南开大学,2001
    16董泽元.谷胱甘肽过氧化物酶的底物识别及催化机理研究[D]:[博士学位论文].长春:吉林大学,2006
    17黄鑫.谷胱甘肽过氧化物纳米酶模型的构建[D]:[博士学位论文].长春:吉林大学,2009.
    18Breslow R., Dong S.D. Biomimetic Reactions Catalyzed by Cyclodextrins and TheirDerivatives. Chem. Rev.,1998,98
    19Fenger T.H., Bjerre J., Bols M. Cyclodextrin aldehydes are oxidase mimics. Chembiochem,2009,10:2494-2503
    20Dsouza V.T. Modification of Cyclodextrins for Use as Artificial Enzymes. Supramol. Chem.,2003,15:221–229
    21Breslow R., Overman L.E. An 'Artificial Enzyme' Combining a Metal Catalytic Group and aHydrophobic Binding Cavity. J. Am. Chem. Soc.,1970,92:1075
    22Wulff G. Enzyme-like catalysis by molecularly imprinted polymers. Chem Rev,2002,102:1-27
    23Selergren B., Karmalkar R.N., Shea K.J. Imprinted Polymers Exhibiting EnantioselectiveEsterase Activity II. J.Org.Chem.,2000,65:4009–4027
    24Matsui J., Nicholls I.A., Karube I., et al. Carbon-Carbon Bond Formation Using SubstrateSelective Catalytic Polymers Prepared by Molecular Imprinting:an Artificial Class II Aldolase.J.Org.Chem.,1996,61:5414–5417
    25Robinson D.K., Mosbach K. Molecular Imprinting of a Transition State Analogue Leads to aPolymer Exhibiting Esterolytic Activity. J.Chem.Soc.Chem.Commun.,1989:969–970
    26Ohkubo K., Urata Y., Hirota S., et al. Homogeneous and Heterogneous Esterolytic Catalysisof Imidazole-Containing Polymers Prepared by Molecular Imprinting of a Transition StateAnalogue. J.Mol.Catal.,1994,87:21–24
    27Wulff G., Gross T., Schonfeld R. Enzyme Models Based on Molecularly Imprinting Polymerswith Strong Esterase Activity. Angew.Chem.Int.Ed.Engl.,1997,36:1962–1964
    28Wulff G.Enzyme-like Catalysis by Molecularly Imprinted Polymers. Chem.Rev.,2002,102:1–28
    29Katz A., Davis M.E. Investigations into the Mechanisms of Molecular Recognition withImprinted Polymers. Macromolecules1999,32:4113–4121
    30Alexander C., Andersson H.S., Andersson L.I., et al. Molecular imprinting science andtechnology: a survey of the literature for the years up to and including2003. J Mol Recognit,2006,19:106-180
    31Beach J.V., Shea K.J. Designed Catalysts.A Synthetic Network Polymer That Catalyzes theDehydrofluorination of4-Fluoro-4-(p-nitrophenyl)butan-2-one. J.Am.Chem.Soc.,1994,116:379-380
    32Matsui J., Nicholls I.A., Karube I., et al. Carbon-Carbon Bond Formation Using SubstrateSelective Catalytic Polymers Prepared by Molecular Imprinting:an Artificial Class II Aldolase.J.Org.Chem.,1996,61:5414-5417
    33Ohkubo K., Urata Y., Hirota S., et al. Homogeneous and Heterogneous Esterolytic Catalysisof Imidazole-Containing Polymers Prepared by Molecular Imprinting of a Transition StateAnalogue. J.Mol.Catal.,1994,87:21-24
    34Toorisaka E., Yoshida M., Veza K., et al. Artificial Biocatalyst Prepared by the SurfaceMolecular Imprinting Technique. Chem.Lett.,1999:387-388
    35Wulff G., Gross T., Schonfeld R. Enzyme Models Based on Molecularly Imprinting Polymerswith Strong Esterase Activity. Angew.Chem.,Int.Ed.Engl.,1997,36:1962-1964
    36Strikovsky A.G., Kasper D., Grun M., et al. Catalytic Molecularly Imprinted Polymers UsingConventional Bulk Polymerization or Suspension Polymerization:Selective Hydrolysis ofDiphenyl Carbonate and Diphenyl Carbamate. J.Am.Chem.Soc.,2000,122:6295-6296
    37Sellergren B., Shea K.J. Imprinted Polymers Exhibiting Enantioselective Esterase ActivityI.Tetrahedron:Asym.,1994,5:1403-1406
    38Selergren B., Karmalkar R.N., Shea K.J. Imprinted Polymers Exhibiting EnantioselectiveEsterase Activity II. J.Org.Chem.,2000,65:4009-4027
    39Liu X.-C., Mosbach K. Studies towards a Tailor-Made Catalyst for the Diels-Alder ReactionUsing the Technique of Molecular Imprinting. Macromol.Chem.Rapid Commun.,1997,18:609-615
    40Liu X.-C., Mosbach K. Catalysis of Benzisoxazole Isomerization by Molecularly ImprintedPolymers. Macromol.Rapid Commun.,1998,19:671
    41Polborn K., Severin K. Molecular Imprinting with an Organometallic Transition StateAnalogue. J.Chem.Commun.,1999,24:2481-2482
    42Santora B.P., Larsen A.O., Gagne M.R. Molecularly Imprinted Ti-Lewis AcidCatalysts:Application to the Diels-Alder Reaction. Organometallics,1998,17:3138-3140
    43Toorisaka E., Uezu K., Goto M., et al. A molecularly imprinted polymer that showsenzymatic activity. Biochem Eng J,2003,14:85-91
    44Suh J., Hah S.S. Organic Artificial Proteinase with Active Site Comprising Three SalicylateResidues. J.Am.Chem.Soc.,1998,120:10088-10092
    45Matsui J., Nicholls I.A., Karube I., et al. Carbon-carbon bond formation using substrateselective catalytic polymers prepared by molecular imprinting: An artificial class II aldolase. J OrgChem,1996,61:5414-5417
    46Fréchet J.M.J. Functional Polymers and Dendrimers:Reactivity, Molecular Architecture,andInterfacial Eenergy. Science,1994,263:1710-1715
    47Zeng F.W., Zimmerman S.C. Dendrimers in Supramolecular Chemistry: From MolecularRecognition to Self-Assembly. Chem.Rev.,1997,97:1681-1712
    48Astruc D., Chardac F. Dendritic Catalysts and Dendrimers in Catalysis. Chem.Rev.,2001,101:2991-3023
    49van Heerbeek R., Kamer P.C.J., van Leeuwen P.W.N.M., et al. Dendrimers as Support forRecoverable Catalysts and Reagents. Chem.Rev.,2002,102:3717-3756
    50Brunner H., Altmann S. Optically Active Nitrogen Ligands with DendrimericStructure.Chem.Ber.,1994,127:2285-2296
    51Knapen J.W.J., van der Made A.W., de Wilde J.C., et al. Homogeneous Catalysts Based onSilane Dendrimers Functionalized with Arylnickel(II) Complexes. Nature,1994,372:659-663
    52Brunner H. Dendrizymes:Expanded Ligands for Enantioselective Catalysis.J.Organomet.Chem.,1995,500:39-46
    53Breinbauer R., Jacobsen E.N. Cooperative Asymmetric Catalysis with Dendrimeric[Co(salen)]Complexes. Angew.Chem.,Int.Ed.Engl.,2000,39:3604-3607
    54Manea F., Houillon F.B., Pasquato L., et al. Nanozymes:Gold-Nanoparticle-BasedTransphosphorylation Catalysts. Angew.Chem.Int.Ed.,2004,43:6165–6169
    55Li X.Q., Qi Z.H., Liang K., et al. An Artificial Supramolecular Nanozyme Basedonβ-Cyclodextrin-modified Gold Nanoparticles. Catalysis Letters2008,124:413–417
    56Klyachko N.L., Manickam D.S., Brynskikh A.M., et al. Cross-linked antioxidant nanozymesfor improved delivery to CNSNanomed-Nanotechnol,2012,8:119-129
    57Stevenson J.D., Thomas N.R. Catalytic Antibodies and Other Biomimetic Catalysts.Nat.Prod.Rep.,2000,17:535–577
    58Reetz M.T., Zonta A., Shimossek K., et al. Creation of Enantioselective Biocatalysts forOrganic Chemistry by in Vitro Evolution. Angew.Chem.,Int.Ed.Engl.,1997,36:2830-2831
    59Bornscheuer U.T., Altenbuchner J., Meyer H.H. Directed Evolution of an Esterase:Screeningof Enzyme Libraries Based on pH-Indicators and a Growth Assay. Bioorg.Med.Chem.,1999,7:2169-2173
    60Li Q.-S., Schwaneberg U., Fischer P., et al. Directed Evolution of the Fatty-Acid HydroxylaseP450BM-3into an Indole-Hydroxylating Catalyst. Chem.Eur.J.,2000,6:1531-1535
    61Joo H., Aniswara A., Lin Z.L., et al. A High-Throughput Digital Imaging Screen for theDiscovery and Directed Evolution of Oxygenases. Chemistry&Biology,1999,6:699-706
    62Joo H., Lin Z., Arnold F.H. Laboratory Evolution of Peroxide-Mediated Cytochrome P450Hydroxylation. Nature,1999,399:670-673
    63Schneider W.P., Nichols B.P., Yanofsky C. Procedure for Production of Hybrid Genes andProteins and Its Use in Assessing Significance of Amino Acid Differences in HomologousTryptophan Synthetase Alpha Polypeptides. Proc.Natl.Acad.Sci.U.S.A.,1981,78:2169-2173
    64Corey M.J., Corey E. On the Failure of de novo-Designed Peptides as Biocatalysts.Proc.Natl.Acad.Sci.U.S.A.,1996,93:11428-11434
    65Mas M.T., Chen C.Y., Hitzeman R.A., et al. Active Human-Yeast Chimeric PhosphoglycerateKinases Engineered by Domain Interchange. Science,1986,233:788-790
    66Mills G.C. Hemoglobin catabolism.I.Glutathione peroxidase,an Erythrocyte Enzyme whichProtects Hemoglobinfrom Oxidase Breakdown. J.Biol.Chem.,1957,229:189–197
    67Brigelius-Flohe R. Tissue-specific functions of individual glutathione peroxidases. FreeRadic Biol Med.,1999,27:951-965
    68Takebe G., Yarimizu J., Saito Y., et al. A Comparative Study on the Hydroperoxide and ThiolSpecificity of the Glutathione Peroxidase Family and Selenoprotein P. J.Bio.Chem.,2002,277:41254-41258
    69Chu F.F., Doroshow J.H., Esworthy R.S. Expression, Characterization, and TissueDistribution of a New Celluar Selenium-Dependent Glutathione Peroxidase, GSH-PX-GI.J.Biol.Chem.,1993,268:2571-2576
    70Mork H., lex B., Scheurlen M., et al. Expression pattern of gastrointestinalselenoproteins-Targets for selenium supplementation. Nutrition and Cancer.,1998,32:64-70
    71Yamamoto Y., Nagata Y., Niki E. Plasma Glutathione Peroxidase ReducesPhosphatidylcholine Hydroperoxide. Biochem.Biophys.Res.Commun.,1993,193:133-138
    72Ciappellano S., Testolin G., Porrini M. Effects of Durum Wheat Dietary Selenium onGlutathione Peroxidase Activityand Se Content in Long-Term-Fed Rats. Ann.Nutr.Metab.,1989,33:22-30
    73Bellomo G., Maggi E., Palladini G. Endogenous and Exogenous Antioxidants and theGeneration of Antigenic Epitopes in Oxidatively-Modified LDL. Biofactor,1997,6:91-98
    74Brigelius-Flohé R., Friedrichs B., Maurer S., et al. Interleukin-l-Induced Nuclear FactorKappaB Activation is Inhibited by Overexpression of Phospholipid Hydroperoxidase GlutathionePeroxidase in a Human Endothelial Cell Line. Biochem.J.,1997,328:199-203
    75Haraguchi C., Mabuchi T., Hirata S.H., et al. Spatiotemporal Changes of Levels of aMoonlighting Protein, Phospholipids Hydroperoxide Glutathione Peroxidase,in SubcellularCompartments during Spermatogenesis in the Rat Testis. Biol Reprod.,2003,69:885-895
    76Ursini F., Heim S., Kiess M., et al. Dual Function of the Selenoprotein PHGPx during SpermMaturation. Science,1999,285:1393–1396
    77Imai H., Suzuki K., Ishizaka K., et al. Failure of the Expression of PhospholipidHydroperoxide Glutathione Peroxidase in the Spermatozoa of Human Infertile Males. BiolReprod.,2001,64:674-683
    78Vaisberg C.N., Jelezarsky L.V., Dishlianova B., et al. Activity, Substrate Detection andImmunolocalization of Glutathione Peroxidase(GPx) in Bovine Reproductive Organs and Semen.Theriogenology,2005,64:416-428
    79Zini A., Schlegel P.N. Expression of Glutathione Peroxidases in the Adult Male RatReproductive Tract. Fertil Steril,1997,68:689-695
    80刘俊秋,罗贵民,沈家骢.仿硒酶研究进展[J].化学进展,2007,19:1928-1938
    81Epp O., Ladenstein R., Wendel A. The Refined Structure of the Selenoenzyme GlutathionePeroxidase at0.2-nm Resolution. Eur.J.Biochem.,1983,133:51-69
    82Delton-Vandenbroucke I, Vericel E, Januel C., et al. Dual regulation of glutathione peroxidaseby docosahexaenoic acid in endothelial cells depending on concentration and vascular bed origin.Free radical biology&medicine,2001,30(8):895-904
    83Prabhakar R., Musaev D.G., Khavrutskii I.V., et al. Does the Active Site of MammalianGlutathione Peroxidase (GPx) Containing Water Molecules? An ONIOM Study. J.Phys.Chem.B,2004,108:12643-12645
    84Prabhakar R., Vreven T., Morokuma K., et al. Elucidation of the Mechanism of SelenoproteinGlutathione Peroxidase (GPx)-Catalyzed Hydrogen Peroxide Reduction by Two GlutathioneMolecules:a Density Functional Study. Biochemistry-Us,2005,44:11864-11871
    85Ren B., Huang W., kesson B., et al. The Crystal Structure of Seleno-Glutathione Peroxidasefrom Human Plasma at2.9Resolution. J.Mol.Biol.,1997,268:869-885
    86Flohé L., Loschen G., Günzler W.A., et al. Glutathione Peroxidase, V the Kinetic Mechanism.Hoppe-Seyler's Z Physiol.Chem.,1972,353:987–999
    87Ursini F., Maiorini M., Gregolin C. Purification from Pig Liver of a Protein Which ProtectsLiposomes and Biomembranes from Peroxidative Degradation and Exhibits GlutathionePeroxidase Activity on Phosphatidylcholine Hydroperoxides. Biochem.Biophys.Acta.,1982,710:197-211
    88Ganther H.E., Kraus R.J. Oxidation States of Glutathione Peroxidase.Methods Enzymol.,1984,107:192-193
    89Flohé L. Glutathione Peroxidase. Basic.Life.Sci.,1988,49:663-668
    90Dalziel K. Initial Steady State Velocities in the Evaluation of Enzyme-Coenzyme-SubstrateReaction Mechanisms. Acta Chem.Scand.,1957,11:1706-1723
    91Dalziel K. The Interpretation of Kinetic Data for Enzyme-Catalysed Reactions InvolvingThree Substrates. Biochem.J.,1969,114:547-556
    92Segel I.H. Enzyme Kinetics. John Wiley and Sons: New York,1975:227
    93Carsol M.A., Pouliquen-Sonaglia I., Lesgards G., et al. A New Kinetic Model for the Mode ofSction of Soluble and Membrane-Immobilized Glutathione Peroxidase from BovineErythrocytes--Effects of Selenium. Eur.J.Biochem.,1997,247:248–255
    94Cleland W.W. The Kinetics of Enzyme-Catalyzed Reactions with Two or More Substrates orProducts (Nomenclature and Rate Equation). Biochim.Biophys.Acta.,1963,67:104-137
    95Cleland W.W. The Kinetics of Enzyme-Catalyzed Reactions with Two or More Substrates orProducts (Prediction of Initial Velocity and Inhibition Patterns by Inspection).Biochim.Biophys.Acta.,1963,67:188-196
    96Cleland W.W. The Kinetics of Enzyme-Catalyzed Reactions with Two or More Substrates orProducts (Inhibition:Nomenclature and Theory). Biochim. Biophys.Acta.,1963,67:173-187
    97Mugesh G., du Mont W.W., Sies H. Chemistry of biologically important syntheticorganoselenium compounds. Chem Rev,2001,101:2125-2179
    98Bhabak K.P., Mugesh G. Functional Mimics of Glutathione Peroxidase: Bioinspired SyntheticAntioxidants. Accounts Chem Res,2010,43:1408-1419
    99Huang X., Liu X.M., Luo Q.A., et al. Artificial selenoenzymes: Designed and redesigned.Chem Soc Rev,2011,40:1171-1184
    100Luo G.M., Ren X.J., Liu J.Q., et al. Towards more efficient glutathione peroxidase mimics:Substrate recognition and catalytic group assembly. Curr. Med. Chem.,2003,10:1151-1183
    101Parnham M.J., Leyck S., Kuhl P., et al. Ebselen:a new approach to the inhibition ofperoxide-dependent inflammation. Int.J.Tissue React.,1987,9:45-50.
    102Schewe T. Molecular actions of Ebselen-an anti-inflammatory antioxidant. Gen. Pharmacol.,1995,26:1153-1169
    103Reich H.J., Jaspeise C.P. Organoselenium Chemistry. Redox Chemistry of SelenocysteineModel Systems. J.Am.Chem.Soc.,1987,109:5549-5551
    104Sies H. Ebselen, a selenoorganic compound as glutathione peroxidase mimic. FreeRadic.Biol.Med.,1993,14:313-323
    105Breslow R., Huang Y., Zhang X., et al. An artificial cytochrome P450that hydroxylatesunactivated carbons with regio-and stereoselectivity and useful catalytic turnovers.Proc.Natl.Acad.Sci. USA.,1997,94:11156-11158
    106Fischer H., Dereu N. Mechanism of the catalytic reduction of hydroperoxides by Ebselen:aselenium77NMR study. Bull.Soc. Chim.Belg.,1987,96:757-768
    107Maiorino M., Roveri A., Ursini F. Antioxidant effect of Ebselen (PZ51): peroxidase mimeticactivity on phospholipid and cholesterol hydroperoxides vs free radical scavenger activity.Arch.Biochem. Biophys.,1992,295:404-409
    108Wilson S.R., Zucker P.A., Huang R.R.C., et al. Development of synthetic compounds withglutathione peroxidase activity. J.Am. Chem.Soc.,1989,111:5936-5939
    109Jacquemin P.V., Christiaens L.E., Renson M.J. Synthesis of2H,3-4-Dihydro-1,2-benzoselenazin-3-one and derivatives: A new heterocyclic ring system.Tetrahedron Lett,1992,33:3863-3866
    110Mugesh G.,Panda A.,Singh H.B.et al.Diferrocenyl diselenides: excellent thiol peroxidase-likeantioxidantsChem Commun,1998:2227-2228
    111du Mont W.W., Mugesh G., Wismach C., et al. Reactions of organoselenenyl iodides withthiouracil drugs: An enzyme mimetic study on the inhibition of iodothyronine deiodinase. AngewChem Int Edit,2001,40:2486
    112Mugesh G., du Mont W.W. Structure-activity correlation between natural glutathioneperoxidase (GPx) and mimics: A biomimetic concept for the design and synthesis of more efficientGPx mimics. Chem-Eur J,2001,7:1365-1370
    113Mugesh G., Panda A., Singh H.B., et al. Glutathione peroxidase-like antioxidant activity ofdiaryl diselenides: A mechanistic study. J Am Chem Soc,2001,123:839-850
    114Mugesh G., du Mont W.W., Wismach C., et al. Biomimetic studies on iodothyroninedeiodinase intermediates: Modeling the reduction of selenenyl iodide by thiols. Chembiochem,2002,3:440-447
    115Mugesh G., Panda A., Kumar S., et al. Intramolecularly coordinated diorganyl ditellurides:Thiol peroxidase-like antioxidants. Organometallics,2002,21:884-892
    116Roy G., Nethaji M., Mugesh G. Biomimetic studies on anti-thyroid drugs and thyroidhormone synthesis. J Am Chem Soc,2004,126:2712-2713
    117Wismach C., du Mont W.W., Jones P.G., et al. Selenol nitrosation and Se-nitrososelenolhomolysis: A reaction path with possible biochemical implications. Angew Chem Int Edit,2004,43:3970-3974
    118Kalai T., Mugesh G., Roy G., et al. Combining benzo[d]isoselenazol-3-ones with stericallyhindered alicyclic amines and nitroxides: enhanced activity as glutathione peroxidase mimics. OrgBiomol Chem,2005,3:3564-3569
    119Mishra B., Priyadarsini K.I., Mohan H., et al. Free radical scavenging and peroxidase activityof ebselen derivatives. Free Radical Bio Med,2005,39:S14-S14
    120Phadnis P.P., Mugesh G. Internally stabilized selenocysteine derivatives: syntheses, Se77NMRand biomimetic studies. Org Biomol Chem,2005,3:2476-2481
    121Roy G., Mugesh G. Anti-thyroid drugs and thyroid hormone synthesis: Effect of methimazolederivatives on peroxidase-catalyzed reactions. J Am Chem Soc,2005,127:15207-15217
    122Roy G., Sarma B.K., Phadnis P.P., et al. Selenium-containing enzymes in mammals: Chemicalperspectives. J Chem Sci,2005,117:287-303
    123Sarma B.K., Mugesh G. Glutathione peroxidase (GPx)-like antioxidant activity of theorganoselenium drug ebselen: Unexpected complications with thiol exchange reactions. J AmChem Soc,2005,127:11477-11485
    124Mishra B., Priyadarsini K.I., Mohan H., et al. Horseradish peroxidase inhibition andantioxidant activity of ebselen and related organoselenium compounds. Bioorg Med Chem Lett,2006,16:5334-5338
    125Sarma B.K., Mugesh G. Biomimetic studies on selenoenzymes: Modeling the role ofproximal histidines in thioredoxin reductases. Inorg Chem,2006,45:5307-5314
    126Bhabak K.P., Mugesh G. Synthesis, characterization, and antioxidant activity of some ebselenanalogues. Chem-Eur J,2007,13:4594-4601
    127Bhabak K.P., Mugesh G.A Simple and Efficient Strategy To Enhance the AntioxidantActivities of Amino-Substituted Glutathione Peroxidase Mimics. Chem-Eur J,2008,14:8640-8651.
    128Engman L., Stern D., Cotgrware I.A. Thiol Peroxidase Activity of Diaryl Ditellurides asDetermined by a1H NMR Method. J.Am. Chem.Soc.,1992,114:9737-9743.
    129McNaughton M., Engman L., Birmingham A., et al. Cyclodextrin-derived diorganyltellurides as glutathione peroxidase mimics and inhibitors of thioredoxin reductase and cancer cellgrowth. J. Med. Chem.,2004,47:233-239
    130Engman L.,Stern D.,Pelcman M.et al.Thiol Peroxidase Activity of DiorganylTellurides.J.Org.Chem.,1994,59:1973-1979
    131Vessman K., Ekstrom M., Berglund M., et al. Catalytic Antioxidant Activity of DiarylTellurides in a Two-Phase Lipid Peroxidation Model. J.Org.Chem.,1995,60:4461-4467
    132Kanda T., Engman L., Cotgreave I.A., et al. Novel Water-Soluble Diorganyl Tellurides withThiol Peroxidase and Antioxidant Activity. J.Org. Chem.,1999,64:8161-8169
    133McNaughton M., Engman L., Birmingham A., et al. Cyclodextrin-Derived DiorganylTellurides as Glutathione Peroxidase Mimics and Inhibitors of Thioredoxin Reductase and CancerCell Growth. J.Med. Chem.,2004,47:233-239
    134Ahsan K., Drake M.D., Higgs D.E., et al. Dendrimeric Organotelluride Catalysts for theActivation of Hydrogen Peroxide. Improved Catalytic Activity through Statistical andStereoelectronic Effects. Organometallics,2003,22:2883-2890
    135Liu Q.J., Gao S.J., Luo G.M., et al. Artificial Imitation of Glutathione Peroxidase with6-Selenium-Bridged beta-Cyclodextrin. Biochem.Biophys.Res. Commun.,1998,247:397-400
    136Liu J.Q., Luo G.M., Ren X.J., et al. A bis-cyclodextrin diselenide with glutathioneperoxidase-like activity. Biochimica et Biophysica Acta,2000,1481:222-228
    137Ren X.J., Liu J.Q., Luo G.M., et al. A Novel Selenocystine-β-Cyclodextrin Conjugate ThatActs as a Glutathione Peroxidase Mimic. Bioconjugate Chem.,2000,11:682-687
    138Ren X.J., Xue Y., Zhang K., et al. A novel dicyclodextrinyl ditelluride compound withantioxidant activity. FEBS Lett,2001,507:377-380
    139Dong Z.Y., Liu J.Q., Mao S.Z., et al. A glutathione peroxidase mimic6,6'-ditellurobis(6-deoxy-beta-cyclodextrin) with high substrate specificity. J. Incl. Phenom. Macro.,2006,56:179-182
    140Lv S.W., Wang X.G., Mu Y., et al. A novel dicyclodextrinyl diselenide compound withglutathione peroxidase activity. FEBS J,2007,274:3846-3854
    141马雪艳,吴一卉,丁兰等.三种含硒环糊精的SeGPX活力及对HO的清除作用[J].高等学校化学学报,1999,20:1163-1167
    142Liu Y., Li B., Li L., et al. Synthesis of Organoselenium-Modified β-Cyclodextrins Possessinga1,2-Benzisoselenazol-3(2H)-one Moiety and Their Enzyme-Mimic Study. Helv.Chim.Acta,2002,85:9-18
    143Zhang X., Xu H.P., Dong Z.Y., et al. Highly Efficient Dendrimer-Based Mimic ofGlutathione Peroxidase. J.Am.Chem.Soc.,2004,126:10556–10557
    144Xu H.P., Gao J., Wang Y.P., et al. Hyperbranched Polyselenides as Glutathione PeroxidaseMimics. Chem.Commun.,2006:796–798
    145Bell I.M., Hilvert D. Peroxide Dependence of the Semisynthetic Enzyme Selenosubtilisin.Biochemistry-Us,1993,32:13969–13973
    146Mao S.Z., Dong Z.Y., Liu J.Q., et al. Semisynthetic Tellurosubtilisin with GlutathionePeroxidase Activity. J.Am.Chem.Soc.,2005,127:11588–11589
    147Liu J., Luo G.M., Gao S., et al. Generation of Glutathione Peroxidase-Like Mimic by UsingBioimprinting and Chemical Mutation. Chem.Commun.,1999:199–200
    148Liu L., Mao S.Z., Liu X.M., et al. Functional Mimicry of the Active Site of GlutathionePeroxidase by Glutathione Imprinted Selenium-Containing Protein. Biomacromolecules,2008,9:363–368
    149Ding L., Liu Z., Zhu Z.Q., et al. Biochemical Characterization of Selenium-ContainingCatalytic Antibody as a Cytosolic Glutathione Peroxidase mimic. Biochem.J.,1998,332:251–255
    150Su D., You D.L., Ren X.J., et al. Kinetics Study of a Selenium-Containing scFv CatalyticAntibody That Mimics Glutathione Peroxidase. Biochem.Biophys.Res.Commun.,2001,285:702–707
    151Ge Y., Qi Z., Wang Y., et al. Engineered Selenium-Containing Glutaredoxin Displays StrongGlutathione Peroxidase Activity Rivaling Natural Enzyme. Int J Biochem Cell Biol.,2009,41:900–906
    152Liu X.M., Silks L., Liu C.P., et al. Incorporation of Tellurocysteine into GlutathioneTransferase Generates High Glutathione Peroxidase Efficiency. Angew.Chem.Int.Ed.,2009,48:2020–2023
    1Ursini F., Maiorino M., Brigelius-Flohé R., et al. Diversity of glutathione peroxidases. MethodsEnzymol.,1995,252:38-48
    2Flohe L. In Free Radicals in Biology. New York:Academic Press,1982:223-225
    3Doroshow J.H. Glutathione peroxidase and oxidative stress. Toxicology Letters,1995,82/83:395-398
    4Salvemini D., Wang Z.Q., Zweier J.L., et al. A nonpeptidyl mimic of superoxide dismutase withtherapeutic activity in rats. Science,1999,286:304-306
    5Baik S.C., Youn H.S., Chung M.H., et al. Increased oxidative DNA damage in Helicobacterpylori-infected human gastric mucosa. Cancer Res.,1996,56:1279-1282
    6Arai M., Imai H., Koumura T., et al. Mitochondrial phospholipid hydroperoxide glutathioneperoxidase plays a major role in preventing oxidative injury to cells. Biol Chem.,1999,274:4924-4933
    7Burke M.P., Opeskin K. Fulminant heart failure due to selenium deficiency cardiomyopathy (Keshandisease). Med Sci Law,2002,42:10-13
    8Forgione M.A., Cap A., Liao R., et al. Heterozygous cellular glutathione peroxidase deficiency in themouse:abnormalities in vascular and cardiac function and structure. Circulation,2002,27:1154-1158
    9Babizhayev M. Failure to withstand oxidative stress induced by phospholipid hydroperoxides as apossible cause of the lens opacities in systemic diseases and ageing. Biochim Biophys Acta,1996,1315:87-99
    10Nakamura Y., Feng Q., Kumagai T. et al. Ebselen, a glutathione peroxidase mimetic seleno-organiccompound, as a multifunctional antioxidant.Implication for inflammation-associated carcino genesis. BiolChem.,2002,277:2687-2694
    11Bosch-Morell F., Roma J., Puertas F.J., et al. Efficacy of the antioxidant ebselen in experimentaluveitis. Free Radic Biol Med.,1999,27:388-391
    12Liu J.Q., Luo G.M., Ren X.J., et al. A bis-cyclodextrin diselenide with glutathione peroxidase-likeactivity. Biochimica et Biophysica Acta,2000,1481:222-228
    13Sies H. Ebselen, a selenoorganic compound as glutathione peroxidase mimic. Free Radic.Biol.Med.,1993,14:313-323
    14Luo G.M., Ren X.J., Liu J.Q., et al. Towards more efficient glutathione peroxidase mimics: Substraterecognition and catalytic group assembly. Curr. Med. Chem.,2003,10:1151-1183
    15Mills G.C. Hemoglobin catabolism.I.Glutathione peroxidase, an Erythrocyte Enzyme which ProtectsHemoglobinfrom Oxidase Breakdown. J.Biol.Chem.,1957,229:189–197
    16Pirie A. Glutathione Peroxidase in Lens and a Source of Hydrogen Peroxide in Aqueous Humour.Biochem.J.,1965,96:244-253
    17Bhabak K.P., Mugesh G. Functional Mimics of Glutathione Peroxidase: Bioinspired SyntheticAntioxidants. Accounts Chem Res,2010,43:1408-1419
    18Dsouza V.T. Modification of Cyclodextrins for Use as Artificial Enzymes. Supramol. Chem.,2003,15:221–229
    19Breslow R., Dong S.D. Biomimetic Reactions Catalyzed by Cyclodextrins and Their Derivatives.Chem.Rev.,1998,98
    20Rousseau C., Christensen B., Bols M. Artificial epoxidase II. Synthesis of cyclodextrin ketoesters andepoxidation of alkenes. Eur J Org Chem,2005:2734-2739
    21Ortega-Caballero F., Bjerre J., Laustsen L.S., et al. Four orders of magnitude rate increase in artificialenzyme-catalyzed aryl glycoside hydrolysis. J Org Chem,2005,70:7217-7226
    22Ortega-Caballero F., Rousseau C., Christensen B., et al. Remarkable supramolecular catalysis ofglycoside hydrolysis by a cyclodextrin cyanohydrin. J Am Chem Soc,2005,127:3238-3239
    23Kataky R., Morgan E. Potential of enzyme mimics in biomimetic sensors: a modified-cyclodextrin asa dehydrogenase enzyme mimic.Biosens Bioelectron,2003,18:1407-1417
    24Liu Y., Li B., Li L., et al. Synthesis of organoselenium-modified beta-cyclodextrins possessing a1,2-benzisoselenazol-3(2H)-one moiety and their enzyme-mimic study. Helv Chim Acta,2002,85:9-18
    25Zhang B., Breslow R. Enthalpic Domination of the Chelate Effect in Cyclodextrin Dimers. J. Am.Chem. Soc.,1993,115:9353-9354
    26Venema F., Rowan A.E., Nolte R.J.M. Binding of Porphyrins in Cyclodextrin Dimers. J. Am. Chem.Soc.,1996,118:257–258
    27French R.R., Wirz J., Woggon W.D. A synthetic receptor for.beta.,.beta.-carotene. Towards an enzymemimic for central cleavage. Helv.Chim.Acta,1998,81:1521-1527
    28Del Valle E.M.M. Cyclodextrins and their uses: a review. Process Biochem,2004,39:1033-1046
    29Szejtli J. Akad. Kiado: Budapest,1982
    30Szejtli J. Introduction and General Overview of Cyclodextrin Chemistry. Chem. Rev.,1998,98:1743–1753
    31Fujita K., Tahara T., Koga T. Enzymatic Synthesis of Specifically Modified Linear Oligosaccharidesfrom γ-Cyclodextrin Derivatives. Study on Importance of Active Sites of Taka Amylase A. Bull. Chem. Soc.Jpn.,1989,62:3150-3154.
    32Klayman D.L., Griffin T.S. Reaction of selenium with Sodium Borohydride in Protic Solvents. AFacile Method for the Introduction of Selenium into Organic Molecules. J. Am. Chem. Soc.,1972,95:197-199
    33Ren X.J., Xue Y., Liu J.Q., et al. A novel cyclodextrin-derived tellurium compound with glutathioneperoxidase activity. Chembiochem,2002,3:356-363
    34Ren X.J., Xue Y., Zhang K., et al. A novel dicyclodextrinyl ditelluride compound with antioxidantactivity. FEBS Lett,2001,507:377-380
    35Wilson S.R., Zucker P.A., Huang R.R.C., et al. Development of Synthetic Compounds withGlutathione Peroxidase Activity. J.Am.Chem.Soc.,1989,111:5936-5939
    36Jorgensen W.L., Chandrasekhar J., Madura J.D., et al. Comparison of simple potential functions forsimulating liquid water. J.Chem. Phys.,1983,79:926-935
    37Lindahl E., Hess B., van der Spoel D. GROMACS3.0: A Package for Molecular Simulation andTrajectory Analysis. J. Mol. Model.,2001,7:306-317
    38Malle D., Iwamoto H., Katsuya Y., et al. Crystal Structure of Pullulanase Type I from Bacillus Subtilisstr.168Complexed with alpha-cyclodextrin.(DOI:10.2210/pdb2e8z/pdb)
    39Sharff A.J., Rodseth L.E., Quiocho F. A.Refined1.8-structure reveals the mode of binding ofβ-cyclodextrin to the maltodextrin binding protein. Biochemistry,1993,32:10553–10559
    40Pinotsis N., Leonidas D.D., Chrysina E.D., et al. The binding of β-and γ-cyclodextrins to glycogenphosphorylase b: Kinetic and crystallographic studies. M. Protein Sci.,2003,12:1914–1924
    41Hess B., Bekker H., Berendsen H.J.C., et al. LINCS: A Linear Constraint Solver for MolecularSimulations. J. Comput. Chem. Rev.,1997,18:1463-1472
    42Yu Y.M., Chipot C., Cai W.S., et al. Molecular dynamics study of the inclusion of cholesterol intocyclodextrins. J Phys Chem B,2006,110:6372-6378
    43Dalziel K. The Interpretation of Kinetic Data for Enzyme-Catalysed Reactions Involving ThreeSubstrates. Biochem.J.,1969,114:547-556
    44Bell I.M., Hilvert D. Peroxide Dependence of the Semisynthetic Enzyme Selenosubtilisin.Biochemistry-Us,1993,32:13969-13973
    1Rekharsky M.V., Inoue Y. Complexation Thermodynamics of Cyclodextrins. Chem. Rev.,1998,98:1875-1917
    2Uekama K., Hirayama F., Irie T. Cyclodextrin Drug Carrier Systems. Chem. Rev.,1998,98:2045-2076
    3Wallimann P., Marti T., Fuerer A., et al. Steroids in Molecular Recognition.Chem. Rev.,1997,97:1567-1608
    4Connors K.A. The Stability of Cyclodextrin Complexes in Solution. Chem. Rev.,1997,97:1325-1357
    5Hao Y.Q., Lia L.N., Wu Y.Q., et al. Two-dimensional correlation spectroscopic studies on therecognition mechanism of a glutathione peroxidase mimic bis-cyclodextrin diselenide. VibSpectrosc,2004,36:185-189
    6Hao Y.Q., Wu Y.Q., Wu L.X., et al.Surface-enhanced Raman scattering studies on therecognition mechanism of glutathione peroxidase mimics, bis-cyclodextrin diselenide. ColloidSurface A,2005,257-58:111-115
    7Hao Y.Q., Wu Y.Q., Liu J.Q., et al.1H NMR study on the inclusion complex of glutathionewith a glutathione peroxidase mimic,2,2'-ditelluro-bridged beta-cyclodextrins. J Incl PhenomMacro,2006,54:171-175
    8Hao Y.Q., Liu X.C., Liu J.Q., et al. Association Mechanism of S-Dinitrophenyl Glutathionewith Two Glutathione Peroxidase Mimics:2,2'-Ditelluro-and2,2'-Diseleno-bridgedbeta-cyclodextrins. Molecules,2009,14:904-916
    9Jiao A.Q., Yang N., Wang J.P., et al. Organotellurium-bridged Cyclodextrin Dimers asArtificial Glutathione Peroxidase Models. J Incl Phenom Macro,2012, DOI:10.1007/s10847-012-0120-1
    10Huang X., Liu X.M., Luo Q.A., et al. Artificial selenoenzymes: Designed and redesigned.Chem Soc Rev,2011,40:1171-1184
    11Luo G.M., Ren X.J., Liu J.Q., et al.Towards more efficient glutathione peroxidase mimics:Substrate recognition and catalytic group assembly. Curr. Med. Chem.,2003,10:1151-1183
    12刘育,尤长城,张横益.超分子化学-合成受体的分子识别与组装[M].天津:南开大学出版社,2001
    13Flohé L., Günzler W.A., Schock H.H. Glutathione Peroxidase:a Selenoenzyme. FEBS Letts.,1973,32:132-134
    14Santos L.S., Metzger J.O. Study of homogeneously catalyzed Ziegler-Natta polymerization ofethene by ESI-MS. Angew Chem Int Edit,2006,45:977-981
    15Santos L.S., Metzger J.O. On-line monitoring of Brookhart polymerization by electrosprayionization mass spectrometry. Rapid Commun Mass Spectrom,2008,22:898-904
    16Santos L.S., Rosso G.B., Pilli R.A., et al. The mechanism of the stille reaction investigated byelectrospray ionization mass spectrometry. J Org Chem,2007,72:5809-5812
    17Franchi P., Lucarini M., Mezzina E., et al. Combining magnetic resonance spectroscopies,mass spectrometry, and molecular dynamics: Investigation of chiral recognition by2,6-di-O-methyl-beta-cyclodextrin. J Am Chem Soc,2004,126:4343-4354
    18Schneider H.-J., Hacket F., Ruediger V., et al. NMR Studies of Cyclodextrins andCyclodextrin ComplexesChem. Rev.,1998,98:1755-1785
    19Rekharsky M.V., Inoue Y. Complexation Thermodynamics of Cyclodextrins. Chem. Rev.,1998,98:1875-1917
    20Sun W.X., Liu J.Q., Cui M., et al. Cyclodextrin-catalyzed Oxidation of Glutathione inSolution and in an Ion Trap. Rapid Commun Mass Spectrom,1999,13:950-954
    21Bergeron R.J., Channing M.A., Gibeily G.J., et al. Disposition requirements for binding inaqueous solution of polar substrates in the cyclohexaamylose cavity. J. Am. Chem. Soc.,1977,99:5146–5151
    22Ishizu T., Kintsu K., Yamamoto H. NMR Study of the Solution Structures of the InclusionComplexes of β-Cyclodextrin with (+)-Catechin and (-)-Epicatechin. J. Phys. Chem. B,1999,103:8992-8997
    23Dugas H. Bioorganic Chemistry: New York,1981,254
    24Li B., Li L., Liu Y., et al. Syhthesis and Superoxide Dismutase Activity Studies ofβ-Cyclodextrin Derivatives Containing1,2-Benzisoselenazol-3(2H)-one. Chemical Journal ofChinese Universities,2000,21:1234-1236
    25Schneider H.J., Hacket F., Rüdiger V. NMR Studies of Cyclodextrins and CyclodextrinComplexes. Chem.Rev.,1998,98:1755-1785
    26Pringsheim H. Chemistry of the Saccharides. New York: McGraw-Hill,1932
    27Cramer F., Saenger W., Spatz H.C. Thermodynamics and Kinetics. Inclusion Compounds.XIX. The Formation of Inclusion Compounds of α-Cyclodextrin in Aqueous Solutions.J.Am.Chem.Soc.,1967,89:14-20
    28Silva B.V., Violante F.A., Pinto A.C., et al. The mechanism of Sandmeyer's cyclizationreaction by electrospray ionization mass spectrometry. Rapid Commun Mass Sp,2011,25:423-428
    29Santos L.S. Online mechanistic investigations of catalyzed reactions by electrosprayionization mass spectrometry: A tool to intercept transient species in solution. Eur J Org Chem,2008:235-253
    30Griep-Raming J., Meyer S., Bruhn T., et al. Investigation of reactive intermediates ofchemical reactions in solution by electrospray ionization mass spectrometry: radical chainreactions. Angew Chem Int Edit,2002,41:2738
    31Meyer S., Metzger J.O. Use of electrospray ionization mass spectrometry for theinvestigation of radical cation chain reactions in solution: detection of transient radical cations.Anal Bioanal Chem,2003,377:1108-1114
    32Pearson P.G., Howald W.H., Nelson S.D. Anal. Chem.,1980,62:1827
    33Stockigt D., Haeber S. Rapid Commun. Mass Spectrom.,1998,12:273
    34Huangt E.C., Henion J.D. Characterization of Cyclodextrins Using Ion-evaporationAtmospheric-pressure Ionization Tandem Mass SpectrometryRapid Commun Mass Spectrom,1990,4:467-471
    35Prabhakar R., Vreven T., Morokuma K., et al. Elucidation of the Mechanism of SelenoproteinGlutathione Peroxidase(GPx)-Catalyzed Hydrogen Peroxide Reduction by Two GlutathioneMolecules:a Density Functional Study. Biochemistry-Us,2005,44:11864-11871
    36Bhabak K.P., Mugesh G. Functional Mimics of Glutathione Peroxidase: Bioinspired SyntheticAntioxidants. Accounts Chem Res,2010,43:1408-1419
    37Mugesh G., du Mont W.W., Sies H. Chemistry of biologically important syntheticorganoselenium compounds. Chem Rev,2001,101:2125-2179
    38Ren X.J., Xue Y., Liu J.Q., et al. A novel cyclodextrin-derived tellurium compound withglutathione peroxidase activity. Chembiochem,2002,3:356-363
    39Dong Z.Y., Liu J.Q., Mao S.Z., et al. Aryl thiol substrate3-carboxy-4-nitrobenzenethiolstrongly stimulating thiol peroxidase activity of glutathione peroxidase mimic2,2'-ditellurobis(2-deoxy-beta-cyclodextrin). J Am Chem Soc,2004,126:16395-16404
    1Del Valle E.M.M. Cyclodextrins and their uses: a review. Process Biochem.,2004,39:1033-1046
    2Szejtli J. Akad. Kiado: Budapest,1982
    3Szejtli J. Introduction and General Overview of Cyclodextrin Chemistry. Chem. Rev.,1998,98:1743–1753
    4Fujita K., Tahara T., Koga T. Enzymatic Synthesis of Specifically Modified LinearOligosaccharides from γ-Cyclodextrin Derivatives. Study on Importance of Active Sites of TakaAmylase A. Bull. Chem. Soc. Jpn.,1989,62:3150-3154
    5Klayman D.L., Griffin T.S. Reaction of selenium with Sodium Borohydride in ProticSolvents. A Facile Method for the Introduction of Selenium into Organic Molecules. J. Am. Chem.Soc.,1972,95:197-199
    6Tabushi I., Kuroda Y., Mizutani T. Artificial receptor for amino acids in water. Localenvironmental effect on polar recognition by6A-amino-6B-carboxy-and6B-amino-6A-carboxy-cyclodextrins. J.Am.Chem.Soc.,1986,108:4514-4518
    7Tabushi I., Yasuhisa K., Kanichi Y., et al. Regiospecific A,C-and A,D-Disulfonate Capping ofβ-cyclodextrin. J.Am. Chem.Soc.,1981,103:711-712
    8Tabushi I., Kuroda Y., Mochizuki A. The first successful carbonic anhydrase model preparedthrough a new route to regiospecifically bifunctionalized cyclodextrin. J. Am. Chem. Soc.,1980,102:1152-1153
    9Wilson S.R., Zucker P.A., Huang R.R.C., et al. Development of synthetic compounds withglutathione peroxidase activity. J.Am. Chem.Soc.,1989,111:5936-5939
    10Jorgensen W.L., Chandrasekhar J., Madura J.D., et al. Comparison of simple potentialfunctions for simulating liquid water. J.Chem. Phys.,1983,79:926-935
    11Bell I.M., Hilvert D. Peroxide Dependence of the Semisynthetic Enzyme Selenosubtilisin.Biochemistry-Us,1993,32:13969-13973
    1孙存普,张建中,段绍瑾.自由基生物学导论[M].合肥:中国科学技术大学出版社,1999
    2Surh C.D., Sprent J. T-cell apoptosis detected in situ during positive and negative selection in thethymus. Nature,1994,372:100-103
    3Saltman P. Oxidative stress:a radical view. Seminars in Hematology,1989,26:249
    4Jacobson M.D., Raff M.C. Programmed cell death and Bcl-2protection in very low oxygen. Nature,1995,374:814
    5Haecker G., Vaux D.L. Viral worm and radical implications for apoptosis. TIBS,1994,19:99
    6Martin S.J., Green D.R., Cotter T.G. Dice with death:dissecting the components of the apoptosismachinery. TIBS,1994,19:26
    7Benzi G., Moretti A. Age peroxidative stress related modifications of the cerebral enzymatic activitieslinked to mitochondria and the glutathionesy stem. Free Radic Biol Med.,1995,19:77
    8Dyrks T., Dyrks E., Hartmann T. Amlodo genicity of beta A4and beta bearing A4-amyloid proteinprecursor fragments by emtal catalyzed oxidation. J Biol Chem,1992,267:18210
    9Goodman Y., Mattson M.P. Secreted forms of beta-amyloid precursor protein protect hippocampalneurons against amyloid beta-peptide-induced oxidative injury. Exp Neurol,1994,128:1
    10Spallholz J.E. Glutathione peroxidase:The two selenium enzymes. CRC Press: Voll.Boca.,1991
    11Bellomo G., Maggi E., Palladini G. Endogenous and Exogenous Antioxidants and the Generation ofAntigenic Epitopes in Oxidatively-Modified LDL. Biofactors,1997,6:91-98
    12Brigelius-Flohé R., Friedrichs B., Maurer S., et al. Interleukin-l-Induced Nuclear Factor KappaBActivation is Inhibited by Overexpression of Phospholipid Hydroperoxidase Glutathione Peroxidase in aHuman Endothelial Cell Line. Biochem.J.,1997,328:199-203
    13Nakagawa Y., Imai H. Novel Functions of Mitochondrial Phospholipids Hydroperoxide GlutathionePeroxidase (PHGPx) as an Anti-apoptotic Factor. J. Health Sci.,2000,46:414-417
    14Flohe L. The selenoprotein glutathione peroxidase. Coenzymes and Cofactors3(Glutathione: Chem.,Biochem., Med. Aspects, Pt. A),1989:643-731
    15Tan K.L., Board P.G. Purification and characterization of a recombinant human Theta-class glutathionetransferase (GSTT2-2). Biochem. J.,1996,315:727–732
    16Haratake M., Matsumoto S., Ono M., et al. Nanoparticulate Glutathione Peroxidase Mimics Based onSelenocystine-Pullulan Conjugates. Bioconjugate Chem.,2008,19:1831–1839
    17Mugesh G., du Mont W.W., Sies H. Chemistry of Biologically Important Synthetic OrganoseleniumCompounds. Chem.Rev.,2001,101:2125-2179
    18Mugesh G.,Singh H.B. Synthetic Organoselenium Compounds as Antioxidants:Glutathione PeroxidaseActivity.. Chem.Soc.Rev.,2000,29:347-357
    19Mugesh G., du Mont W.W. Structure-activity correlation between natural glutathione peroxidase (GPX)and mimics: a biomimetic concept for the design and synthesis of more efficient GPX mimics. Chemistry,2004,7:1365-1370
    20Back T.G., Kuzma D., Parvez M. Aromatic Derivatives and Tellurium Analogues of Cyclic SeleninateEsters and Spirodioxyselenuranes That Act as Glutathione Peroxidase Mimetics. J.Org.Chem.,2005,70:9230-9236
    21Reich H.J., Jaspeise C.P. Organoselenium Chemistry. Redox Chemistry of Selenocysteine ModelSystems. J.Am.Chem.Soc.,1987,109:5549-5551
    22Szejtli J. Introduction and General Overview of Cyclodextrin Chemistry. Chem. Rev.,1998,98:1743–1753
    23Rekharsky M.V.,Inoue Y. Complexation Thermodynamics of Cyclodextrins.. Chem. Rev.,1998,98:1875-1917
    24Liu Y., Han B.H., Sun S.X., et al. Molecular Recognition Study on SupramolecularSystems.20.Molecular Recognition and Enantioselectivity of Aliphatic Alcohols by L-Tryptophan-Modifiedβ-Cyclodextrin. J.Org.Chem.,1999,64:1487-1493
    25Liu Y., Li B., Wada T., et al. Enantioselective Recognition of Aliphatic Amino Acids byOrganoselenium Modified β-Cyclodextrins. Supramol.Chem.,1999,10:173-184
    26Lansman R.A., Shade R.O., Shapira J.F., et al. The use of restriction endonucleases to measuremitochondrial DNA sequence relatedness in natural populations. III. Techniques and potential applications.J. Mol. Evol.,1981,17:214-226
    27Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of proteinutilizing the principle of protein-dye binding. Anal. Biochem.,1976,72:248-254
    28Jr H.F.E., A S., E H.P., et al. Studies on the mechanism of ascorbate-induced swelling and lysis ofisolated liver mitochandria. J. Biol. Chem.,1964,239:604-613
    29Pryor W.A., Stanley J.P., Blair E. Autoxidation of polyunsaturated fatty acids: II. A suggestedmechanism for the formation of TBA-reactive materials from prostaglandin-like endoperoxides. Lipids,1976,11:370-379
    30Yonetani T., Ray G.S. Cytochrome oxidase. VI. Kinetics of the aerobic oxidation of ferrocytochrome cby cytochrome oxidase. J. Biol. Chem.,1965,240:3392-3398
    31Su D., Ren X.J., You D.L., et al. Generation of Several Selenium-Containing Catalytic Antibodies withHigh Catalytic Efficiency Using a Novel Hapten Design Method. Arch.Biochem.Biophys.,2001,395:177-184
    32Ren X.J., Jemth P., Board P.G., et al. An Artificial Glutathione Peroxidase with High CatalyticEfficiency: Selenoglutathione Transferase. Chem.Biol.,2002,9:789-794
    33Yu H.J., Liu J.Q., Li J., et al. Engineering Glutathione Transferase to a Novel Glutathione PeroxidaseMimic with High Catalytic Efficiency:Incorporation of Selenocysteine into a Glutathione-Binding ScaffoldUsing an Auxotrophic Expression System. J. Biol.Chem.,2005,280:11930-11935
    34Liu Q.J., Gao S.J., Luo G.M., et al. Artificial Imitation of Glutathione Peroxidase with6-Selenium-Bridged beta-Cyclodextrin. Biochem.Biophys.Res. Commun.,1998,247:397-400

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700