两类水溶性大环主体的分子聚集及荧光传感研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超分子化学作为当代化学领域的前沿交叉学科,拥有广阔的发展空间及无限的应用前景。这其中作为第二和第三代大环主体分子的环糊精和杯芳烃代表着超分子化学的两个重要研究方向,在分子识别及组装体构筑中得到了广泛的应用。另外,基于茈酰亚胺及四苯乙烯等π体系分子的组装及其功能化研究也是人们近年来关注的热点之一。然而,将环糊精、杯芳烃等超分子大环主体通过共价或非共价的方法引入到花酰亚胺和四苯乙烯体系来构筑功能化超分子组装体的研究工作目前比较少。基于此,本文开展了一系列将超分子大环主体环糊精和杯芳烃与π体系分子花酰亚胺和四苯乙烯相结合的工作,考察了他们之间的组装行为及规律,进一步探究了组装体在荧光传感等方面的应用。本论文的具体研究内容分为以下几个部分:
     (1)简要地对超分子化学的概况进行了介绍,并对基于环糊精的π…π组装、磺化杯芳烃诱导聚集、茈酰亚胺的功能化超分子体系和四苯乙烯的聚集诱导发光(AIE)等领域的重要成果和进展做了论述。
     (2)合成了不对称的、双亲性的苝酰亚胺-环糊精衍生物PBI-CD1。通过紫外光谱、荧光光谱、透射电子显微镜(TEM)和扫描电子显微镜(SEM)等手段研究了其在不同水/甲醇比例下的组装行为,发现其π…π堆积能力可以通过改变溶剂极性进行控制,并且随着溶剂极性的增加其组装形貌发生从纳米棒到球状胶束的变化。由于PBI-CD1的聚集体展示出良好的固体荧光特性,我们将不同形貌的组装体负载到聚偏氟乙烯膜(PVDF)上研究了它们对有机挥发气体的固态荧光传感行为,发现不同形貌的组装体具有迥异的传感行为,并对有机胺蒸气具有显著的荧光响应。
     (3)在水溶液中,利用π…π堆积作用成功构筑了一个以花酰亚胺桥联全甲基化-β-环糊精衍生物PBI-CD2为分子模块的超分子组装体。通过紫外光谱、荧光光谱和1H NMR等手段研究发现PBI-CD2具有强的π堆积能力。进而,我们将水溶液中形成的组装体负载到PVDF膜上,研究了其对有机挥发气体的固态荧光传感行为,发现其对苯胺蒸气表现出可逆的、灵敏的以及专一选择性的传感行为。
     (4)我们通过紫外光谱和荧光光谱研究了季铵盐修饰花酰亚胺衍生物(BPTA-PBI)与磺化杯芳烃(SCnA)的键合行为,发现SCnA可以有效的诱导BPTA-PBI聚集。随后,进一步利用电镜手段表征了SC5A+BPTA-PBI组装体的形貌,发现其为棒状结构,而通过X射线粉末衍射(XRD)研究发现不同磺化杯芳烃可以调节BPTA-PBI的π…π堆积距离。
     (5)通过荧光光谱研究了磺化杯芳烃(SC4A和bisSC4A)与四苯乙烯季铵盐衍生物(QA-TPE)的超分子相互作用,发现SC4A和bisSC4A可以有效的诱导QA-TPE聚集,产生四苯乙烯特有的AIE荧光。利用动态光散射(DLS)、电镜等手段研究证实SC4A+QA-TPE和SC4A+QA-TPE荧光纳米粒子被成功构筑。进一步,利用QA-TPE本身的光反应及QA-TPE与SC4A络合产生AIE荧光的特性,实现了通过光照和络合两种手段对QA-TPE荧光行为的调控。另外,我们还利用构筑得到的荧光纳米粒子初步尝试了对爆炸性化合物进行检测,其给出了优异的传感灵敏性,对苦味酸的检测限达到了7.0×10-7M。
     (6)我们合成了一个两亲性的桥联磺化杯[4]芳烃衍生物(bisSC4A-12),通过表面张力和DLS等手段研究发现其自身在水溶液中可以组装成小的球状胶束粒子。进一步,我们探讨了其与四苯乙烯季铵盐QA-TPE的相互作用行为,发现利用其与QA-TPE的超分子相互作用,可以成功构筑bisSC4A-12/QA-TPE水凝胶,并且通过荧光光谱手段表征发现bisSC4A-12/QA-TPE水凝胶具有荧光发射特性。另外,多次往复升降温的荧光实验证明bisSC4A-12/QA-TPE水凝胶具有多次热可逆循环特性,具有很好的稳定性。
     (7)我们合成了一个PEG修饰的苝酰亚胺衍生物(PEG-550-PBI),研究了其在水溶液中与α、β、γ-环糊精的组装行为,发现其与α-环糊精可以形成稳定的水凝胶,通过1H NMR表征发现该水凝胶中PEG-550-PBI与α-环糊精采取1:3.5的键合模式,XRD结果则证实了PEG-550-PBI/a-环糊精形成了典型的六边形管道的晶状结构,而共聚焦荧光显微电镜显示其具有红色的荧光发射。
Supramolecular chemistry is an advanced research field with unlimited vitality and good development prospects in chemistry. Cyclodextrin and calixarene, as the second and third generation supramolecular hosts, represent two important research directions in supramolecular chemistry, which have been widely applied in the molecular recognition and self-assembly. In addition, the construction of supramolecular assemblies based on π-conjugated chromophores, such as perylene bisimide and tetraphenylethene, is also a fascinating topic in chemistry and material science in recent years. However, it is still insufficient to attempt on the combination of perylene bisimide and tetraphenylethene with cyclodextrin and calixarene to fabricate various functional supramolecular architectures by covalent or non-covalent methods. Hence, we have engaged in the design and construction of supramolecular architectures through the combination of perylene bisimide and tetraphenylethene with cyclodextrin and calixarene, and further explored the corresponding properties and functions of these supramolecular architectures, such as fluorescent detection, etc. The major contents of this thesis are as follows:
     (1) The general aspect of supramolecular chemistry was described in brief. The new progress and important achievements on self-assemblies of cyclodextrin via π…π interaction,p-sulfonatocalixarenes-induced aggregation, functional supramolecular systems of perylene bisimide, and aggregation-induced emission (AIE) characteristics of tetraphenylethene were reviewed.
     (2) We successfully synthesized an asymmetrical, amphiphilic perylene bisimide-cyclodextrin conjugate PBI-CD1. Its aggregation capability and morphology were carefully examined by the combination of UV-Vis, fluorescence spectroscopy, transmission electron microscopic (TEM), scanning electron microscope (SEM), etc. By adjusting the ratio of water and methanol, its aggregation capability was controlled, while the aggregation morphology was modulated, ranging from nanorod to spherical micelle. The aggregates with different morphologies were embedded in the poly(vinylidenefluoride)(PVDF). Benefiting from benign solid-state emission exhibited by aggregates of PBI-CD1, they were further employed as solid-state fluorescence sensing for various volatile organic compounds, which showed distinguishable sensing results and excellent sensitivity for organic amines.
     (3) A supramolecular assembly was constructed from the π…π aggregate of perylene-bridged bis(permethyl-β-cyclodextrins) derivative PBI-CD2in water. Strong π-stacking capability of PBI-CD2was demonstrated by UV-Vis, fluorescence spectroscopy,1H NMR, etc. Furthermore, we employed the assembly embedded in PVDF membrane as solid-state fluorescence material to detect various volatile organic compounds, which exhibited compelling selectivity, sensitivity and reversibility for aniline vapor.
     (4) We investigated the binding behaviors of quaternary ammonium-modified perylene derivative (BPTA-PBI) and p-sulfonatocalix[n]arene (SCnA) by combination of UV-Vis and fluorescence spectroscopy, finding that SCnA could effectively induce aggregation of BPTA-PBI. The assembly morphology was further studied by electron microscope measurements, which showed nano-rod structure. X-ray Diffraction (XRD) measurements were performed to investigate the π…π stacking distances of BPTA-PBI in the presence of different p-sulfonatocalixarenes, which distinguishable stacking distances were observed.
     (5) We investigated the binding behaviors of quaternary ammonium-modified tetraphenylethene derivative (QA-TPE) and p-sulfonatocalixarenes (SC4A and bisSC4A) by fluorescence spectroscopy, finding that SC4A and bisSC4A could effectively induce the aggregation of QA-TPE, which resulted in aggregation-induced emission (AIE) of QA-TPE. The self-assembled fluorescent nanoparticles of the SC4A+QA-TPE and bisSC4A+QA-TPE were fabricated, demonstrated by dynamic light scattering (DLS) and electron microscope measurements. Furthermore, we could take advantage of AIE fluorescence of QA-TPE endowed by complexation of SC4A and apply photoreaction of TPE unit to manipulate fluorescence of QA-TPE by complexation and photo irradiation. In addition, the fluorescent nanoparticles were applied to detect explosive (picric acid) PA in water, showing high sensitivity with the limit of detection of7.0×10-7M for picric acid.
     (6) We successfully synthesized an amphiphilic bis(p-sulfonatocalixarene)s derivative (bisSC4A-12), which could form small spherical micelle in water proved by surface tension, DLS measurements, etc. Furhermore, we explored the assembly behaviors of bisSC4A-12with quaternary ammonium salt of tetraphenylethene QA-TPE, which can effectively form bisSC4A-12/QA-TPE hydrogel. The remarkable emission of the bisSC4A-12/QA-TPE hydrogel was observed by the fluorescence measurements. Moreover, temperature-dependent fluorescent experiments demonstrated that the bisSC4A-12/QA-TPE hydrogel was thermoreversible and possessed excellent thermal stability.
     (7) We successfully synthesized a polyethylene glycol (PEG)-modified perylene derivative (PEG-550-PBI). In water, we explored the assembly behaviors of PEG-550-PBI with α, β, γ-cyclodextrin, respectively, finding that PEG-550-PBI/a-cyclodextrin complex system could form hydrogel. The1H NMR measurements showed that the binding stoichiometries of PEG-550-PBI and a-cyclodextrin in the hydrogel were1:3.5. Moreover, the result of XRD measurement indicated that the PEG-550-PBI/a-cyclodextrin hydrogel was in the nature of hexagonal channel-type crystal structure. The confocal fluorescence image showed that the PEG-550-PBI/a-cyclodextrin hydrogel exhibited robust red fluorescence.
引文
[1]Pedersen, C. J. Angew. Chem. Int. Ed.1988,27,1021.
    [2](a) Pedersen, C. J. J. Am. Chem. Soc.1967,89,2495. (b) Pedersen, C. J. J. Am. Chem. Soc. 1967,89,7017.
    [3](a) Cram, D. J. Angew. Chem. Int. Ed. Engl.1988,27,1009. (b) Lehn, J.-M. Angew. Chem.Int. Ed.1988,27,89.
    [4]Szejtli, J. Chem. Rev.1998,98,1743.
    [5](a) Gokel, G.W.; Leevy, W. M.; Weber, M. E. Chem. Rev.2004,104,2723. (b) Liu, Y.; Chen, Y. Acc. Chem. Res.2006,39,681. (c) Guo, D.-S.; Liu, Y. Chem. Soc. Rev.2012,41,5907.
    [6](a) Burley, S. K.; Petsko, G A. Science 1985,229,23. (b) Malkov, A. V.; Mariani, A.; MacDougall, K. N.; Kocovsky, P. Org. Lett.2004,6,2253.
    [7]Pulley, A. O.; French, D. Biochem. Biophys. Res.1970,13,351.
    [8]Connors, K. A. Chem. Rev.1997,97,1325.
    [9]刘育,尤长城,张衡益超分子化学—合成受体的分子识别与组装,南开大学出版社,天津,2001.
    [10](a) Wurthner, F. Angew. Chem., Int. Ed.2001,40,1037. (b) Yang, D. Q.; Hennequin, B.; Sacher, E. Chem. Mater.2006,18,5033.
    [11](a) Wallimann, P.; Marti, T.; Frer, A.; Diederich, F. Chem. Rev.1997,97,1567. (b) Hapiot, F.; Tilloy, S.; Monflier, E. Chem. Rev.2006,106,767. (c) Liu, Y.; Chen, Y. Acc. Chem. Rec. 2006,39,681. (d) Harada, A. Acc. Chem. Rec.2001,34,456.
    [12]Kiba, T.; Suzuki, H.; Hosokawa, K.; Kobayashi, H.; Baba, S.; Kakuchi, T.; Sato, S. J. Phys. Chem. B,2009,113,11560.
    [13]Ogoshi, T.; Hashizume, M.; Yamagishi, T.; Nakamoto, Y. Langmuir 2010,26,3169.
    [14]Zhu, G.; Zhang, X.; Gai, P.; Zhang, X.; Chen, J. Nanoscale,2012,4,5703.
    [15]Liu, Y; Yang, Z.-X.; Chen, Y.; Song, Y.; Shao, N. ACS Nano,2008,2,554.
    [16]Li, Z.-Q.; Zhang, Y.-M.; Guo, D.-S.; Chen, H.-Z.; Liu, Y. Chem. Eur. J.2013,19,96.
    [17]Yang, Y.; Zhang, Y.-M.; Chen, Y.; Zhao, D.; Chen, J.-T.; Liu, Y. Chem. Eur. J.2012,18, 4208.
    [18]Liu, Y.; Wang, K.-R.; Guo, D.-S.; Jiang, B.-P. Adv. Fund. Mater.2009,19,2230.
    [19]Wang, K.-R.; Guo, D.-S.; Jiang, B.-P.; Sun, Z.-H.; Liu, Y. J. Phys. Chem. B 2010,114,101.
    [20]Guo, D.-S.; Wang, K.; Liu, Y. JI ncl Phenom Macrocycl Chem 2008,62,1.
    [21]Cui, J.; Uzunova, V. D.; Guo, D.-S.; Wang, K.; Nau, W. M.; Liu, Y. Eur. J. Org. Chem.2010, 1704.
    [22]Guo, D.-S.; Uzunova,V. D.; Su, X.; Liu, Y;. Nau, W. M. Chem. Sci.2011,2,1722.
    [23](a) Harada, A.; Takashima, Y.; Yamaguchi, H. Chem. Soc. Rev.2009,38,875. (b) Guo, D.-S.; Liu, Y. Chem. Soc. Rev.2012,41,5907. (c) Lagona, J.; Mukhopadhyay, P.; Chakrabarti, S.; Isaacs, L. Angew. Chem., Int. Ed. 2005, 44, 4844.
    [24](a) Wang, K.; Guo, D.-S.; Liu, Y. Chem. Eur. J. 2010, 16, 8006. (b) Wang, K.; Guo, D.-S.; Wang, X.; Liu, Y. ACS Nano 2011, 5, 2880. (c) Guo, D.-S.; Chen, K.; Zhang, H.-Q.; Liu, Y. Chem. Asian J. 2009,4, 436. (d) Wang, K.; Guo, D.-S.; Liu, Y. Chem. Eur. J. 2012,18, 8758. (e) Francisco, V.; Basilio, N.; Garcia-Rio, L.; Leis, J. R.; Maques, E.F.; Vazquez-Vizquez, C. Chem. Commun. 2010, 46, 6551. (f) Moschetto, G.; Lauceri, R.; Gulino, F. G.; Sciotto, D.; Purrello, R. J. Am. Chem. Soc. 2002, 124, 14536. (g) Costanzo, L. D.; Geremia, S.; Randaccio, L.; Purrello, R.; Lauceri, R.; Sciotto, D.; Gulino, F. G.; Pavone, V. Angew. Chem. Int. Ed. 2001, 40, 4245. (h) Gulino, F. G.; Lauceri, R.; Frish, L.; Evan-Salem, T.; Cohen, Y.; Zorzi, R. D.; Geremia, S.; Costanzo, L. D.; Randaccio, L.; Sciotto, D.; Purrello, R. Chem. Eur. J., 2006,12, 2722. (i) V. Lau, B. Heyne, Chem. Commun. 2010, 46, 3595.
    [25]Guo, D. -S.; Wang, K.; Wang, Y.-X.; Liu, Y. J. Am. Chem. Soc. 2012,134, 10244.
    [26](a) Betzel, C.; Saenger, W.; Hingerty, B. E.; Brown, G.M. J. Am. Chem. Soc. 1984,106,7545. (b) Szejtli, J. Chem. Rev. 1998, 98, 1743.
    [27](a) Ashton, P. R.; Ellwood, P.; Staton,I.; Stoddart, J. F. Angew.Chem. Int. Ed. Engl. 1991, 30, 80. (b) Weisz, P. B.; Joullie, M. M.; Hunter, C. M.; Kumor, K. M.; Zhang, Z.; Levine, E.; Macarak, E.; Weiner, D.; Barnathan, E. S. Biochem. Pharm. 1997, 54, 149.
    [28]Folk, J.; Weisz, P. B.; Joullie, M. M.; Li, W. W.; Ewing, W. R. Science 1989,243,1490.
    [29]Ueno, A.; Breslow, R. Tetrahedron Lett. 1982, 23, 3451.
    [30](a) Fiigedi, P.; Nanasi, P. Carbohydr. Res. 1988, 175, 173. (b) Hybl, A.; Rundle, R. E.; William, D. E. J. Am. Chem. Soc. 1965, 87, 2779.
    [31]Saenger, W.; Noltemeyer, M.; Manor, P. C.; Himgerty, B.; Klar, B. Bioorg. Chem. 1976, 5, 187.
    [32](a) Takeo, K.; Uemura, K.; Mitoh, H. J. Carbohydr. Chem. 1988, 7, 293. (b) Cramer, F.; Mackensen, G; Kensse, K. Chem. Ber. 1969, 102, 494. (c) Rong, D.; D'Souza, V. T. Tetrahedron Lett. 1990, 31,4275.
    [33](a) Fujita, K.; Nagamura, S.; Imoto, T. Tetrahedron Lett. 1984, 25, 5673. (b) Takahashi, K.; Hattori, K.; Toda, F. Tetrahedron Lett. 1984,25, 3331. (c) Fujita, K.; Nagamura, S.; Imoto, T.; Tahara, T. Koga, T. J. Am. Chem. Soc. 1985, 707, 3233.
    [34]Tian, S.; Forgo, P.; D'Souza, V. T. Tetrahedron Lett. 1996, 37, 8309.
    [35]Breslow, R. Acc. Chem. Res. 1995,28, 146.
    [36](a) Bohn, P. W. Annu. Rev. Phys. Chem. 1993, 44, 37. (b) Harrison, W. J.; Mateer, D. L.;-Tiddy, G.J. T. J. Phys. Chem. 1996, 100, 2310. (c) Stegemeyer, H.; Stockel, F.; Ber. Bunsenges. Phys. Chem. 1996,100, 9. (d) Berlepsch, H. V.; Bottcher, C.; Ouart, A.; Burger, C.; Dahne, S.; Kirstein, S. J. Phys. Chem. B 2000,104, 5255.
    [37](a) Li, X. Q.; Stepanenko, V.; Chen, Z.; Prins, P.; Siebbelesb, L. D. A.; Wiirthner, F. Chem. Commun. 2006, 3871. (b) Li, X. Q.; Zhang, X.; Ghosh, S.; Wiirthner, F. Chem. Eur. J. 2008, 14, 8074. (c) Chen, Z.; Stepanenko, V.; Dehm, V.; Prins, P.; Siebbeles, L. D. A.; Seibt, J.; Marquetand, P.; Engel, V.; Wiirthner, F. Chem. Eur. J. 2007, 13, 436. (d) Hoeben, F. J. M.; Zhang, J.; Lee, C. C.; Pouderoijen, M. J.; Wolffs, M.; Wurthner, F.; Schenning, A. P. H. J.; Meijer, E. W.; Feyter, S. D. Chem. Eur. J. 2008, 14, 8579. (e) Dehm, V.; Chen, Z.; Baumeister, U.; Prins, P. Siebbeles, L. D. A.; Wurthner, R Org. Lett. 2007, 9,1085. (f) Ghosh, S.; Li, X. Q.; Stepanenko, V.; Wurthner, F.Chem. Eur. J. 2008,14, 11343. (g) Stepanenko, V; Wurthner, F. small 2008, 4, 2158.
    [38]Wurthner, F.; Thalacker, C; Diele, S.; Tschierske, C. Chem. Eur. J. 2001, 7,2245.
    [39]Kaiser, T. E.; Wang, H.; Stepanenko, V; Wurthner, F. Angew. Chem. Int. Ed. 2007,46, 5541.
    [40]Yagai, S.; Seki, T.; Karatsu,T.; Kitamura, A.; Wurthner, F. Angew. Chem. Int. Ed. 2008, 47, 3367.
    [41]Zhang, X.; Chen, Z.; Wurthner, F. J. Am. Chem. Soc. 2007,129,4886.
    [42]Zhang, X.; Rehm, S.; Safont-Sempere, M. M.; Wurthner, F. Nat. Chem. 2009,1,623.
    [43](a) Che, Y.; Datar, A.; Yang, X.; Naddo, X.; Zhao, J.; Zang, L. J. Am. Chem. Soc. 2007,129, 6354. (b) Zang, L.; Che, Y.; Moore, J. S. Acc. Chem. Res. 2008, 41, 1596. (c) Datar, A.; Balakrishnan, K.; Yang, X.; Zuo, X.; Huang, J.; Oitker, R.; Yen, M.; Zhao, J.; Xiede, D. M.; Zang, L. J. Phys. Chem. B 2006,110,12327.
    [44]Balakrishnan, K.; Datar, A.; Oitker, R.; Chen, H.; Zuo, J.; Zang, L. J. Am. Chem. Soc. 2005, 127,10496.
    [45]Balakrishnan, K.; Datar, A.; Naddo, X; Huang, J.; Oitker, R.; Yen, M.; Zhao, J.; Zang, L. J. Am. Chem. Soc. 2006,128,7390.
    [46]Che, Y; Yang, X.; Loser, S.; Zang, L. Nano Lett. 2008, 5, 2219.
    [47]Wang, B.; Yu, C. Angew. Chem. Int. Ed. 2010,49,1485.
    [48]Feng, X.; An, Y.; Yao, Z.; Li, C.; Shi, G ACSAppl. Mater. Interfaces 2012,4, 614.
    [49](a) Friend, R. H.; Gymer, R. W.; Holms, A. B.; Burroughes, J. H.; Marks, R. N.; Xaliani, C.; Bradley, D. D. C.; Dos Santos, D. A.; Bredas, J. L.; Logdlund, M.; Salaneck, W. R. Nature, 1999,397, 121. (b) Jenekhe, S. A.; Osaheni, J. A. Science, 1994,265,765.
    [50]Wang, M.; Zhang, G.; Zhang, D.; Zhu, D.; Xang, B. Z. J. Mater. Chem. 2010,20, 1858.
    [51](a) Domaille, D. W.; Que, E. L.; Chang, C. J. Nat. Chem. Biol. 2008, 4, 168. (b) Lim, M. H. Lippard, S. J. Ace. Chem. Res. 2007,40, 41.
    [52]Jares-Erijman, E. A.; Jovin, X M. Nat. Biotechnol. 2003,21, 1387.
    [53]Luo, J.; Xie, Z.; Lam, J.; Cheng, L.; Chen, H.; Qiu, C.; Kwok, H. S.; Zhan, X.; Liu, Y.; Zhu, D.; Xang, B. Z. Chem. Commun. 2001, 1740.
    [54]Xong, H.; Hong, Y. N.; Dong, Y. Q.; Haussler, M.; Lam, J.W. Y.; Li, Z.; Guo, Z. F.; Guo, Z. H.; Xang, B. Z. Chem. Commun. 2006, 3705. -
    [55]Yu, G.; Yin, S.; Liu, Y.; Chen, J.; Xu, X.; Sun, X.; Ma, D.; Zhan, X.; Peng, Q.; Shuai, Z.; Tang, B. Z.; Zhu, D.; Fang, W.; Luo, Y. J. Am. Chem. Soc. 2005,127, 6335.
    [56](a) Xang, B. Z.; Zhan, X. W; Yu, G; Lee, P. P. S.; Liu, Y. Q.; Zhu, D. B. J. Mater. Chem. 2001, 11, 2974. (b) Chen, J. W; Law, C. C. W; Lam, J. W. Y; Dong, Y. P.; Lo, S. M. F.; Williams, I. D.; Zhu, D. B.; Tang, B. Z. Chem. Mater. 2003,15,1535.
    [57]Zhao, Z.; Lam, J. W. Y.; Xang, B. Z. J. Mater. Chem. 2012,22, 23726.
    [58]Hong, Y.; Lam, J. W. Y; Tang, B. Z. Chem. Soc. Rev. 2011, 40, 5361.
    [59](a) Zhao, Z.; Lam, J. W. Y.; Tang, B. Z. Curr. Org. Chem. 2010,14, 2109. (b) Dong, Y.; Lam, J. W. Y.; Qin, A.; Liu, J.; Li, Z.; Tang, B. Z.; Sun, J.; Kwok, H. S. Appl. Phys. Lett. 2007, 91, 11111.
    [60]Chen, S.; Qin, W.; Zhao, Z.; Tang, B. Z.; Kwok, H.-S. J. Mater. Chem. 2012,22, 13386.
    [61]Zhao, Z.; Chen, S.; Shen, X.; Mahtab, F.; Yu, Y.; Lu, P.; Lam, J. W. Y.; Kwok, H. S.; Tang, B. Z. Chem. Commun. 2010, 46, 686.
    [62]Chen, S.; Zhao, Z.; Tang, B. Z.; Kwok, H. S. Org. Electron. 2012,13,1996.
    [63](a) Suzuki, Y.; Yohoyama, K. J. Am. Chem. Soc. 2005,127, 17799. (b) Granzhan, A.; Ihmels, H. Org. Lett. 2005, 7, 5119. (c) Royer, C. A. Chem. Rev. 2006,106, 1769.
    [64]Thomas Ⅲ, S. W.; Joly, G D.; Swager, T. M. Chem. Rev. 2007, 707, 1339.
    [65]Liu, Y.; Deng, C.; Tang, L.; Qin, A.; Hu, R.; Sun, J. Z.; Tang, B. Z. J. Am. Chem. Soc. 2011, 133, 660.
    [66]Liu, Y; Qin, A.; Chen, X.; Shen, X. Y.; Tong, L.; Hu, R.; Sun, J. Z.; Tang, B. Z. J. Am. Chem. Soc. 2011,133, 660.
    [67]Tong, H.; Hong, Y.; Dong, Y; Hauβler, M.; Lam, J. W. Y; Li, Z.; Guo, Z.; Guo, Z.; Tang, B. Z. Chem. Commun. 2006, 3705.
    [68]Whitehouse, P. J.; Price, D. L.; Struble, R. G.; Clark, A.W.; Coyle, J. T.; Delon, M. R. Science, 1982, 215,1237.
    [69](a) Chen, H. D.; Zuo, X. L.; Su, S.; Tang, Z. Z.; Wu, A. B.; Song, S. P.; Zhang, D. B.; Fan, C. H. Analyst 2008, 133, 1182. (b) Su, S.; He, Y; Zhang, M.; Yang, K.; Song, S.; Zhang, X.; Fan, C. H. Appl. Phys. Lett. 2008, 93, 023113.
    [70]Wang, M.; Gu, X. G.; Zhang, G X.; Zhang, D. Q.; Zhu, D. B. Anal. Chem. 2009, 81, 4444.
    [71]Peng, L.; Zhang, G.; Zhang, D.; Xiang, J.; Zhao, R.; Wang, Y.; Zhu, D. Org. Lett. 2009, 11, 4014.
    [72]Qin, A.; Lam, J. W. Y.; Tang, L.; Jim, C. K. W.; Zhao, H.; Sun, J.; Tang, B. Z. Macromolecules 2009, 42, 1421.
    [73](a) Hu, X. -M.; Chen, Q.; Zhou, D.; Cao, J.; He, Y.-J.; Han, B:-H. Polym. Chem. 2011, 2, 1124. (b) Wu, W.; Ye, S.; Huang, L.; Xiao, L.; Fu, Y; Huang, Q.; Yu, G; Liu, Y.; Qin, J.; Li, Q.; Li, Z. J. Mater. Chem. 2012, 22, 6374. (c) Hu, R.; Maldonado, J. L.; Rodriguez, M.; Deng, C; Jim, C. K. W.; Lam, J. W. Y; Yuen, M. M. F.; Ramos-Ortiz, G; Tang, B. Z. J. Mater. Chem. 2012, 22, 232. (d) Hu, R.; Lam, J. W. Y; Liu, J.; Sung, H. H. Y.; Williams, I. D.; Yue, Z.; Wong, K. S.; Yuen, M. M. F.; Tang, B. Z.- Polym. Chem. 2012, 3, 1481.
    [74](a) Swager, T. M. Acc. Chem. Res. 2008, 41, 1181. (b) McQuade, D. T.; Pullen, A. E.; Swager, T. M. Chem. Rev. 2000, 100, 2537. (c) Toal, S. J.; Trogler, W. C. J. Mater. Chem. 2006, 16, 2871. (d) Ziessel, R.; Ulrich, G; Harriman, A.; Alamiry, M. A. H.; Stewart, B.; Retailleau, P. Chem. Eur. J. 2009, 75, 1359.
    [75](a) Samuel, I. D. W; Turnbull, G. A. Chem. Rev. 2007,107, 1272. (b) Chiang, C. L.; Wu, M. F.; Dai, D. C.; Wen, Y. S.; Wang, J. K.; Chen, C. T. Adv. Fund. Mater. 2005, 75, 231. (c) Levitus, M.; Schmieder, K.; Ricks, H.; Shimizu, K. D.; Bunz, U. H. F.; Garcia-Garibay, M. A. J.Am.Chem. Soc. 2001, 123, 4259. (d) Sreejith, S.; Divya, K. P.; Ajayaghosh, A. Chem. Commun. 2008, 2903.
    [76](a) Wurthner, F. Chem. Commun. 2004, 1564. (b) Wasielewski, M. R. J. Org. Chem. 2006, 71, 5051.
    [77]Petter, R. C.; Salek, J. S.; Sikorski, C. T.; Kumaravel, G.; Lin, F.-T. J. Am. Chem. Soc. 1990, 112, 3860.
    [78]Hocquelet, C.; Blu, J.; Jankowski, C. K.; Arseneau, S.; Buisson, D.; Mauclaire, L. Tetrahedron 2006, 62,11963.
    [79]Reetz, M. T.; Waldvogel, S. R. Angew. Chem. Int. Ed. 1997, 36, 865.
    [80]南开大学有机化学博士毕业论文,2009,王克让
    [81]Yang, X.; Xu, X.; Ji, H. -F. J. Phys. Chem. B 2008,112, 7196.
    [82]DeSaja-Gonzalez, J.; Aroca, R.; Nagao, Y.; A DeSaja, J. Spectrochim. Acta, Part A 1997, 53, 173.
    [83](a) Kommidi, H.; Balasubramaniam, S.; Aidhen, I. S. Tetrahedron 2010, 66, 3723. (b) Voskuhl, J.; Waller, M.; Bandaru, S.; Tkachenko, B. A.; Fregonese, C; Wibbeling, B.; Schreiner, P. R.; Ravoo, B. J. Org. Biomol. Chem. 2012,10,4524.
    [84]Huang, Y.; Yan, Y.; Smarsly, B. M.; Wei, Z; Faul, C. F. J. J. Mater. Chem. 2009,19,2356.
    [85](a) Baram, J.; Shinnan, E.; Ben-Shitrit, N.; Ustinov, A.; Weissman, H.; Pinkas, I.; Wolf, S. G; Rybtchinski, B.J. Am. Chem. Soc. 2008, 130, 14966. (b) Golubkov, G; Weissman, H.; Shirman, E.; Wolf, S. G.; Pinkas, I.; Rybtchinski, B. Angew. Chem. Int. Ed. 2009, 48,926.
    [86]Yang, X.; Xu, X.; Ji, H.-F. J. Phys. Chem. B 2008,112,7196.
    [87](a) Shaller, A. D.; Wang, W.; Gan, H.; Li, A. D. Q. Angew. Chem. Int. Ed. 2008,47, 7705. (b) Li, A. D. Q.; Wang, W; Wang, L.-Q. Chem.;Eur. J. 2003, 9, 4594. (c) Wang, W; Han, J. J.; Wang, L.-Q.; Li, L.-S.; Shaw, W. J.; Li, A. D. Q. Nano Lett. 2003, 3,455. (d) Wang, W; Li, L.-S.; Helms, G; Zhou, H. -H.; Li, A. D. Q. J. Am. Chem. Soc. 2003,125, 1120.
    [88]Sadrai, M.; Hadel, L.; Sauers, R. R.; Husain, S.; Krogh-Jespersen, K.;Westbrook, J. D.; Bird, G R. J. Phys.Chem. 1992,96,7988.
    [89]Lee, M.; Lee, S.-J.; Jiang, L.-H. J. Am. Chem. Soc. 2004,126, 12724.
    [90]CRC handbook of Chemistry and Physics, 85th Edition, CRC Press, 2004.
    [91]Weinberg, N. L.; Weinberg, H. R. Chem. Rev. 1968, 68, 449.
    [92]Barnes, K. K.; Mann, C. K. J. Org. Chem. 1967,32,1474.
    [93]-Zhou, Q.; Swager, T. M. J. Am. Chem. Soc. 1995,117,7017.
    [94]Kim, H. N.; Guo, Z.; Zhu, W; Yoon, J.; Tian, H. Chem. Soc. Rev. 2011,40, 79.
    [95](a) Naddo, T.; Che, Y; Zhang, W.; Balakrishnan, K.; Yang, X.; Yen, M.; Zhao, J.; Moore, J. S.; Zang, L. J. Am. Chem. Soc. 2007,129,6978. (b) Ding, L.; Fang, Y Chem. Soc. Rev. 2010, 39,4258.
    [96]Newman, C. R.; Frisbie, C. D.; da Silva Filho, D. A.; Bredas, J. -L.; Ewbank, P. C.; Mann, K. R. Chem. Mater. 2004,16,4436.
    [97]Tang, Z.; Yang, J.; Yu, J.; Cui, B. Sensors 2010,10, 6463.
    [98](a) Hernandez-Jover, T.; Izquierdo-Pulido, M.; Veciana-Nogues, M. T.; Vidal-Carou, M. C. J. Agric. Food Chem. 1996, 44, 2710. (b) Hernandez-Jover, T.; Izquierdo-Pulido, M.; Veciana-Nogues, M. T.; Vidal-Carou, M. C. J. Agric. Food Chem. 1996, 44, 3097. (c) Hernandez-Jover, T.; Izquierdo-Pulido, M.; Veciana-Nogues, M. T.; Marine-Font, A.; Vidal-Carou, M. C. J. Agric. Food Chem. 1997, 45, 2098. (d) Veciana-Nogues, M. T.; Marine-Font, A.; Vidal-Carou, M. C. J. Agric. Food Chem. 1997, 45, 4324.
    [99]Muir, D. D.; Hunter, E. A.; Banks, J. M. Milchwissenschaft 1997,52, 85.
    [100]Preti, G; Labows, J. N.; Kostelc, J. G.; Aldinger, S.; Daniele, R. J. Chromatogr. Biomed. Appl. 1988,432,1.
    [101](a) Sotzing, G A.; Phend, J. N.; Grubbs, R. H.; Lewis, N. S. Chem. Mater. 2000,12, 593. (b) Simenhoff, M. L.; Burke, J. F.; Saukkonen, J. J.; Ordinario, A. T.; Doty, R. N. Engl. J. Med. 1977,297, 132.
    [102]Chow, C.-F.; Kong, H.-K.; Leung, S.-W.; Chiu, B. K. W.; Koo, C.-K.; Lei, E. N. Y.; Lam, M. H. W.; Wong, W.-T.; Won, W. -Y Anal. Chem. 2011, 83,289.
    [103](a) Jiang, B.-P.; Guo, D.-S.; Liu, Y. J. Org. Chem. 2010, 75, 7258. (b) Wang, F.; Yang, Y.; Swager, T. M. Angew. Chem., Int. Ed. 2008, 47, 8394.
    [104](a) Graser, F.; Hadicke, E. Liebigs Ann. Chem. 1980, 1994. (b) Klebe, G.; Graser, F.; Hadicke, E.; Berndt, J. Acta Crystallogr. Sect. B 1989, 45,69.
    [105]Yang, J.-S.; Swager, T. M. J. Am. Chem. Soc. 1998,120, 5321.
    [106](a) Velusamy, P.; Pitchumani, K.; Srinivasan, C. Tetrahedron 1996, 52, 3487. (b) Gadosy, T. A.; Boyd, M. J.; Tee, O. S. J. Org. Chem. 2000, 65, 6879.
    [107]Clark, A. E.; Qin, C; Li, A. D. Q. J. Am. Chem. Soc. 2007,129,7586.
    [108](a) Bohmer, V. Angew. Chem. Int. Ed. Engl. 1995, 34, 713. (b) Ikeda, A.; Shinkai, S. Chem. Rev. 1997, 97, 1713.
    [109]Gutsche, C. D.; Iqbal, M. Org. Synth. 1990, 68, 234.
    [110]Gutsche, C. D.; Levine, J. J. Am. Chem. Soc. 1982,104, 2652.
    [111]Shinkai, S.; Mori, S.; Tsubaki, T.; Sone, T; Manabe, O. Tetrahedron Lett. 1984, 25, 5315.
    [112]Stewart, D.; Gutsche, C. D. Org. Prep. Proc. Znt. 1993,25, 137.
    [113]Steed, J. W.; Johnson, C. P.; Barnes, C. L.; Juneja, R. K.; Atwood, J. L.; Reilly, S.; Hollis, R. L.; Smith, P. H.; Clark, D. L. J. Am. Chem. Soc. 1995,117, 11426.
    [114]李建森;陈远荫化学试剂 2000,22,178.
    [115]Percec, V.; Bera, T. K.; De, B. B.; Sanai, Y.; Smith, J.; Holerca, M. N.; Barboiu, B.; Grubbs, R. B.; Fr6chet, J. M. J. J. Org. Chem. 2001, 66, 2104.
    [116]Shinkai, S.; Mori, S.; Koreishi, H.; Tsubaki, T.; Manabe, O. J. Am. Chem. Soc. 1986, 108, 2409.
    [117]王卉兰;刁国旺;顾静 扬州大学学报(自然科学版)2004,7,21.
    [118]Zheng, Q.; Gong, S. L.; Chen, Y. Y. Syn. Comm. 2007, 37,2601.
    [119]Guo, D.-S.; Chen, S.; Qian, H.; Zhang, H.-Q.; Liu, Y. Chem. Commun. 2010, 46, 2620.
    [120]Ma, T.; Li, C.; Shi, G. Langmuir 2008,24,43.
    [121]Tomasulo, M.; Kaanumal, S. L.; Sortino, S.; Raymo, F. M. J. Org. Chem. 2007, 72, 595.
    [122]Watanaba, S.; Kobayashi, A.; Kakimoto, M. A.; Imai, Y. J. Polym. Sci., Part A: Polym. Chem. 1994, 32, 909.
    [123]Tong, H.; Hong, Y.; Dong, Y.; Halussler, M.; Li, Z.; Lam, J. W. Y.; Dong, Y.; Sung, H. H.-Y.; Williams, I. D.; Tang, B. Z. J. Phys. Chem. B 2007, 111, 11817.
    [124]Thiebaut, O.; Bock, H.; Grelet, E. J. Am. Chem. Soc. 2010,132, 6886.
    [125]De Schryver, F. C; Vosch, T.; Cotlet, M.; Van der Auweraer, M.; Mullen, K.; Hofkens, J. Acc. Chem. Res. 2005,38,514.
    [126]Kraft, A.; Grimsdale, A. C.; Holmes, A. B. Angew. Chem. Int .Ed. 1998,37,402.
    [127](a) Che ,Y; Zang, L. Chem. Commun. 2009, 5106. (b) Jiang, B.-P.; Guo, D.-S.; Liu, Y. J. Org. Chem. 2011, 76, 6101.
    [128](a) Ehli, C.; Oelsner, C.; Mateo-Alonso, A.; Prato, M.; Schmidt, C.; Backes, C.; Hauke, F.; Hirsch, A.; Guldi, D. M. Nat Chem. 2009,1, 243. (b) Krieg, E.; Shirman, E.; Weissman, H.; Shimoni, E.; Wolf, S. G; Pinkas, I.; Rybtchinski, B. J. Am. Chem. Soc. 2009,131,14365.
    [129]Hoeben, F. J. M.; Jonkheijm, P.; Meijer, E. W.; Schenning, A. P. H. J. Chem. Rev. 2005,105, 1491.
    [130]数据参考南开大学有机化学硕士毕业论文,2011,杨扬
    [131]Atwood, J. L.; Barbour, L. J.; Hardie, M. J.; Raston, C. L. Coord. Chem. Rev. 2001,222,3.
    [132](a) Cortie, M. B.; McDonagh, A. M. Chem. Rev. 2011, 111, 3713. (b) Elghanian, R.; Storhoff, J. J.; Mucic, R. C.; Letsinger, R. L.; Mirkin, C. A. Science 1997, 277, 1078. (c) Goesmann, H.; Feldmann, C. Angew. Chem. Int. Ed. 2010, 49, 1362. (d) Landfester, K. Angew. Chem. Int. Ed. 2009, 48, 4488. (e) Haase, M.; Schafer, H. Angew. Chem. Int. Ed. 2011, 50, 5808.
    [133](a) Dennis, A. M.; Rhee, W. J.; Sotto, D.; Dublin, S. N.; Bao, G ACSNano, 2012, 6, 2917. (b) Epstein, D. Si, T.; Lee, Y.-E. K.; Kopelman, R. Anal. Chem. 2012,84, 978.
    [134]Zhang, K.; Zhou, H.; Mei, Q.; Wang, S.; Guan, G.; Liu, R.; Zhang, J.; Zhang, Z. J. Am. Chem. Soc. 2011,133, 8424.
    [135]Pecher, J.; Mecking, S. Chem. Rev. 2010,110,6260.
    [136]Oaki, Y; Imai, H. Adv. Mater. 2006,18,1807.
    [137](a) Morgan, T. T.; Muddana, H. S.; Altinoglu, E. I.; Rouse, S. M.; Tabakivic, T.; Tabouillot, T.; Russin, T. J.; Shanmugavelandy, S. S.; Butler, P. J.; Eklund, P. C.; Yun, J. K.; Kester, M.; Adair, J. H. Nano Lett.2008, 8, 4108. (b) Roming, M.; Lunsdorf, H.; J. Dittmar, K. D.; Feldmann, C. Angew. Chem. Int. Ed. 2010,49, 642.
    [138](a) Aldred, M. P.; Li, C.; Zhang, G-F.; Gong, W.-L.; Li, A. D. Q.; Dai, Y; Ma, D.; Zhu, M.-Q. J. Mater. Chem. 2012, 22, 7515. (b) Patra, A.; Scherf, U. Chem.-Eur. J. 2012, 18, 10074. (c) Patra, A.; Koenen, J.-M.; Scherf, U. Chem. Commun. 2011, 47, 9612.
    [139](a) Tian, H.; Yang, S. J. Chem. Soc. Rev. 2004, 33, 85. (b) Irie, M.; Fukaminato, T.; Sasaki, T.; Tamai, N.; Kawai, T. Nature 2002,420,759.
    [140](a) Schultz, A.; Laschat, S.; Diele, S.; Nimtz, M. Eur. J. Org. Chem.2003,2829. (b) Aldred, M. P.; Li, C.; Zhu, M.-Q. Chem. Eur. J.2012,18,16037. (c) Huang, G.; Ma, B.; Chen, J.; Peng, Q.; Zhang, G.; Fan, Q.; Zhang, D. Chem. Eur. J.2012,18,3886.
    [141](a) Mosinger, J.; Deumie, M.; Lang, K.; Kubat, P.; Wagnerova, D. M. J. Photochem. Photobiol, A:Chem.2000,130,13. (b) Liu, J.; Jiang, N.; Ma, J.; Du, X. Eur. J. Org. Chem. 2009,4931. (c) Biedermann, F.; Elmalem, E.; Ghosh, I.; Nau, W. M.; Scherman, O. A.Angew. Chem. Int. Ed.2012,51,7739. (d) Dsouza, R. N.; Pischel, U.; Nau, W. M. Chem. Rev.2011, 111,7941.
    [142]数据参考南开大学化学专业本科毕业论文,2011,蒋似尧
    [143]Balazs, E. A. The structure of the Eye (Ed.:G K. Smelser), Academic Press, New York, 1996, pp.293.
    [144](a) Shu, X. Z.; Liu, Y.; Palumbo, F. S.; Luo, Y.; Prestwich, G.D. Biomaterials 2004,25, 1339. (b) Lopatin, V. V.; Askadski, A. A.; Peregudov, A. S.; Vasil'ev, V. G.J. Appl. Polym. Sci. 2005,96,1043. (c) Gupta, D.; Tator, C. H.; Shoichet, M. S. Biomaterials 2006,27,2370.
    [145](a) Dastidar, P. Chem. Soc. Rev.2008,37,2699. (b) Kang, D. J.; Bae, B.-S. Acc.Chem. Res. 2007,40,902.
    [146](a) Tamesue, S.; Takashima, Y.; Yamaguchi, H.; Shinkai, S.; Harada, A. Angew. Chem. Int. Ed.2010,49,7461. (b) Hwang, I.; Jeon, W. S.; Kim, H.-J.; Kim, D.; Kim, H.; Selvapalam, N.; Fujita, N.; Shinkai, S.; Kim, K. Angew. Chem. Int. Ed.2007,46,210.
    [147](a) Ajayaghosh, A.; George, S. J.; Praveen, V. K. Angew. Chem. Int. Ed.2003,42,332. (b) Abbel, R.; van der Weegen, R.; Pisula, W.; Surin, M.; Leclere, P.; Lazzaroni, R.; Meijer, E. W.; Schenning, A. P. H. Chem. Eur. J.2009,75,9737. (c) Chen, Q.; Zhang, D.; Zhang, G.; Yang, X.; Feng, Y; Fan, Q.; Zhu, D. Adv. Funct. Mater.2010,20,3244.
    [148]Wu, H.; Xue, L.; Shi, Y.; Chen, Y.; Li, X. Langmuir,2011,27,3074.
    [149]Lee, M.; Oh, N.-K. J. Mater. Chem.1996,6,1079.
    [150]Williams, M. E.; Murray, R. W. Chem. Mater.1998,10,3603.
    [151](a) Aoki, M.; Murata, K.; Shinkai, S. Chem. Lett.1991,1715. (b) Aoki, M.;Nakashima, K.; Kawabata, H. Tsutsui, S.; Shinkai, S. J. Chem. Soc. Perkin Trans.21993,347.
    [152](a) Zhou, J. L.; Chen, X. J.; Zheng, Y. S. Chem. Commun.2007,5200. (b) Becker, T.; Goh, C. Y.; Jones, F.; McIldowie, M. J.; Mocerino, M; Ogden, M. I. Chem. Commun.2008,3900. (c) Zhang, J.; Guo, D.-S.; Wang, L.-H.; Wang, Z.; Liu, Y. Soft Matter,2011,7,1756.
    [153](a) Rekharsky, M. V.; Inoue, Y. Chem. Rev.1998,98,1875. (b) Chen, Y.; Liu Y Chem. Soc. Rev.2010,39,495.
    [154]Tamesue, S.; Takashima, Y; Yamaguchi, H.; Shinkai, S.; Harada, A. Angew. Chem. Int. Ed. 2010,49,7461.
    [155]Davis, M. E.; Brewster, M. E. Nat. Rev.2004,3,1023.
    [156]Sugiyasu, K.; Fujita, N.; Shinkai, S. Angew. Chem. Int. Ed.2004,43,1229.
    [157]Wei, H.-L.; Zhang, A.-Y; Qian, L.-J.; Yu, H.-Q.; Hou, D.-D.; Qiu, R.-X.; Feng, Z.-G J. Polym. Sci., Part A:Polym. Chem.2005,43,2941.
    [158]Jing, B.; Chen, X.; Wang, X.-D.; Zhao, Y.-R.; Qiu. H.-Y. ChemPhysChem 2008,9,249.
    [159]Chen, Z.; Baumeister, U.; Tschierske, C.; Wiirthner, F. Chem. Eur. J. 2007,13,450.
    [160](a) Yang, Y.-W.; Chen, Y.; Liu, Y. Inorg. Chem. 2006, 45, 3014. (b) Okumura, H.; Kawaguchi, Y.; Harada, A. Macromolecules 2001,34,6338.
    [161](a) Ren, L.-X.; He, L.-H.; Sun, T.-C.; Dong, X.; Chen,Y.-M.; Huang, J.; Wang, C. Macromol. Biosci. 2009, 9, 902. (b) Huh, K. M.; Ooya, T.; Sasaki, S. Macromolecules 2001,34,2402. (c) Yuan, R.; Shuai, X.-T. J. Polym. Sei.,PartB: Polym. Phys. 2008,46, 782.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700