铁路CFG桩复合地基沉降控制机理与计算方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以铁道部重点科研项目“高速铁路CFG桩复合地基综合技术研究”(编号2007G046)为依托,在对京沪高速铁路李窑、凤阳试验段CFG桩筏复合地基和桩网复合地基各部分应力、变形测试结果进行综合分析的基础上,结合数学解析和数值模拟分析,较为系统地提出了铁路路堤下CFG桩复合地基的荷载传递机理、附加应力计算模型和沉降计算方法。
     1.在路堤下地基压力数值模拟的基础上,结合试验段剖面管沉降测试、路堤填土下土压力的现场测试结果,建立了铁路路堤下地基压力的扩散角法计算模型。
     2.试验段现场测试结果显示出两种复合地基形式桩顶/桩帽顶处土体以及路堤填土中的应力与荷载大小有关,同一荷载下应力随时间变化不大;桩筏复合地基LTP主要通过刚性板约束下的垫层来调节桩顶平面的桩、土应力,使桩承担更多的荷载;桩网复合地基LTP主要通过桩顶上拱效应,并通过面积扩大的桩帽“收集”作用,使更多的荷载转移到桩上。李窑、凤阳桩网复合地基LTP加筋垫层中的土工格栅变形较小并未发挥明显的拉膜效应。
     就桩顶/桩帽顶平面的桩土应力比而言,一般情况下桩筏复合地基的桩土应力比明显大于桩网复合地基。但就桩的荷载分担比而言,桩网复合地基并不“逊色”于桩筏复合地基。李窑、凤阳两个试验段中,桩网复合地基的桩土应力比仅仅约为桩筏复合地基的1/10,但由于桩帽增加了受力面积,最终使桩的荷载分担比差别不大,各分区的CFG桩均以不足7%的面积置换率获得了65-79%的荷载分担。
     3.凤阳试验段桩身轴力现场测试和分析结果显示,桩筏、桩网复合地基在桩的荷载传递方面有共同的特征。即,桩顶段都存在负摩阻力,在其作用下,部分桩间土所承受的荷载又重新传递到桩上,使桩轴力增加,桩间土附加应力减小。在某一深度,桩身轴力达到最大,附加应力降低到到最小值。在该深度以下,桩身轴力减小。计算分析表明,在该深度以下的一定深度范围内桩间土竖向应力等于或接近于路堤填筑前地基土中竖向应力。
     桩顶、桩端处桩侧摩阻力发挥较为充分;中性点(等沉面)两侧一定范围内,由于桩、土相对位移较小,摩阻力发挥受到限制,摩阻力较小;负摩阻段相对较短,中性点出现在桩身偏上的位置。
     4.基于一维压缩,桩侧摩阻力充分发挥,并近似认为中性点处桩间土附加应力减小到一个较低水平,可以忽略不计,提出了桩筏复合地基LTP的弹簧组模型,对“碎石垫层+钢筋混凝土板”型LTP的荷载传递效果进行模拟和分析。采用该模型,可以对桩顶平面桩、土应力,桩顶刺入变形等进行计算。
     5.指出桩顶土拱作用是桩网复合地基“桩帽+土工格栅+碎石垫层”型LTP的主要荷载传递方式。通过对桩网复合地基桩顶土拱的现场试验研究和数学解析,指出桩顶土拱的拱形接近于抛物线。建立了桩顶平面桩、土应力计算的球孔扩张法和抛物线拱法。
     6.以Mindlin解法为基础,提出了CFG桩复合地基加固区—下卧层并联模型。加固区与下卧层土体的模量比将影响到这一并联效应,使其应力比约等于模量比。由于加固区具有一定的整体性,加固区宽深比也将对并联效应产生影响。加固区宽深比越大,下卧层受力越大。综合加固区与下卧层土体模量比和加固区宽深比的影响,可得下卧层附加应力系数ψ,即下卧层中附加应力与等代深基础Boussinesq解附加应力之比。
     7.系统地提出了非疏桩条件下铁路CFG桩复合地基土中附加应力的简化计算方法:加固区附加应力根据侧限假定下的桩土相互作用简化模型进行计算;下卧层附加应力通过加固区与下卧层的并联效应分析,得出下卧层附加应力系数ψ,采用条形荷载下Boussinesq解计算,其计算结果乘以ψ即为下卧层附加应力。
     8.在地基中附加应力计算方法的基础上,提出了地基总沉降(最终沉降)和固结计算方法:地基总沉降计算采用分层总和法。在计算沉降时,应对室内试验和原位测试指标进行综合分析,结合当地经验确定地基土变形参数。铁路路堤下CFG桩复合地基的固结以下卧层固结为主,可以采用Terzaghi一维固结理论进行计算。
     9.实测的沉降—时间曲线可以分为快速发展、发展和稳定三个阶段。对拟合残差在沉降—时间曲线进入稳定阶段后的变化趋势进行分析,可以得出预测沉降值的偏离方向,从而提高沉降预测的可靠性。
In this dissertation, the measurement results of stress and deformation acquired at the CFG pile-raft and pile-net composite foundation test sections at Liyao and Fengyang in Beijing-Shanghai high-speed railway were analyzed comprehensively based on the key research project of MOR, "Integrated technical study of CFG piled high speed railway embankment" (No.2007G046). Combining with mathematical analysis and numerical simulation, the load transference mechanism, computation model of additional stress and the settlement calculation method for CFG piled railway embankments were proposed systemically.
     1. Based on numerical simulation for foundation stress, combined with test result of settlement tubes and soil stress under the embankments, a flare angle model for calculating foundation stress under railway embankment was created.
     2. The measured result of test sections shows that, for the two kind of composite foundations, the soil stress at the top of pile or pile cap and the soil stress in fillings is relevant to load, and the soil stress under the same load has little change with time. LTP of pile-raft composite foundation regulates pile and soil stress at pile top mainly according to the cushion constrained by stiff plate to make sure the piles support more loads. LTP of pile-raft composite foundation transfers more loads to piles by soil arch effect on pile top and pile-caps collection effect with their extending area. The deformation of geogrid among LTP of pile-net composite foundations in Liyao and Fengyang test sections is little, it doesn't exert obvious membrane effect.
     As far as the stress ratio of pile to soil at pile top or pile cap top is concerned, usually, the stress ratio of pile-raft composite foundations is obviously bigger than that of pile-net composite foundations. But as far as the pile efficacy is concerned, pile-net composite foundations are not inferior to pile-raft composite foundations. At Liyao and Fengyang test sections, the stress ratio of pile-net composite foundations is about 1/10 times as likely as that of pile-raft composite foundations, while the pile efficacy of both of the two kind of composite foundations are similar. At every section, the CFG piles is shared 65~79% of all load with the area replacement ratio less than 7%.
     3. In-situ test results of the axial force of piles at Fengyang show that, the pile-raft and pile-net composite foundations have the same character at the respect of load transfer. That is there is negative friction at the upside of pile. In the effect of negative friction, part of the load supported by piles is transferred to soil, so the axial force of pile is increased, and the additional stress of soil is reduced. At a depth where the axial force of pile grows to its maximum, the additional stress of soil decreases to its minimum. Below this depth, the axial force of pile began to reduce. The calculated results indicate that below the depth the vertical stress of soil between the piles is approximately equal to the vertical stress of soil foundation before filling.
     Lateral friction at pile top and pile bottom is brought into full play. Within a limited range of both sides of neutral point (equi-settlement plane), the relative displacement between pile and soil is small, so the lateral friction is restricted to a small value. The segment of negative friction is short comparatively, and neutral point is at the upper place of pile.
     4. Based on the simplification, which includes one-dimensional compression, lateral friction of pile is brought into full play and the additional stress of soil at neutral point is reduced to about zero, it proposed a spring-set model for LTP of pile-raft composite foundation to simulate and analyze the load transfer effect of LTP consisted of crushed-stone +steel reinforced concrete slab. Pile and soil stress, penetration deformation at pile top and so on can be calculated with this model.
     5. It pointed out that the soil arch effect was the mainly load transfer method for LTP of pile-net composite foundation, which consisted of pile cap+geogrid+crushed-stone layer. By research on in-situ test and mathematical analysis of soil arch at pile top of pile-net composite foundations, it also pointed out that the soil arch of top-pile was close to parabola, and then built a spherical cavity expansion method and a parabola arch method to calculate the stress of pile and soil at pile top.
     6. Based on Mindlin's solution, it proposed the parallel model between the reinforced body and the substratum of CFG pile composite foundation. The parallel effect is affected by modulus ratio of reinforced body to substratum. The stress ratio of reinforced body to substratum is almost equal to modulus ratio. Because reinforced body has some characters of integrality, the ratio of its width to depth also affects the parallel effect. The bigger the ratio of width to depth is, the greater the stress of substratum has. Combining the two influences produced by modulus ratio of reinforced body to substratum and the ratio of width to depth of reinforced body, the additional stress coefficientΨof substratum can be solved.Ψis the ratio between additional stress in substratum and equivalent deep foundation Boussinesq's solution.
     7. It proposed a simplified calculation method systematically for additional stress of CFG pile composite foundation under the condition of non-sparse piles. That is, the additional stress of reinforced body is calculated according to simplified model of interaction of pile-soil under confined compression. By analyzing the additional stress in substratum using parallel effect between reinforced body and substratum, the additional stress coefficientΨof substratum can be solved. And then, we can get the additional stress of substratum by multiplying Boussinesq's solution under strip load withΨ.
     8. It proposed a calculation method for total settlement (final settlement) and consolidation of foundation based on above calculation method for additional stress. It is the final settlement of foundation can be computed by layer-wise summation method. During settlement calculation, the laboratory test indexes and in-situ test indicators should be analyzed comprehensivly. Deformation parameter of foundation soil should also be established combined with local experience. Consolidation of CFG pile composite foundation is mainly consisted of the consolidation of substratum. It can be calculated based on Terzaghi's one-dimensional consolidation theory.
     9. The measured settlement-time curve could be divided into three stages as follows: rapid developing stage, developing stage and stable stage. By analyzing the change trend of fitting residual in stable stage of settlement-time curve, the deviated direction of predicted settlement values can be obtained. Thereby, the reliability of predicted settlement can be improved.
引文
[1]中华人民共和国铁道部.中长期铁路网规划(2008年调整)[EB/OL]. http://www.china-mor.gov. cn/tllwjs/tlwgh_6.html.
    [2]铁道第三勘察设计院,铁道第四勘察设计院.新建时速300-350公里客运专线铁路设计暂行规定[S].北京:中国铁道出版社,2007年4月.
    [3]铁道第三勘察设计院,铁道第四勘察设计院.新建时速200~250公里客运专线铁路设计暂行规定[S].北京:中国铁道出版社,2005年11月.
    [4]铁道部第一勘测设计院.铁路路基设计规范(TB10001-2005)[S].北京:中国铁道出版社,2005年8月.
    [5]中华人民共和国建设部.建设事业“十一五”推广应用和限制禁止使用技术(第一批)公告(2007年第659号)[EB/OL]. http://www.mohurd.gov.cn/gsgg/gg/jsbgg/200707/t20070706_156075.htm.
    [6]赵国堂.高速铁路无碴轨道结构[M].北京:中国铁道出版社,2006年4月.
    [7]王其昌.高速铁路土木工程[M].成都:西南交通大学出版社,1999年11月.
    [8]杨广庆,刘树山,刘田明.高速铁路路基设计与施工[M].北京:中国铁道出版社,1999年3月.
    [9]尤昌龙.客运专线铁路路基沉降变形及控制技术[A],//杜永昌.高速与客运专线铁路施工工艺手册[M].北京:科学技术文献出版社,2006年10月.
    [10]铁道第三勘察设计院集团有限公司,中铁第四勘察设计院集团有限公司,中国铁道科学研究院.高速铁路设计规范(TB10621-2009)[S].中国铁道出版社,2010年1月.
    [11]河海大学,江苏宁沪高速公路股份有限公司.交通土建软土地基工程手册[M].北京:人民交通出版社,2001年4月.
    [12]中华人民共和国建设部.建筑地基基础设计规范(GB50007-2002)[S].北京:中国建筑工业出版社,2002年3月.
    [13]中华人民共和国建设部.建筑地基基础设计规范(2009年征求意见稿)[EB/OL]. http://www. risn.org.cn/Norm/LevyComment/ShowInfo.aspx?guid=61c2544c-8247-4515-b4b3-49d859fe72b8.
    [14]中国建筑科学研究院.建筑地基处理技术规范(JGJ79-2002)[S].北京:中国建筑工业出版社,2002年12月.
    [15]中国建筑科学研究院.建筑桩基技术规范(JGJ94-2008)[S].北京:中国建筑工业出版社,2008年8月.
    [16]河北省建设勘察研究院.低强度混凝土桩复合地基技术规程(DB13(J)32-2002)[S].河北省工程建设标准化管理办公室,2002年.
    [17]中华人民共和国铁道部.客运专线铁路无碴轨道铺设条件评估技术指南(铁建设[2006]158号)[S].北京:中国铁道出版社,2006年9月.
    [18]张在明.岩土工程的工作方法[J],//第二届全国岩土与工程学术大会论文集[C].北京:科学出版社,2006年.
    [19]British Standard Institute. British Standard BS8006:Code of practice for strengthed/reinforced soils and other fills[S]. London:British Standard Institution,1995.
    [20]Yvonne Rogbeck. Claes Alen, Gunilla Franzen. etc. Nordic Guidelines for Reinforced Soils and Fills[M]. Oslo:Nordic Geosynthetic Group, May 2003.
    [22]Geotechnical Engineering Office, Civil Engineering and Development Deapartment. Foundation design and construction[M]. Hong Kong:The Government of the Hong Kong Special Administrative Region,2006.
    [23]R. W. Sarsby. Geosynthetics in civil engineering[M]. Woodhead Publishing Limited (in association with The Textile Institute),2007.
    [24]H.G.Kempfert, Berhane Gebreselassie. Excavations and foundations in soft soils [M]. Springer, 2006.
    [25]《桩基工程手册》编写委员会.桩基工程手册[M].北京:中国建筑工业出版社,1995年9月.
    [26]铁道部第一勘测设计院.工程地质试验手册[M].北京:中国铁道出版社,1982年9月.
    [27]唐贤强,谢瑛,谢树彬等.地基工程原位测试技术[M].北京:中国铁道出版社,1993年3月.
    [28]龚晓南.复合地基理论及工程应用[M].北京:中国建筑工业出版社,2002年11月.
    [29]阎明礼,张东刚.CFG桩复合地基技术及工程实践[M].北京:中国水利水电出版社,2006年10月.
    [30]陈祥福.沉降计算理论及上程实例[M].北京:科学出版社,2005年3月.
    [31]折学森.软土地基沉降计算[M].北京:人民交通出版社,1998年4月.
    [32]赵维炳,唐彤芝,高长胜,戴济群.控制工后沉降处理深厚软土地基[M].北京:人民交通出版社,2006年10月.
    [33]何晓群,刘文卿.应用回归分析[M].北京:中国人民大学出版社,2007年7月.
    [34]付宏渊.高速公路路基沉降预测与施工控制[M].北京:人民交通出版社,2007年7月.
    [35]王炳龙.高速铁路路基工程[M].北京:中国铁道出版社,2007年9月.
    [36]黄强.桩基工程若干热点技术问题[M].北京:中国建材工业出版社,1996年9月.
    [37]高大钊.桩基础的设计方法与施工技术[M].北京:机械工业出版社1999年9月.
    [38]饶为国.桩—网复合地基原理及实践[M].北京:中国水利水电出版社,2004年8月.
    [39]宰金珉.复合桩基理论与应用[M].北京:知识产权出版社,中国水利水电出版社,2004年11月.
    [40]邱发兴.地基沉降变形计算[M].成都:四川大学出版社,2007年2月.
    [41]上海现代建筑设计集团有限公司.地基基础设计规范(DGJ08-11-1999)[S].上海市工程建设规范,1999年.
    [42]宰金珉,宰金璋.高层建筑基础分析与设计——土与结构物共同作用的理论与应用[M].北京:中国建筑工业出版社,1993年2月.
    [43]张爱军,谢定义.复合地基三维数值分析[M].北京:科学出版社,2004年2月.
    [44]何华武.京津城际铁路科技创新[J].中国工程科学,2009,11(1):4-16.
    [45]陈新建.桩板结构在京津城际轨道路基工程中的应用[J].山西建筑,2007(3):294-296.
    [46]黄熙龄,阎明礼.小桩复合地基试验研究[J]//中国土木.工程学会.海峡两岸土力学及基础工程、地工技术学术研讨会论文集[C].西安,1994年10月.
    [47]阎明礼,曲秀莉等.复合地基的复合模量分析[J].建筑科学,2004(4):27-32.
    [48]龚晓南.广义复合地基理论及工程应用[J].岩土工程学报,2007,29(1):1-13.
    [49]李广信.地基处理设计计算的三个原则//岩土工程20讲—岩坛漫话[M].人民交通出版社,2007年5月.
    [50]Kempfert H G. Heitz C, Raithel M. Geogrid Reinforced Railway Embankment on Piles Railway Hamburg-Berlin, Germany [J]. Department of Civil Engineering, IIT Bombay, Mumbai, India, ICGGE-2004.
    [51]Kempfert H G. Ground improvement methods with special emphasis on column-type techniques[C]. Int. Workshop on Geotechnics of Soft Soils-Theory and Practice,2003.
    [52]Kempfert H G, Gobel C, Alexiew D, Heitz C. German recommendations for reinforced embank-ments on pile-similar elements[C].//Proccedings of 3rd European Geosynthetics Conference Eurogeo3.Germany:Munich,2004:279-284.
    [53]Low B K, Tang S K, Choa V. Arching in piled embankments[J]. Journal of Geotechnical Engineering, ASCE,1993,120(11):1917-1938
    [54]Eekelen S J M van, Bezuijen V, Duijnen P van, Jansen H L. Piled embankments using geosynthetic reinforcement in the Netherlands:design, monitoring & evaluation[C].//Hamza M, et al. Proceedings of the 17th International conference on Soil Mechanics and Geotechnical Engineering. 2009
    [55]Suzanne Van Eekelen. Adam Bezuijen, Dimiter Alexiew. Piled embankments in the Netherlands, a full-scale test, comparing 2 years of measurements with design calculations[C]. Proceedings of EuroGeo4, Edinburgh UK, Sep.2008. Papernumber 264.
    [56]Hewlett W J, Randolph M F. Analysis of piled embankments[J]. Ground Engineering.1998,21(3): 12-18.
    [57]Schwarz W, Raithel M. Stabilization of soft organic soils with cement columns using the Mixed-in-Place technique (MIP) for a railway embankment[J]. Schwarz Stockholm,2005.
    [58]Karl Terzaghi. Theoretical soil mechanics[M]. John Wiler and Sons. Inc.1943.
    [59]Randolph M F, Worth C P. Analysis of deformation of vertically loaded piles[J]. Journal of Geotechnical Engineering, ASCE,1978,104(2):1465-1488.
    [60]Tomlinson M J. Pile design and construction practice[M]. E & FN Spon,1994.
    [61]Ing. N.G. Cortlever, H.H. Gutter, design of double track railway Bidor-Rawang on AuGeo piling system according to BS8006 and PLAXIS numerical analysis [R/OL].Http://www.cofra.com/ pa-pers/KL2002Augeo.pdf. Am-sterdam:Cofra:2002.
    [62]Ing. N.G. Cortlever. design of double railway track on AuGeo piling system. [R/OL].Http://www. cofra. com/pa-pers/Bangkok2001augeo.pdf. Am-sterdam:Cofra:2002.
    [63]Rutugandha Gangakhedkar. Geosynthetic reinforced pile supported embankments[D]. University of Florida,2004.
    [64]Poulos H G. Piled raft foundations:design and applications[J]. Geotechnique,2001,51(2):95-113.
    [65]Bastien Chevalier, Gael Combe, Pascal villard. Load transfers and arching effects in granular soil layer[C].18eme Congres Francais de Mecanique,2007.
    [66]Mandolini A, Viggiani C. Settlement of piled foundations[J]. Geotechnique,1997,47(4):791-816.
    [69]Ril 836.Erdbauwerke planen,bauen und instand halten[S].Fassung vom 20.12.1999, DB Netz AG.
    [70]吴慧明.不同刚度基础下复合地基性状研究[D].杭州:浙江大学,2000.
    [71]陈仁朋.软弱地基中桩筏基础工作性状及分析设计方法研究[D].杭州:浙江大学,2001.
    [72]李海芳.路堤荷载下复合地基沉降计算方法研究[D].杭州:浙江大学,2004.
    [73]王振芳.路堤下PCC桩复合地基群桩作用性状研究[D].南京:河海大学,2007.
    [74]徐立新.桩承式加筋路堤的设计计算方法研究[D].杭州:浙江大学,2007.
    [75]芮瑞.刚性桩加固软土地基的路堤荷载传递机理与优化研究[D].武汉:武汉理工大学,2007.
    [76]胡德贵.轴向荷载作用下群桩基础的沉降研究[D].成都:西南交通大学,2001.
    [77]雷金波.带帽控沉疏桩复合地基试验研究及作用机理分析[D].南京:河海大学,2005.
    [78]陈明中.群桩沉降计算理论及桩筏基础优化设计研究.杭州:浙江大学,2000.
    [79]詹永祥.高速铁路无碴轨道桩板结构路基设计理论及试验研究[D].成都:西南交通大学,2007.
    [80]余闯.路堤荷载下刚性桩复合地基理论与应用研究[D].南京:东南大学,2006.
    [81]徐洋,谢康和,梁仕华.复合地基的平面应力扩散效应[J].土木工程学报2002,35(2):56-69.
    [82]王凤池,朱浮声,张德海.水泥搅拌桩地基下卧层沉降计算方法选择[J].沈阳建筑大学学报2006,22(5):705-708.
    [83]陈仁朋,凌道盛,陈云敏.群桩基础沉降计算中的几个问题[J].土木工程学报,2003,36(9):89-94.
    [84]池跃君,宋二祥,陈肇元.复合地基沉降计算方法的探讨及应用[J].土木工程学报,2003,36(11):19-23.
    [85]龚晓南.复合地基发展概况及其在高层建筑中的应用[J].土木工程学报,1999,32(6):3-10.
    [86]蒋刚,宰金珉,陈国兴等.复合桩基设计与沉降分析[J].岩土力学,2003,24(3):405-409.
    [87]钟敏祥.京津城际客运专线软土地基路堤施工技术[J].路基工程,2008,(3):172-173.
    [88]刘金砺,迟铃泉.桩土变形计算模型和变刚度调平设计[J].岩土工程学报,2000,22(2):151-157.
    [89]方磊,谢永利.柔性基础下复合地基桩土应力比模型试验.长安大学学报(自然科学版),2005,25(2):30-32.
    [90]陈仁朋,徐正中,陈云敏.桩承式加筋路堤关键问题研究[J].中国公路学报,2007,20(2):7-12.
    [91]周镜,叶阳升,蔡德钩.国外加筋垫层桩支承路基计算方法分析[J].中国铁道科学,2007,28(2):1-6.
    [92]章定文,刘松玉.路堤荷载下柔性桩复合地基沉降实用计算方法.岩土力学,2007,28(6):1133-1138.
    [93]王长科,郭新海.基础—垫层—复合地基共同作用原理[J].土木工程学报,1996,29(5):30-35.
    [94]陈福全,吕艳平,侯永峰.桩承加筋式路堤的承载机理研究[J].铁道学报,2007,29(4):74-79.
    [95]刘金砺,邱明兵.软土中群桩承载变形特性与减沉复合疏桩基础设计计算[J].岩土工程学报2008,30(1):51-55.
    [96]赵锡宏,董建国,袁聚云.桩基减少桩数与沉降问题的研究[J].土木工程学报,2000,33(3):71-74.
    [97]黄绍明,王迪民,裴捷等.按沉降量控制的复合桩基设计方法(上)[J].工业建筑,1992,7:34-36.
    [98]毛前,龚晓南.桩体复合地基柔性垫层的效用研究[J].岩土力学,1998,19(2):67-73.
    [99]沈伟,池跃君,宋二祥.考虑桩—土—垫层协同作用的刚性桩复合地基沉降计算方法[J].岩土力学,2003,20(2):36-42.
    [100]王年云.刚性桩复合地基设计的探讨[J].武汉城市建设学院学报,1999,16(2):44-47.
    [101]池跃君,沈伟,宋二祥.垫层破坏模式的探讨及其与桩土应力比的关系[J].工业建筑,2001,31(11):9-11.
    [102]夏元友,芮瑞.刚性桩加固软土路基竖向土拱效应的试验分析[J].岩土工程学报,2006,28(3):327-331.
    [103]刘吉福.路堤下复合地基桩-土应力比分析[J].岩石力学与工程学报,2003,22(4):674-677.
    [104]宰金珉,王旭东,余闯.复合桩基地基土中附加应力分布特征及沉降计算简化方法.工业建筑,2005,35(5):24-27.
    [105]陈善雄,许锡昌,赵文光.柔性荷载下粉喷桩复合地基承载特性试验研究[J].岩土力学,2007,28(2):274-278.
    [106]杨雪强,何世秀,庄心善.土木工程中的土拱效应[J].湖北工学院学报,1994,9(1):1-7.
    [107]陈福全,李阿池,吕艳平.桩承式路堤中土拱效应的改进Hewlett算法[J].岩石力学与工程学报,2007,26(6):1278-1283.
    [108]董必昌,郑俊杰.CFG桩复合地基沉降计算方法研究[J].岩石力学与工程学报,2002,21(7):1084-1086.
    [109]蒋良潍,黄润秋,蒋忠信.黏性土桩间土拱效应计算与桩间距分析[J].岩土力学,2006,27(3):445-450.
    [110]Bujang B K Huat, Faisal Hj Ali. A contribution to the design of a piled embankment[J]. Universiti Pertanian Malaysis Press, Pertanika J. Sci. & Technol.1993,1(1):79-92.
    [111]Alexiew D, Pohlmann H, Lieberenze K. Railroad embankment with reinforced slopes and base on stone columns[C]. Proceeding of EuroGeo 2, Blogona, Italy, Partron Editor,2000 (2):239-244.
    [112]Huges J.M.O, Withers N J. Reinforcing of soft cohesive soil with stone columns[J]. Ground Engineering. September,1974:42-49.
    [113]Osman E A M, Radwan A M, Sadeek R A, Sultan B A. Reinfroced sand by micro-reinfrocement system[C].7th International Conference for building & construction "Towards Better Urban Planning". InterBuild 2000, Cairo. Egypt, June 2010.
    [114]Suzanne J. M. van Eekelen, Adam Bezuijen. Design of piled embankments, considering the basic starting points of the British Standard BS8006[C]. EuroGeo4 Paper number 315.
    [115]Liu M D, Carter J P.Virgin compression of structured soils [J]. Geotechnique,1999,49(1):43-57.
    [116]Been K, et al. The cone penetration test in sands:part Ⅰ. state parameter interpretation [J]. Geotechnique,1986,36(2):239-249.
    [117]Been K, et al. The cone penetration test in sands:part Ⅱ, general inference of state [J]. Geotechnique,1987,37(3):285-299.
    [118]Han J, Gabr M A. Numerical analysis of geosynthetic reinforced and pile supported earth platforms over soft soils [J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2002,128(1):44-53.
    [119]Department of the Army U.S. Army Corps of Engineers. Engineering and Design:Settlement analysis[M]. Em1110-1-1904. Sep.1990.
    [120]Han J, Akins K. Use of geogrid-reinforced and pile-supported earth structures[A]. In:Proceedings of International Deep Foundation Congress[C]. Orlano:[s.n.],2002.668-679.
    [121]Chew S H, Phoon H L, Loke K H, et al. Geotextile reinforced piled embankment-full-scale model tests[A]. In:Shim J B, Yoo C, Jeon H Y ed. Proceedings of the 3rd Asian regional conference on Geosynthetics[C]. Korea:Hotel Seoul education and culture center Seoul,2004.661-668.
    [122]S Valliappan, V Tandjiria, N Khalili. Design of raft-pile foundation using combined optimization and finite element approach[J]. International journal for numerical and analytical methods in geomechanics,1999,(23):1043-1065.
    [123]王丽琴,靳宝成,杨有海.黄土路堤工后沉降预测新模型与方法[J].岩石力学与工程学报,2007,26(11):2370-2376.
    [124]许永明,徐泽中.一种预测路基工后沉降量的方法[J].河海大学学报,2000,28(5):110-113.
    [125]梅国雄,宰金珉,殷宗泽等.沉降—时间曲线呈“S”型的证明——从一维固结理论角度[J].岩土力学,2004,25(1):20-22.
    [126]王国光,严平,龚晓南.桩基荷载作用下地基土竖向应力的上限估计[J].岩土工程学报,2003,25(1):116-118
    [127]宰金珉.复合桩基沉降计算的最终应力法及其应用[J].土木工程学报,2002,35(2):61-69.
    [128]方鹏飞,朱向荣,冯军洪.减沉桩的工程应用试验研究[J].岩土工程学报,2009,31(1):100-104.
    [129]邓友生,龚维明,袁爱民.超长大直径群桩沉降计算方法探讨[J].铁道学报,2007,29(4):87-90.
    [130]楼晓明,孙晓锋,陈广.大面积路堤荷载下带承台桩的荷载传递分析[J].土木工程学报,2009,42(2):98-104.
    [131]楼晓明,孙晓锋.大面积带垫层刚性桩复合地基的荷载传递分析方法[J].岩土工程学报,2006,28(11):2027-2030.
    [132]王涛,刘金砺.桩—土—桩相互作用影响的试验研究[J].岩土工程学报,2008,30(1):100-105.
    [133]Lunne T. Robertson P K. Powell J J M. Cone penetration testing in geotechnical practice[M]. Chapman & Hall,1997.
    [134]Arulrajah A, Bo M W, Nikraz H, Hashim R. Pre-reclamation In-situ testing of soft soil[J], Australian Geomechanics,2006,41(4):57-68.
    [135]Mesri G, Ghoi Y K. Settlement analysis of embankments on soft clay[J]. Journal of Geotechnical Engineering,1985,111(4):441-447.
    [136]Loganathan N. Deformation analysis of embankments[J]. Journal of Geotechnical Engineering, 1993,119(6):1185-1206.
    [137]Rowe R K, Gnanendran C T, Landva A O, et al. Calculated and observed behaviors of a reinforced embankment over soft compressible soil[J]. Canadian Geotechnical Journal,1996,32(2):324-338.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700