初始变形条件下桩—土动力增量理论
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文运用增量弹性变形理论,在现有的桩土动力分析理论的基础上,研究了初始应力-应变状态对桩土动力相互作用特征的影响,并在以下几个方面做了较为深入的研究:
     运用增量弹性变形理论研究了初始轴向变形状态对各向均质饱和孔隙土体中的端承桩的动力响应问题。桩坐标下的土体运动控制方程参考Biot的增量孔隙弹性理论,而桩体的动力方程是由基桩—维弹性理论推导得到。通过分离变量法得到了桩顶阻抗、桩顶扭转速度的时域和频域响应解析表达式。代入特定的参数分析了初始变形对扭转阻抗、桩顶扭转角速度的影响。
     基于初始变形体的增量动力理论,研究由了桩-土相互作用引起的径向非均匀初始应变场作用下的桩基础动力响应问题。推导了初始应变场引起的桩周土体的剪切模量和物理参数沿径向的变化规律。通过将桩周土体划分为若干同心圆土环,并考虑桩土和土环间完全接触条件,得到土体在分界面处的纵向阻抗解析式,并与前人所得结果进行了对比。进而推导出桩顶的纵向阻抗和速度响应的频域解析式和时域半解析表达式。选取合适的参数在低频范围内对界面压力的影响效应进行了探讨。
     对分层土体中的纵向变截面桩的径向动力响应问题进行了研究。得到桩顶轴向振动特征的解析解答。分析了初始变形状态的成层性的影响规律以及桩径变化对桩顶速度响应时间信号的影响。
     采用分层离散法,研究了径向非均匀初始应变场作用下的扭转波在桩-土结构中的传播弥散特征,建立了相应的特征方程,并采用“二分法”对方程进行了数值解答,通过所得结果对分层数和初始界面压力这两个因素的影响效应进行了探讨。
By coupling incremental elastic deformation theory with available pile-soil dynamic theory, the influences of initial stress-strain state on dynamic characteristics are studied in depth within the following fields:
     (1) By utilizing the incremental elastic deformation theory, the influence of initial longitudinal strain state on the dynamic response of an end bearing pile embedded in isotropic saturated soil is investigated. The governing equations for soil, based on the Biot's poroelasticity theory, are derived in cylindrical coordinates and the pile is modeled using one-dimensional elastic theory. The analytical solutions of pile impedance, frequency response of twist angle and time history of velocity response are obtained by using the separation of variables technique. Finally, a parametric study of the influence of initial strains on the torsional impedance, twist angle and velocity response at the top of the pile is undertaken and discussed.
     (2) The influence of radially inhomogeneous initial strain field caused by the interfacial pressure at the interface of pile-soil medium on the dynamic response of pile and initially homogeneous soil is discussed based on the theory related to the dynamics of initially stressed bodies. The radially variation rule of shear modulus and physical parameters of soil caused by the initial strain field is deduced. The analytical solution of longitudinal dynamic impedance of soil is obtained by subdividing the soil domain into a number of annular vertical zones and introducing the plane strain and complete P-S (pile-soil) contact assumptions. A comparison between previous solutions and the present one is also carried out.. The longitudinal impedance of pile top and velocity response in frequency and time domains, are then obtained. The parametrical study of interfacial pressure on the dynamic response of P-S system is undertaken within relative lower frequency domain.
     (3) The longitudinal dynamic response of pile with variable section in layered soil medium is studied. The analytical solutions of longitudinal dynamic characteristics at the top of pile are obtained. The effect of layered property of initial deformation state, together with the effect of section change on the characteristics of reflected signal at the top of pile is discussed.
     (4) By employing "layer discrete method", the dispersion relation of torsional wave propagation in radially inhomogeneously strained pile-soil structure is investigated. The corresponding eigen-value problem is formulated and numerically solved by employing the "bisection method". The effects of influence parameters such as the number of layer and initial interface pressure is discussed according to the numerical results.
引文
[1]Akbarov S. D., Dynamical (time-harmonic) axisymmetric interface stress field in the finite pre-strained half-space covered with the finite pre-stretched layer. International Journal of Engineering Science,2006,44 (1-2),93-112.
    [2]Akbarov S. D. and Guler C., Dynamical (harmonic) interface stress field in the half-plane covered by the prestretched layer under a strip load. Journal of Strain Analysis for Engineering Design,2005,40 (3),225-235.
    [3]Akbarov S. D. and Guliev M. S., Axisymmetric longitudinal wave propagation in a finite pre-strained compound circular cylinder made from compressible materials. Cmes-Computer Modeling in Engineering & Sciences,2009,39 (2),155-177.
    [4]Akbarov S. D. and Guliev M. S., The influence of the finite initial strains on the axisymmetric wave dispersion in a circular cylinder embedded in a compressible elastic medium. International Journal of Mechanical Sciences,2010a,52 (1),89-95.
    [5]Akbarov S. D., et al., Dispersion relations of axisymmetric wave propagation in initially twisted bi-material compounded cylinders. Journal of Sound and Vibration,2011a,330 (8),1644-1664.
    [6]Akbarov S. D., et al., Propagation of axisymmetric waves in an initially twisted circular compound bimaterial cylinder with a soft inner and a stiff outer constituents. Mechanics of Composite Materials,2011b,46 (6),627-638.
    [7]Akbarov S. D. and Guz A. N., Axisymmetric longitudinal wave propagation in pre-stressed compound circular cylinders. International Journal of Engineering Science,2004,42 (8-9), 769-791.
    [8]Akbarov S. D. and Ipek C., The influence of the imperfectness of the interface conditions on the dispersion of the axisymmetric longitudinal waves in the pre-strained compound cylinder. Cmes-Computer Modeling in Engineering & Sciences,2010b,70 (2),93-121.
    [9]Akbarov S. D. and Ipek C., Dispersion of axisymmetric longtudinal waves in a pre-strained imperfectly bonded bi-layered hollow cylinder. Cmc-Computers Materials & Continua,2012, 30 (2),99-144.
    [10]Akbarov S. D., et al., Torsional wave dispersion in a finitely pre-strained hollow sandwich circular cylinder. Journal of Sound and Vibration,2011c,330 (18-19),4519-4537.
    [11]Akbarov S. D., et al., Torsional wave propagation in the finitely pre-stretched hollow bi-material compound circular cylinder. Cmc-Computers Materials & Continua,2011d,26 (2), 91-109.
    [12]Akbarov S. D. and Ozaydin O., Lamb's problem for an initially stressed stratified half-plane. International Applied Mechanics,2001,37 (10),1363-1367.
    [13]Asef M. and Reddish D., The impact of confining stress on the rock mass deformation modulus. Geotechnique,2002,52 (4),235-241.
    [14]Biot M. A., Non-linear theory of elasticity and the linearized case for a body under initial stress. Philosophical Magazine,1939,27 (183),468-489.
    [15]Biot M. A., The influence of initial stress on elastic waves. Journal of Applied Physics,1940, 11(8),522-530.
    [16]Biot M. A., Surface instability in finite anisotropic elasticity under initial stress. Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences,1963a,273 (1352), 329.
    [17]Biot M. A., Theory of stability and consolidation of a porous medium under initial stress. Journal of Mathematics and Mechanics,1963b,12 (4),521-541.
    [18]Biot M. A., Continuum theory of stability of embedded layer in finite elasticity under initial stress. Quarterly Journal of Mechanics and Applied Mathematics,1964,17(1),17-22.
    [19]Biot M. A. Mechanics of incremental deformation, Vol. of the series New York:John Wiley, 1965.
    [20]Cai Y. Q., et al., Torsional response of pile embedded in a poroelastic medium. Soil Dynamics and Earthquake Engineering,2006,26 (12),1143-1148.
    [21]Cauchy A. L. Exercise de mathematique, Vol. of the series Paris:Bure Feres,1827.
    [22]Chadwick P. and Ogden R. W., On the definition of elastic moduli. Archive for Rational Mechanics and Analysis,1971a,44 (1),41-53.
    [23]Chadwick P. and Ogden R. W., Theorem of tensor calculus and its application to isotropic elasticity. Archive for Rational Mechanics and Analysis,1971b,44 (1),54-68.
    [24]Chekurin V. F., et al. Iterative process for a problem of elastic disturbance propagation in un-uniformly strained semi-space, Vol. of the series Direct and inverse problems of electromagnetic and acoustic wave theory Tbilisi:Tbilisi State Univ,2005a.
    [25]Chekurin V. F. and Kravehyshyn O. Z., Influence of the inhomogeneity of the initial stress-strain state on elastic perturbations in a solid body. Materials Science,2005b,41 (5), 567-580.
    [26]Chen W. F. and Salub A. F. Constitutive equations for engineering materials, vol.1:Elasticity and modelling, Vol. of the series New York: JOHN WILEY & SONS, INC,1982.
    [27]Dotson K. W. and Veletsos A. S., Vertical and torsional impedances for radially inhomogeneous viscoelastic soil layers. Soil Dynamics and Earthquake Engineering,1990,9 (3),110-119.
    [28]El Naggar M. H., Vertical and torsional soil reactions for radially inhomogeneous soil layer. Structural Engineering and Mechanics,2000,10 (4),299-312.
    [29]E1 Naggar M. H. and Novak M., Nonlinear lateral interaction in-pile dynamics. Soil Dynamics and Earthquake Engineering,1995,14 (2),141-157.
    [30]Eringen A. C. and Suhubi E. S. Elastodynamics, vol. I. Finite motions, Vol. of the series New York, London:Academic Press,1974.
    [31]Green A. E., et al., General theory of small elastic deformations superposed on finite elastic deformations. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences,1952,211 (1104),128-154.
    [32]Guler C. and Akbarov S. D., Dynamic (harmonic) interfacial stress field in a half-plane covered with a prestretched soft layer. Mechanics of Composite Materials,2004,40 (5),379-388.
    [33]Gushcha O. I., et al., Increasing the accuracy of the acoustic stress-analysis technique. Problemy Prochnosti,1977, (1),114-116.
    [34]Gushcha O. I., et al., Some results of application of the ultrasonic nondestructive technique to the determination of residual stresses. Problemy Prochnosti,1973, (8),71-78.
    [35]Gushcha O. I. and Makhort F. G., Application of the acoustic method to the determination of residual stresses in welded structures. Tekhn. Diagn. Nerazrush. Kontr,1995, (4),8-15.
    [36]Guz A. N., Linearized theory of propagation of elastic waves in bodies with initial stresses. Soviet Applied Mechanics,1978,14 (4),339-362.
    [37]Guz A. N. General aspects, Vol.1 of the series Elastic waves in initially stressed bodies Kiev:Naukova Dumka,1986a.
    [38]Guz A. N. Propagation laws, Vol.2 of the series Elastic waves in initially stressed bodies Kiev:Naukova Dumka,1986b.
    [39]Guz A. N., Nondestructive ultrasound method of determination of biaxial stresses, in:9th International Conference on Experimental Mechanics, Copenhagen,1990,31171-1179.
    [40]Guz A. N. Fundamentals of the three-dimensional theory of stability of deformable bodies, Vol. of the series Berlin Heidelberg:Springer-Verlag,1999.
    [41]Guz A. N. and Koshman V. P., A nonstationary problem of the elasticity theory for a incompressible half-plane with initial stresses. Dopovidi Akademii Nauk Ukrainskoi Rsr Seriya a-Fiziko-Matematichni Ta Technichni Nauki,1980,838-41.
    [42]Guz A. N. and Makhort F. G., Description of the effect of finite strains on the velocity of elastic waves. Doklady Akademii Nauk SSSR,1971a,198 (2),316-318.
    [43]Guz A. N., et al., The theory of wave propagation in an elastic isotropic body with initial strains. Prikl. Mekh.,1970,6 (12),42-49.
    [44]Guz A. N., et al., The theory of ultrasonic initial-stress analysis. Prikl. Mekh.,1971b,7 (6), 110-113.
    [45]Han Y. C., Dynamic vertical response of piles in nonlinear soil. Journal of Geotechnical and Geoenvironmental Engineering,1997,123 (8),710-716.
    [46]Haughton D. M. and Ogden R. W., Incremental equations in nonlinear elasticity.1. Membrane theory. Journal of the Mechanics and Physics of Solids,1978a,26 (2),93-110.
    [47]Haughton D. M. and Ogden R. W., Incremental equations in nonlinear elasticity.2. Bifurcation of pressurized spherical-shells. Journal of the Mechanics and Physics of Solids,1978b,26 (2), 111-138.
    [48]Haughton D. M. and Ogden R. W., Bifurcation of inflated circular-cylinders of elastic-material under axial loading.1. Membrane theory for thin-walled tubes. Journal of the Mechanics and Physics of Solids,1979a,27 (3),179-212.
    [49]Haughton D. M. and Ogden R. W., Bifurcation of inflated circular-cylinders of elastic-material under axial loading.2. Exact theory for thick-walled tubes. Journal of the Mechanics and Physics of Solids,1979b,27 (5-6),489-512.
    [50]Hayes M. and Rivlin R. S., Propagation of a plane wave in an isotropic elastic material subjected to pure homogeneous deformation. Archive for Rational Mechanics and Analysis, 1961a,8(1),15-22.
    [51]Hayes M. and Rivlin R. S., Surface waves in deformed elastic materials. Archive for Rational Mechanics and Analysis,1961b,8 (1),358-380.
    [52]Johnson P. A. and Rasolofosaon P. N. J., Nonlinear elasticity and stress-induced anisotropy in rock. Journal of Geophysical Research-Solid Earth,1996,101 (B2),3113-3124.
    [53]Khaksar A., et al., Compressional-and shear-wave velocities as a function of confining stress in dry sandstones. Geophysical Prospecting,1999,47 (4),487-508.
    [54]Koshman V. P., Dynamics of an incompressible half-plane with initial strains. Soviet Applied Mechanics,1980a,16 (9),817-822.
    [55]Koshman V. P., Lambs plane problem for a compressible half-space with initial stresses. Soviet Applied Mechanics,1980b,16 (10),912-917.
    [56]Kravchishin O. Z. and Chekurin V. F., Acoustoelasticity model of inhomogeneously deformed bodies. Mechanics of Solids,2009,44 (5),781-791.
    [57]Kuhlemeyer R. L., Static and dynamic laterally loaded floating piles. Journal of the Geotechnical Engineering Division,1979a,105 (2),289-304.
    [58]Kuhlemeyer R. L., Vertical vibration of piles. Journal of Geotechnical and Geoenvironmental Engineering,1979b,105 (ASCE 14393),
    [59]Liu J.-X., et al., Effect of stress on reflection and refraction of plane wave at the interface between fluid and stressed rock. Soil Dynamics and Earthquake Engineering,2012,42 (0), 47-55.
    [60]Makhort F. G. and Gushcha O. I., Fundamentals of the theory of ultrasonic triaxial-stress analysis. Prikl. Mekh.,1987a, No.118-23.
    [61]Makhort F. G. and Znova V. A., Development of the ultrasonic method for determination of residual stresses in initially anisotropic bodies. Prikl. Mekh.,1987b,23 (No.12),55-60.
    [62]Militano G. and Rajapakse R. K. N. D., Dynamic response of a pile in a multi-layered soil to transient torsional and axial loading. Geotechnique,1999,49 (1),91-109.
    [63]Nogami T., Dynamic group effect in axial responses of grouped piles. Journal of Geotechnical Engineering,1983,109 (2),228-243.
    [64]Nogami T. and Nov a k M., Soil-pile interaction in vertical vibration. Earthquake Engineering & Structural Dynamics,1976,4 (3),277-293.
    [65]Norris A. N., et al., Acoustoelasticity of solid fluid composite systems. Geophysical Journal International,1994,118 (2),439-446.
    [66]Novak M., Dynamic stiffness and damping of piles. Canadian Geotechnical Journal,1974,11 (4),574-598.
    [67]Novak M., Vertical vibration of floating piles. Journal of the Engineering Mechanics Division, 1977,103 (1),153-168.
    [68]Novak M. and Sheta M., Approximate approach to contact problems of piles, in:Proceedings of the Geotechnical Engineering Division, FL, (O. Neill and R. Dobry),1980, Dynamic Response of Pile Foundations:Analytical Aspects 53-79.
    [69]Ogden R. W. Non-linear elastic deformations, Vol. of the series Chichester,:Ellis Horwood, 1984.
    [70]Ottenio M., et al., Acoustic waves at the interface of a pre-stressed incompressible elastic solid and a viscous fluid. International Journal of Non-Linear Mechanics,2007,42 (2),310-320.
    [71]Ozturk A. and Akbarov S. D., Propagation of torsional waves in a prestretched compound hollow circular cylinder. Mechanics of Composite Materials,2008,44 (1),77-86.
    [72]Ozturk A. and Akbarov S. D., Torsional wave dispersion relations in a pre-stressed bi-material compounded cylinder. Zamm-Zeitschrift Fur Angewandte Mathematik Und Mechanik,2009a, 89 (9),754-766.
    [73]Ozturk A. and Akbarov S. D., Torsional wave propagation in a pre-stressed circular cylinder embedded in a pre-stressed elastic medium. Applied Mathematical Modelling,2009b,33 (9), 3636-3649.
    [74]Pao Y. H., et al. Acoustoelasticity and ultrasonic measurements of residual stresses, Vol.17 of the series Physical acoustics New York:Academic Press,1984.
    [75]Pipkin A. and Rivlin R. S., Small deformations superposed on large deformations in materials with fading memory. Archive for Rational Mechanics and Analysis,1961,8 (1),297-308.
    [76]Rajapakse R. K. N. D. and Senjuntichai T., Dynamic response of a multi-layered poroelastic medium. Earthquake Engineering & Structural Dynamics,1995,24 (5),703-722.
    [77]Randolph M. F., Science and empiricism in pile foundation design. Geotechnique,2003,53 (10),847-875.
    [78]Randolph M. F., et al., Driven piles in clay-the effects of installation and subsequent consolidation. Geotechnique,1979,29 (4),361-393.
    [79]Shapiro S. A. and Kaselow A., Stress and pore pressure dependent anisotropy of elastic waves in porous structures. in:Proceedings of the 3rd Biot Conference on Poromechanics, Norman, (F. J. Ulm, Y. N. Abousleiman and A. H. D. Cheng),2005,167-172.
    [80]Sharma M. D., Effect of initial stress on the propagation of plane waves in a general anisotropic poroelastic medium. Journal of Geophysical Research-Solid Earth,2005,110 (B11307), B11307.
    [81]Sharma M. D., Wave propagation in a pre-stressed anisotropic generalized thermoelastic medium. Earth Planets and Space,2010,62 (4),381-390.
    [82]Sinha B. K., et al., Stoneley and flexural modes in pressurized boreholes. Journal of Geophysical Research-Solid Earth,1995,100 (B11),22375-22381.
    [83]Sinha B. K., et al., Acoustic waves in pressurized boreholes:A finite difference formulation. Journal of Geophysical Research:Solid Earth,1996,101 (B11),25173-25180.
    [84]Timoshenko S. P. and Goodier J. N. Theory of elasticity, Vol. of the series (3). New York:McGraw-Hill,1970.
    [85]Toupin R. A. and Bernstein B., Sound waves in deformed perfectly elastic materials-acoustoelastic effect. Journal of the Acoustical Society of America,1961,33 (2),216-225.
    [86]Truesdell C. Hypoelasticity, Vol.4 of the series Indiana university mathematics journal 1955.
    [87]Truesdell C. and Noll W. The non-linear field theories of mechanics, Vol.2/3/3 of the series The non-linear field theories of mechanics Springer Berlin Heidelberg,1965.
    [88]Wagh D. K., Propagation of plane waves in an unbounded elastic medium with cauchy's initial stress. Pure and Applied Geophysics,1970,82 (1),62-65.
    [89]Wagh D. K., Propagation of sh waves in an infinite elastic plate with cauchy's initial transverse stress. Pure and Applied Geophysics,1972,99 (1),49-54.
    [90]Wang K. H., et al., A new approach for vertical impedance in radially inhomogeneous soil layer. International Journal for Numerical and Analytical Methods in Geomechanics,2012,36 (6), 697-707.
    [91]Wang K. H., et al., Dynamic torsional response of an end bearing pile in saturated poroelastic medium. Computers and Geotechnics,2008,35 (3),450-458.
    [92]Wang K. H., et al., Dynamic torsional response of an end bearing pile in transversely isotropic saturated soil. Journal of Sound and Vibration,2009,327 (3-5),440-453.
    [93]Wang Q., et al., Pressure dependence and anisotropy of p-wave velocities in ultrahigh-pressure metamorphic rocks from the dabie-sulu orogenic belt (china):Implications for seismic properties of subducted slabs and origin of mantle reflections. Tectonophysics,2005a,398 (1), 67-99.
    [94]Wang Q., et al., Shear wave properties and poisson's ratios of ultrahigh-pressure metamorphic rocks from the dabie-sulu orogenic belt, china:Implications for crustal composition. Journal of Geophysical Research:Solid Earth (1978-2012),2005b,110 (B8),
    [95]Yang D. Y., et al., Vertical dynamic response of pile in a radially heterogeneous soil layer. International Journal for Numerical and Analytical Methods in Geomechanics,2009,33 (8), 1039-1054.
    [96]Yin Y. and Su X., Acoustoelastic effects on mode waves in a fluid-filled pressurized borehole in triaxially stressed formations. Acta Mechanica Sinica,2006,22 (6),569-580.
    [97]王奎华,et al.,考虑土体真三维波动效应时桩的振动理论及对近似理论的校核.岩石力学与工程学报,2005,24(8),1362-1370.
    [98]王腾,et al.,成层土中桩的纵向振动理论研究及应用.土木工程学报,2002,(01),83-87.
    [99]李强and王奎华,成层饱和土中桩纵向振动特性研究及应用.工程力学,2007,(10),144-149.
    [100]吴文兵,et al.,成层土中基于虚土桩模型的桩基纵向振动响应.中国公路学报,2012,(02),72-80.
    [101]张智卿,et al.,成层非饱和土中桩的纵向振动特性分析.科技通报,2007,(01),88-96.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700