用户名: 密码: 验证码:
滑坡作用下排水管道埋地箱涵受力分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
市政排水管道是城市防洪排涝、输送污水的设施,是城市基础设施的重要组成部分。本文以重庆市排水主干管A管线为研究背景,对滑坡等地质灾害作用下的排水管道埋地箱涵进行了受力分析,主要研究内容和结论如下:
     首先,介绍了现有滑坡推力的计算方法,利用传递系数法计算了A管线典型地段的滑坡推力。通过建立滑坡发生时埋地管道的受力模型,推导了考虑剪切变形影响的管道内力、变形方程。分析结果显示,剪切变形对跨越管道的纵向位移影响较大,对管线内力的影响则不明显。同时,地基土体对管道有明显的支撑作用,管道完全悬空时是受力最不利的工况。
     其次,以A管线典型管段的埋地箱涵为原型,制作了2根缩尺比例为1:5的钢筋混凝土箱梁进行单调静力加载试验。试验构件表现为剪切破坏,裂缝分布比较均匀,没有出现明显的临界斜裂缝。破坏形态经历了腹剪斜裂缝开展,弯曲裂缝出现,弯剪斜裂缝开展,斜压杆压溃阶段。混凝土开裂前,构件的剪切变形较小,主要以弯曲变形为主。斜裂缝开展到一定宽度后,构件的抗剪刚度急剧减小。构件底板配置了较多纵筋,达到最大极限承载力之后,挠度增长比较大,非突然破坏。
     试验结果表明,箍筋在混凝土开裂之后承担了较多的剪力,为主要的抗剪部件。底板纵筋在加载初期为线性增长,出现弯曲裂缝时纵筋应变骤增。纵筋应变受多种因素影响,只有部分区域呈现剪力滞效应。腹板纵筋应力沿高度分布情况表明,开裂之前截面应变基本符合平截面假定,开裂之后则不符合。
     最后,采用有限元软件ABAQUS中的损伤塑性模型,对试验梁进行了非线性有限元模拟。分析结果表明有限元模型较好地模拟了构件的破坏形态,对极限承载力的模拟效果也较好。但是有限元模型刚度偏大,分析全过程的挠度均小于试验测得的位移值。有限元分析结果表明底板纵筋应力符合正剪力滞现象,腹板纵筋应力沿高度分布则显示平截面假定成立。
Sewerage pipes are important infrastructures of urban flood-proof and sewage transmission. It is necessary to analyze the mechanical behavior of drainage pipe in various working situations for the safe of the municipal sewerage pipeline system. On the background of Chongqing downtown sewerage system’s A pipeline project, the response of the buried box culvert to landslide were analyzed. The main work and conclusions were present as follows:
     Firstly, the current method of landslide thrust calculating was introduced. The landslide-thrust of typical part of A line by means of load transfer factor method was calculated. Mechanical model of buried pipe was created when landslide occurred, and then inner force and deformation equations, including shear effect, was obtained. The analyzed results showed that shear deformation had a tremendous influence to longitudinal displacement of spanning pipe, with a little effect of pipeline inner force. The soil of the foundation played an apparently bearing action to pipe. The least favorable situation was that the pipe was completely suspended.
     Secondly, prototyping with A pipeline typical buried box culvert, model beam was designed and statically tested in structural laboratory of Chongqing University. The crack distribution of test beam was uniform, and there was no critical declining crack in beam body. We could conclude that the failure mode of test beam was shear failure. About the mechanical process of the test beam, four stages could be characterized as web-shearing declining crack stage, flexural crack stage, flexure-shearing declining crack stage and diagonal rod squashing stage. The flexural deformation was main before the test beam cracked, while shear effect was less. The shear stiffness of the component sharply decreased after declining crack developed a wide certain. After the component reached its ultimate bearing capacity, the deflection was increasing a lot as a result of much reinforcement in bottom plate. On the whole, the test beam did not suddenly corrupt.
     The experimental results betrayed that the stirrups devoted much to shear capacity of the box girder. The longitudinal steel strain in bottom plate presented a linearly increasing process, but abruptly mutated when flexural crack occurred. Only in a small part was there shear lag effect because the longitudinal steel strain was influenced by many other factors. From the distribution principles of longitudinal bars, it was demonstrated that the test beam could not accord with plane cross-section assumption whether cracking or not.
     Finally, the test beam was modeled by damage-plastic model in the nonlinear finite-element software ABAQUS. The simulated results agreed well with the experimental data, especially for the failure mode of the box beam. However, all of the deflection in every sub-step was less than that in testing process owing to the larger stiffness of finite-element model. The finite-element results demonstrated that there was shear lag effect in longitudinal rebar in the bottom plate. The plane cross-section assumption was also satisfacted for the longitudinal steel in the web plate of the box beam.
引文
[1]李焯芬,汪敏.港渝两地滑坡灾害的对比研究[J].岩石力学与工程学报, 2000, 19(4): 493-497.
    [2] A.Marston, A.O.Anderson. The Theory of Loads on Pipes in Ditch and Tests of Cement and Clay Drain Tile and Sewer Pipe[M]. Ames:lowa Eng.Expt Sta, 1913.
    [3]刘全林,杨敏.上埋式管道上竖向土压力计算的探讨[J].岩土力学, 2001,22(2): 214-218.
    [4]《给水排水工程结构设计手册》编委会.给水排水工程结构设计手册[M].北京:中国建筑工业出版社, 2007.
    [5]周氐等.水工混凝土结构设计手册[M].北京:中国水利水电出版社, 1999.
    [6]公路隧道设计规范(JTG D70-2004)[S].北京:人民交通出版社, 2004.
    [7]罗旗帜,吴幼明.薄壁箱梁剪力滞理论的评述和展望[[J].佛山科学技术学院学报(自然科学版), 2001, 19(3):29-35.
    [8] TAHERIAN A R, EVANS H R. The bar simulation method for the calculation of shear lag in multi-cell and continuous box girder[J]. Proc Instn Civ Engrs, 1977, 2(63):881-897.
    [9]程翔云,汤康恩.计算箱形梁桥剪力滞效应的比拟杆法[J].中南公路工程, 1984, 1: 65-73.
    [10] Reissnere. Analysis of shear lag in box beam by principle of minimum poenergy[J]. Quarterly of Applied Mathematics, 1946, 5(3):268-278.
    [11]郭金琼,房贞政,罗孝登.箱形梁桥剪滞效应分析[J].土木工程, 1983, 16(1):1-13.
    [12]张士铎等.变截面悬臂箱梁负剪力滞差分解[J].重庆交通学院学报, 1984, (4).
    [13]陈常松,邓安.高次位移函数时箱梁剪滞效应变分法解[J].重庆交通大学报, 2009, 28(1):5-7.
    [14]倪元增.槽型宽梁的剪力滞问题[J].土木工程学报, 1986, 19(4):32-40.
    [15] Sushkewich K W. Negative shear lag explained[J]. Struct Engrg, ASCE, 1991, 117(11):3543- 3545.
    [16]程翔云.悬臂薄壁箱梁的负剪力滞[J].上海力学, 1987, (2):52-62.
    [17]韦成龙,曾庆元,刘小燕.薄壁箱梁剪力滞分析的多参数翘曲位移函数及其有限元法[J].铁道学报, 2000, 22(5):60-64.
    [18]吴幼明,罗旗帜,岳珠峰.考虑多参数分析薄壁箱梁剪滞效应的力学模型[J].汕头大学学报, 2004, 19(3): 27-32.
    [19]吴亚平,杨玫,周大为,林丽霞,苏强.荷载横向变位下箱梁顶板与底板的剪滞效应分析[J].土木工程学报, 2007, 40(10): 8-12.
    [20]包世华,周坚.薄壁杆件结构力学[M].北京:中国建筑工业出版社, 1991.
    [21]詹涅里杰,巴诺夫柯.弹性薄壁杆的静力计算[M].胡海昌,解伯民译.北京:科学出版社, 1955.
    [22] Vlasov V Z. Thin-walled elastic beams (2nd Ed.)[J]. Jerusalem: Israel Program for Scientific Translation, 1961.
    [23]鲍永方,黄文彬.矩形箱梁约束扭转理论的分析与比较[J].工程力学, 1997, 14(3):132- 137.
    [24]汪先俊.薄壁梁扭转研究[D].中国农业大学硕士学位论文, 2000.
    [25]胡少伟,聂建国.钢筋混凝土箱梁的约束扭转分析[J].清华大学学报(自然科学版), 2004, 44(12):1668-1671.
    [26]张元海,李乔.考虑剪滞变形及约束扭转二次剪切变形影响时薄壁曲线箱梁的挠曲扭转分析[J].土木工程学报. 2009, 42(3):94-98.
    [27] Kermani B., Waldron P. Analysis of continuous box girder bridges including the effects of distortion[J]. Computers&Structures. 1993, 47(3):427-435.
    [28]魏大春,张凤文,李慧剑.矩形截面薄壁杆件畸变效应分析的半离散半解析法[[J].燕山大学学报, 1999, 23(4): 343-346.
    [29]李育楷,王全凤.考虑剪切变形的矩形截面薄壁杆件畸变分析[J].计算力学学报, 2004, 21(4): 247-252.
    [30] Stanislav Rendek, Ivan Bala'z. Distortion of thin-walled beams[J]. Thin-Walled Structures, 2004, 42:255-277.
    [31] R. Emre Erkmen, Magdi Mohareb torsion. Analysis of thin-walled beams including shear deformation effects[J]. Thin-Walled Structures, 2006, 44:1096-1108.
    [32] Moffatt K. R, Dowling P J. Shear lag in steel box grider bridges[J]. Structural Engineering, 1975, 53(10):439-448.
    [33]陈衡治,谢旭,陈海滨,黄剑源.大截面混凝土箱梁结构的计算方法及其应用[J].土木工程学报, 2006, 39(4):26-31.
    [34]谢旭,黄剑源.曲线箱梁桥结构分析的一种有限元计算方法[J].土木工程学报, 2005, 38(2):75-80.
    [35]马华东,张云海.箱形梁长悬臂板的有限元分析[J].兰州交通大学学报, 2009, 28(6): 60-62.
    [36]谢旭,黄剑源.薄壁箱梁剪力滞效应分析的刚度法[J].工程力学, 1995, 12(2):95-102.
    [37]周世军.箱梁的剪力滞效应分析[J].工程力学, 2008, 25(2):204-208.
    [38]张云海.薄壁箱梁的挠曲扭转有限元分析[J].土木工程学报. 1995, 28(6):28-36.
    [39]谢旭,黄剑源.薄壁箱形梁桥约束扭转下翘曲、畸变和剪滞效应的空间分析[J].土木工程学报. 1995, 28(4):3-14.
    [40]卢彭真,魏召兰,占玉林,王英,赵人达.基于位移场的薄壁箱梁结构约束扭转和畸变效应分析[J].四川大学学报(工程科学版). 2009, 41(1):75-79.
    [41]罗旗帜.薄壁箱形梁剪力滞计算的梁段有限元法[J].湖南大学学报, 1991, 18(2):33-39.
    [42]段海娟,赵人达.薄壁曲线箱梁空间分析的梁段单元[J].土木工程学报, 2004, 37(12):1-5.
    [43]郭金琼,房贞政,郑振.箱型梁设计理论[M].北京:人民交通出版社, 2008.
    [44]唐家祥,周世军.薄壁箱梁结构性能的矩阵分析[J].土木工程学报, 1987, 20(2):55-68.
    [45] EVANS H R, AHMAD M K H, KRISTEK V. Shear lag in composite box girders of complex cross section[J]. Journal of Constructional Steel Research, 1993, 24(3):183-204.
    [46]方志,曹国辉.钢筋混凝土连续宽箱梁受力性能试验[J].中国公路学报, 2006, 19(5): 46-52.
    [47]祝明桥,方志,胡秀兰,徐昌慧.体外预应力高强混凝土薄壁箱梁试验研究[J].中国公路学报, 2004, 17(3):25-30.
    [48]余自若,阎贵平,唐国栋,程俊瑞.铁路RPC箱梁抗弯性能试验研究[A].上海:第十届全国纤维混凝土学术会议论文集, 2004.
    [49]牛斌,杨梦蛟,马林.预应力混凝土宽箱梁剪力滞效应试验研究[J].中国铁路科学, 2004, 25(2): 25-30.
    [50]李忠献,景萌,苏标,王秀存.碳纤维布加固弯剪扭复合受力的钢筋混凝土箱梁抗扭性能的模型试验[J].土木工程学报, 2005, 38(12):38-44.
    [51]李忠献,景萌.碳纤维加固复合受力钢筋混凝土箱梁的应力分析[J].工程力学, 2006: 23(2):137-143.
    [52]徐艳秋,许克宾,刘凤奎.复合受力下混凝土箱梁抗扭承载力计算方法与试验研究[J].中国公路学报, 2000, 13(3): 36-40.
    [53]黄清酞.地下管道计算[M].武汉:湖北科学技术出版社, 1987, 7.
    [54] [美]A.P.莫泽著.北京市市政工程设计研究总院《地下管设计》翻译组译.地下管设计[M].北京:机械工业出版社, 2003.
    [55]铁路路基支挡结构设计规范(TB10025-2001)[S].北京:中国铁道出版社, 2002.
    [56]公路路基设计规范(JTJ013-95)[S].北京:人民交通出版社, 1995.
    [57]黄求顺,张四平,胡岱文.边坡工程[M].重庆:重庆大学出版社, 2003,7.
    [58]刘小丽.新型桩锚结构设计计算理论研究[D].西南交通大学博士学位论文, 2003.
    [59]王恭先.抗滑支挡建筑物的发展动向[D].滑坡文集(第十三集).北京:中国铁道出版社. 1998:60-64.
    [60]铁道部科学研究院西北研究所编.滑坡防治[M].北京:中国铁道出版社, 1977.6
    [61]邓道明,周新海,申玉平.横向滑坡过程中管道的内力和变形计算[J].油气储运, 1998,17(7):18-22.
    [62] Liu C H. Analysis of a cracked beam-column on an elastic foundation[J]. International Journal of Computer Applications in Technology, 2000, 13(6):273-279.
    [63]罗金恒,赵新伟,王峰会,郑茂盛.地质灾害下悬空管道的应力分析及计算[J].压力容器, 2006, 3(4):3-26.
    [64]胡海昌.弹性力学的变分原理及其应用[M].北京:科学出版社, 1982.
    [65]范文田,罗无量.文克尔地基上铁木辛可梁的初值方程[J].西南交通大学学报, 1987, 1: 19-25.
    [66]温诗铸,黄平.摩擦学原理[M].北京:清华大学出版社, 2002.
    [67]中国船舶工业总公司第九设计院.弹性地基梁及矩形板计算[M].北京:国防工业出版社, 1983.
    [68]钱伟长.广义变分原理丛书[M].北京:知识出版社, 1985.3.
    [69]姚振纲,刘祖华.建筑结构试验[M].上海:同济大学出版社, 1996.
    [70]滕智明主编.钢筋混凝土基本构件(第二版)[M].北京:清华大学出版社, 1987.
    [71]混凝土结构试验方法标准(GB50152-92) [S].北京:中国建筑工业出版社, 1992.
    [72] Lubliner J., J.Oliver, S.Oller, E. Onate. A Plastic-Damage Model for Concrete International[J]. Journal of Solids and Structures, 1989, 25(3):229-326.
    [73] Lee J, G. L.Fenves. Plastic-Damage Model for Cyclic Loading of Concrete Strures[J]. Journal of Engineering Mechanics, 1998, 124(8):892-900.
    [74]孙璐.钢筋混凝土框架节点抗震加固试验研究[D].东南大学硕士学位论文, 2007.
    [75]庄茁等.基于ABAQUS的有限元分析和应用[M].北京:清华大学出版社, 2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700