沙棘柔性坝水土保持生态效应与机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄土高原是世界上水土流失最严重的地区之一,然而砒砂岩是黄土高原集中的碎屑基岩产沙区的核心,系黄河流域多沙粗沙区的重要组成部分。该区由于严重的土壤侵蚀,被喻为“世界水土流失之最”,具有“地球癌症”之称。由于砒砂岩地区恶劣的自然环境,剧烈的水土流失,给黄河下游河道造成了更加严重的泥沙淤积,引发一系列的生态环境问题。沙棘植物柔性坝是利用生物措施治理水土流失、利用自然改造自然的生物工程,是治理河流泥沙灾害的一种治本之举。因此,开展沙棘柔性坝拦沙、生态及流速场效应等方面的研究,为沙棘柔性坝的推广及规划种植提供理论依据,在理论与实践上都具有重要意义。
     本文基于野外试验,以沙棘植物柔性坝为核心,对沙棘柔性坝所构成的沟道生态系统的水保效应、生态水文及土壤环境效应进行了分析与研究,探索并成功应用先进的PIV法,分析与讨论了沙棘植物柔性坝对水流特性和流速场的影响与效应;运用河流动力学及泥沙运动力学理论对沙棘柔性坝的拦沙机理进行了理论分析与探讨;运用泥沙数学模型对沙棘柔性坝的拦沙效应进行了数学模拟,并根据分析结果对沙棘柔性坝的种植规划参数进行了有益的分析与讨论;最后,提出了防治砒砂岩地区水土流失的几点建议。论文取得的主要成果如下:
     1.在时空尺度上,从定性与定量两方面揭示了沙棘植物柔性坝的拦沙效应。具体结论为:(1)沙棘“柔性坝”对泥沙具有显著的分选拦截作用,柔性坝系与下游刚性谷坊配套使用可天然分选沟道里的泥沙一拦粗淤细,就近将粗沙过滤在坝系沟道里,细沙淤积在下游谷坊内;(2)下游谷坊还可在上游沙棘植物坝系的过滤下储蓄细沙含量较少的清水,形成一座微型水库,可作局部农业用水之用。
     2.根据监测的生态特性资料,(1)对沙棘柔性坝的生态学特性、土壤改良效应、沟道土壤水分特性、土壤水分时空动态变化进行了研究;(2)用地统计学方法分析了沙棘植物柔性坝沟道不同空间立面二维区域不同方向的土壤水分空间变异特征,研究了植物柔性坝对沟道土壤水分在立面区域分布格局的影响;(3)揭示了沙棘植物柔性坝优良的生态效应、土壤改良效应及对沟道径流的调控作用,证明了沙棘柔性坝对土壤水资源具有显著的调节作用。
     3.分析了沙棘柔性坝对水流特性的影响与阻滞效应,论证了沙棘柔性坝对水流具有很强的拦截、阻滞和雍水作用,致使雍水区流速降低,泥沙在这一区域沉降淤积。(1)揭示了坝长、株距在水流流速、水深变化中起主导作用,且坝长的优势大于种植密度;(2)水位雍高最大发生在坝前段;(3)沙棘的年际生态调查表明,坝体的阻水效应随沙棘的强势生长而增强;(4)分析还表明,植物的生长密度较小时,坝长是导致植物坝上游区水深增加的主要因素,其次是种植密度,最后是沟床坡度;(5)植物的生长密度较大时,植物的坝长依然是导致植物坝上游区水深增加的主要因素,其次是种植密度,再次是生长密度,最后是沟床坡度。
     4.在野外试验基地,首次探索并成功的应用了先进的流场测量技术—-一PIV法,对沙棘柔性坝流速场的分布与变化规律进行了系统的分析与研究,讨论了沙棘柔性坝的流速场特性,探明了水流能量损失主要发生在坝上游壅水区,指出泥沙优先在这一区域沉降,再次论证了沙棘柔性坝具有显著的阻水与泥沙淤积效应,为沙棘柔性坝治理水土流失提供了理论依据。具体表现为:(1)沙棘柔性坝内的流速明显小于坝前无沙棘对比区,表现出柔性坝显著的流速衰减效应;(2)柔性坝段内的横断面上流速分布易呈现出反“流舌”型态,且流速沿横向分布曲线呈现出波浪形态或者是曲折反复的“之”字型态;(3)研究结果表明将粒子图像测速这一先进技术推广应用到室外流速场的观测是完全可行的。
     5.运用河流泥沙动力学理论分析探讨了沙棘植物柔性坝的阻力问题,从理论上推导了沙棘植物柔性坝的糙率系数估计公式,估计了沙棘柔性坝的糙率系数,用实测资料进行了对比验证,结果良好;运用合适的输沙公式,对东一支沟沟道输沙特性作了理论探讨与分析。结果表明:(1)沙棘植物柔性坝的阻力主要由沙棘植物、沟床底及沟道边壁阻力及床面型态阻力构成,这些阻力可通过植物柔性坝的曼宁糙率系数来综合反映;(2)沙棘植物柔性坝的曼宁糙率系数大致处于0.04-0.09的范围内,并与沟床平均植物密度、淹没体积比、水力半径及植物的生长期有关,而且植物密度、淹没体积比都随着水深的变化而有所不同;(3)使用不同的输沙公式会对拦沙结果产生一定的影响。
     6.应用一维水沙数学模型对东一支沟沙棘植物柔性坝的拦沙效应进行了模拟。根据计算结果对沙棘植物柔性坝的规划种植参数进行了优化探讨,为沙棘植物柔性坝的规划种植提供参考。模拟结果表明:(1)植物坝的曼宁糙率越大,植物坝的拦沙效果越好;(2)植物坝单坝的拦沙率随坝长的增加而趋近于某一最大稳定值;(3)坝长越短时,淤积范围可覆盖整个坝段,坝段较长时,坝尾部易发生不同程度的冲刷,这表明设计植物坝时,坝长并非越长越好,其坝长应在合理的范围内,避免造成浪费;(4)当沟道内设置两座植物坝时,坝间沟床段易发生冲刷,双坝的综合拦沙率随坝间距的增加而减小,且逐渐趋于某一稳定值;(5)沟道内设置两座及以上植物坝时,并非一定能提高综合拦沙率,间距为零时的双坝与两坝所合成单坝的拦沙率相当;(6)双坝间有区间支流泥沙汇入时,下游坝可有效的发挥拦截区间泥沙的功能;(7)植物坝的拦沙率受沟床比降的影响,植物坝拦沙率随沟床比降的减小而增大,植物坝对粗沙的拦截效果比细沙要高得多;(8)植物坝尾部段及下游沟床易冲刷,所以在设有植物坝的沟道出口处应该采取谷坊等措施以抑制植物坝下游沟床的冲刷。
     7.研究表明,沙棘是治理砒砂岩地区水土流失的先锋树种,沙棘植物柔性坝是防治该区水土流失的有效生态工程措施。针对砒砂岩地区的沟道输沙特点,指出砒砂岩地区应坚持以沙棘柔性坝为主体的沟道小流域综合防治技术体系,方可根治砒砂岩地区的水土流失。
Loess plateau is one of the most serious soil and water loss regions in the word, however, the soft rock region is the core of drossy rock yield sediment regions in the Loess plateau in china, and it is also an important part of much and coarse sediment regions located in Yellow River watershed. The region is called as "earth cancer" and "the most severe soil and water loss" due to severe soil erosion. The severe sediment deposition was engendered in the lower Yellow River, and a series of ecological and environmental problems was brought because of the severe soil and water loss and atrocious natural environment. The seabuckthorn flexible dam is a new biology engineering of using biology measure controlling soil and water loss and using nature reshaping nature, and is a radical measure of controlling sediment disaster in river. So, carrying out the research on effects of sediment retention and ecology and flow velocity vector field of seabuckthorn flexible dam, it can provide for the theoretic proof in spreading and planning plant of seabuckthorn flexible dam, and this is also very important and valuable in theory and practice.
     In this paper, seabuckthorn plant flexible dam was the core, soil and water conservation and ecology hydrology and soil environment effects of gully ecology system formed by seabuckthorn flexible dams were analyzed and studied. The presently advanced PIV(Particle Image Velocimetry) technology was exploringly and successfully employed, the impact of seabuckthorn flexible dam on flow behavior and velocity distribution was analyzed and discussed. Sediment retention mechanism of seabuckthorn flexible dam was theoretically analyzed and discussed by river dynamics and sediment transposition mechanics theory. Sediment retention effect of seabuckthorn flexible dam was effectively simulated by sediment mathematical model, and plan plant parameters of seabuckthorn flexible dam were effectively analyzed and discussed. Finally, the author provided some advice for controlling and harnessing soil and water loss of soft rock region. The main content and innovative achievements are as follows:
     1. On the spatio-temporal scale, sediment retention of seabuckthorn flexible dam was revealed from the qualitative and quantitative analysis. The idiographic results were:(1) seabuckthorn flexible dam had marked choice and prevention effect to sediment, sediment of gully bed was naturally chose to coarse and fine sand by joint using of flexible dam system and lower small rigid silt dam, this can make coarse sand deposit in gully and fine sand silt in lower small rigid silt dam; (2) the lower small rigid silt dam can also save clear water that has little fine sand, and form a small reservoir that can be used for local agriculture under the upper seabuckthorn flexible dam system filtration.
     2. By special measured ecological data, (1) ecological feature, soil improve effect, gully soil moisture characteristic and spatio-temporal dynamic variation of soil water were studied; (2) the method of geostatistics was employed to analyze the spatial variability of soil moisture in different directions in distinct vertical two-D areas in different spatial locations and the effect of plant flexible dam on the distribution of soil moisture in the vertical section of soil in gully with seabuckthom plant flexible dam; (3) the effect of excellent ecology, soil improvement and regulating gully runoff of seabuckthom flexible dam were showed, and the strikingly adjusting soil water resource through seabuckthorn flexible dam was also tested.
     3. The impact of seabuckthorn flexible dam on flow behavior was analyzed, and it was proved that flow velocity was slowed down in swell water area, and that sediment was deposited in the area because of very strong prevention, delay and swell water effect of seabuckthorn flexible dam on flow. These results are as follows:(1) it was revealed that dam length and plant density took the main role in flow velocity and water-depth distribution, and the role of dam length was stronger than plant density; (2) the maximum water table swelling occurred in the front of the flexible dam; (3) seabuckthorn yearly ecology investigation showed that the preventable effect of dam on flow was gradually stronger and stronger with growth of seabuckthom; (4) as the plant density is small, dam length is main reason for increasing upper water depth of seabuckthorn flexible dam, the next is plant density, and the last is gully bed slop; (5) as the plant density is big, dam length is yet main reason for increasing upper water depth of seabuckthorn flexible dam, the next is plant density, the third is growth density, and the last is gully bed slop.
     4. Based on field experiment, advanced velocity field measure technology-PIV was exploringly and successfully employed, the law of flow velocity distribution and variation was systematically analysed and studied, and the velocity field characteristic of seabuckthorn flexible dam was discussed in detail. It was proved up that flow energy loss was mainly occurred in the upper swell water area of seabuckthom flexible dam, and it was pointed out that sediment was firstly deposited in the area. It was again tested that seabuckthorn flexible dam had striking resistance to flow and sediment deposit effect by above those conclusions, and this can provide theoretic proof for seabuckthom flexible dam controlling soil and water loss. Respective results were as follows:(1) flow velocity in seabuckthorn flexible dam was distinctly smaller than no seabuckthorn contrast area in front of flexible dam, this showed evidently reducing flow velocity in the seabuckthorn flexible dam; (2) cross section flow velocity distribution was reverse "flow tongue" shape, and cross section velocity distribution curve showed wave shape or zigzag shape in flexible dam; (3) it is completely feasible that the advanced PIV technology is used and spread in field flow velocity measure.
     5. Resistance of seabuckthorn flexible dam was analyzed and discussed by river sediment dynamics theory, estimation formula of flexible dam roughness was deduced, and value of flexible dam roughness was estimated, and estimated roughness was well tested and contrasted with field data; sediment transportation trait of east one branch gully was theoretically discussed and analyzed. The results showed:(1) that resistance of seabuckthorn flexible dam was comprised of seabuckthorn plant, gully bed, gully bed and riverside resistance, and bed formation resistance, the resistances were reflected by the roughness of plant flexible dam; (2) value of seabuckthorn flexible dam's Manning roughness is probably from 0.04 to 0.09, and it is concerned with average gully bed plant density, submersed volume scale, hydraulic radius, and plant growth, and the plant density and submersed volume scale also varied with water depth of flow; (3) sediment retention result was easily affected by using different sediment transportation formula.
     6. The effect of sediment retention of seabuckthorn flexible dam in east one branch gully was successfully simulated by using of one dimension flow and sediment mathematical model. The plan plant parameters of seabuckthorn flexible dam were optimized and discussed according to calculated result, and some advice was provided for planning and planting of seabuckthorn flexible dam by these results. The simulated results showed:(1) Manning's roughness of plant dam was bigger, sediment retention effect of seabuckthorn plant dam was better; (2) sediment retention rate of single plant dam would run to be some maximum stable value with dam length increase; (3) if the dam length was shorter, scope of sediment deposit would trend to the whole dam, if the dam was longer, the tail of dam was prone to be scoured, this indicated that it was not good that the dam length was longer, but the dam length was right range to avoid waste as planning plant dams; (4) as double plant dams were planned in gully, the gully bed was easily eroded, and comprehensive sediment retention rate of double dam was smaller and to be a stable value with increase of interspace between dams; (5) comprehensive sediment retention rate was not increased as two or more dams set in gully, and sediment retention effect of double dams of their zero gap was almost equal to single dam formed by two dams; (6) the lower plant flexible dam can effectively blocked interzone yielded sediment; (7) the sediment retention effect of plant dam was influenced by gully bed slop, and it get increased with gully bed slop's fall, and the sediment retention effect of plant dam on coarse sand was more than thin sand's; (8) because tail and lower gully bed of flexible dam was easily eroded, so some small engineering measures should be taken to confine scour of lower gully bed of plant dam at the exit of plant dam gully.
     7. The research result showed that seabuckthorn is the leading small arbor for controlling soil and water loss of the soft rock region, and seabuckthorn plant flexible dam is very effective ecology engineering for control and harness of soil and water loss of it. Finally, in point of sedimeni transportation behavior of gully in the soft rock region, it was proposed that the comprehensive small watershed controll technology system should be insisted on using in gullys in the soft rock region, but the main body of the technology system had to be the seabuckthorn flexible dam, and sc soil and water loss in the soft rock region can essentially be controlled and restrained.
引文
【1】 唐克丽,等.黄土高原水土流失与土壤退化研究初报[J].环境科学,5(6):5~10.
    【2】 盛连喜.环境生态学导论[M].北京:高等教育出版社,2002.
    【3】 刘世荣,温元光,王兵.中国树林生态系统水文生态功能[M].北京:中国林业出版社,1996,14~15.
    【4】 袁仁茂,杨晓燕.水土流失的多因素分析及其防治措施[J].水土保持研究,1999,6(4):80~85.
    【5】 吴发启,等.中国西部生态环境建设[J].水土保持研究,2000,3(1),2~5.
    【6】 彭珂珊.中国水土流失问题的初探[J].北京联合大学学报(自然科学版),2004,18(1):20~26.
    【7】 朱俊凤,朱震达.中国沙漠化防治[M].北京:中国林业出版社,1999.
    【8】 彭珂珊.关注中国水土流失.国土资源[J],2004,(2):22~25.
    【9】 焦居仁,郭索彦.做好跨世纪的水土保持工作[J].中国水土保持,1998,(5):10~13.
    【10】 黄季焜.中国土地退化:水土流失与盐渍化.水世界网,2007. http://www.chinacitywater.org/.
    【11】 彭珂珊,徐振兴.中国土地环境面临的问题与保护对策[J].生态经济,1993,(5):18~22.
    【12】 史德明.中国水土流失及其对早涝灾害的影响[J].自然灾害学报,1996,5(2):36~46.
    【13】 廖鸿.水土流失成为头号环境问题[J].中国减灾,2005,(1):1~2.
    【14】 [美]]EdwinD. Mckee主编.赵兴邦译.世界沙海的研究[M].宁夏人民出版社,1993.
    【15】 董哲仁.河流治理生态工程学的沿革与趋势[J].水利水电技术.2004,35(1):39~41.
    【16】 李倬.论林木的固沟减蚀作用[J].泥沙研究,1993,(1):14~21.
    【17】 Li Zhuo.The effects of Forest in Controlling Gully Erosion, Erosion. Debris. Flows and Environment in Mountain Regions IAHS Published,1991, NO.290.
    【18】 尹学良.河床演变河道整治论文集[M].北京:中国建材工业出版社,1996.
    【19】 Ruh Ming Li and H. W. Shen. Effect of Tall Vegetations on Flow and Sediment. Journal of Hydraulics Division,1973,99(5):793~814.
    【20】 Erik Pasche and G.Rouve.Overbank Flow with Vegetatively Roughness Flow Plains.Journal of Hydraulics Divesion,1985(9).
    【21】 蔡金德,黄本胜.河滩种树对行洪的影响[C].四川省工程力学学与泥沙问题学术讨论会论文,丰都,1994.
    【22】 Shoji Fukuoka.Flood-control Measure that Utilize Nation Function of River, Pro.Of XXV Congress of Internation Association for Hydraulic Research, Vol.Ⅶ, Tokyo,1993.
    【23】 时钟.海岸盐沼植物单向恒定水流流速剖面[J].泥沙研究,1997,(3):82~88.
    【24】 Z. Shi, et al. velocity Profiles in a Salt Marsh Canopy. Geo-Marine Letters,1996, (16).
    【25】 Z. Shi, et al. Flow Structure in and above the Various Heights of a Salt Marsh Canopy:A Laboratory Flume Study, Journal of Coastal Research, Vol.11, No.4,1995.
    【26】 N. Lzumi and S. Ikeda. Stable Channel Cross-Section of Straight Gravel Rivers with Trees on Banks, Proc.of JSCE,No.400.
    【27】 Shoji Fukuoka, Koh-ichi Fujita. Water Level prediction in River Courses with Vegetation, Pro.of XXV Congress of Internation Association for Hydraulic Research, Vol. Ⅰ, Tokyo,1993.
    【28】 Naot, D.,Nezu,I., and Nakagawa,H.,(1996). Hydrodynamiac Behavior of Partly Vegetatd Open Channels, J. Hydr. Engrg., ASCE,1996,122(11); 625~663.
    【29】 Dan Naot, Iehisa Nezu I. and Hiroji Nakagawa. Unstable Pattern in Partly Vegetated Channels. J. Hydr. Engrg., ASCE,1996,122(11),671~673.
    【30】 O·里德尔,D·扎卡尔著.王礼先,等译.森林土壤改良学.北京:中国林业出版社,1990.
    【31】 J. V. Philips and H. W. Hjalmarson. Flood flow Effects on Riparian Vegetation in Arizona. Hydraulic Engineering, Vol.1. Published by the American Society of Civil Engineers,1994.
    【32】 Tacio HD. The SAL System:Agro-forestry for Sloping Lands [J]. AgroforestryToday,1991,3:1,12~13.
    【33】 Madany. MH. Living Fences:Somali farmers adopt an agro-forestry technology [J]. Agroforestry-Today, 1991,3:1,4~7.
    【34】 Rao M R, Ong CK, Pathak P, etal. Productivity of Annual Cropping and Agroforestry Systems on a Shallow Alfisolin Semi-arid India [J]. Agroforestry-Systems,1991,15:(1),51~63.
    【35】 Nelson R A, Cramb R A, Menz K M, etal.Cost-benefit Analysis of Alternative Forms of Hedgerow Inter Cropping in the Philippine Uplands [J]. Agroforestry Systems,1998,39:(3),241 ~262.
    【36】 李新平,等.红壤坡耕地人工模拟降雨条件下植物篱笆水土保持效应及机理研究[J].水土保持学报,2002,16(2):36~40.
    【37】 许峰,等.等高植物篱控制紫色土坡耕地侵蚀的特点[J].土壤学报,2002,39(1):71~80.
    【38】 王青杵,等.黄土残塬沟壑区植物篱水土保持效益研究[J].中国水土保持,2001,(12):25~27.
    【39】 陈治谏,等.坡地植物篱农业技术生态经济效益评价[J].水土保持学报,2003,17(4):125~128.
    【40】 Guido Runchelmeisfer.植物蓠-适用于发展中国家资源贫乏地区农民[C].水利部黄委会黄土高原水土保持项目办公室.1992.
    【41】 R·G·格里姆肖.大力种植香根草保持水土[J].中国水土保持,1990,(5):40~45.
    【42】 Wang wen-jiang.Application of bush dams in watershed soil conservation [M].Sinotech Foundation for Research & Development of Engineering Sciences & Technologies,2003.
    【43】 Schiechtl, H. M.and R.Stern,"Water Bioengineering Techniques for Watercouse Bank and Shoreline Protection", Blackwell Science,1997.
    【44】 蒋定生.黄土高原水土流失与治理模式[M].北京:中国水利水电出版社,1997.
    【45】 常茂德,赵诚信等,黄土高原地区不同类型区水土保持综合治理模式研究与评价[M].西安,陕西科学技术出版社,1995.
    【46】 孟庆枚.黄土高原水土保持[M].郑州:黄河水利出版社,1996,430~435.
    【47】 姚文艺,李占斌,康玲玲.黄土高原土壤侵蚀治理的生态环境效应[M].北京:科学出版社,2005.
    【48】 黄河水利委员会黄河上中游管理局.黄土高原水土保持实践与研究(二)[M],1998.
    【49】 王笃庆,马永林,耿绥和.晋陕蒙接壤地区砒砂岩分布范围及侵蚀类型区划分[R].黄委舒缓发德水土保持科学试验站,1994.
    【50】 毕慈芬,李桂芬.砒砂岩地区沟道沙棘植物“柔性坝”原型拦沙研究[J].国际沙棘研究与开发,2003,1(1):6~12.
    【51】 钱宁,王可钦,阎林德,府仁寿.黄河中游粗泥沙来源区对黄河下游冲淤的影响[C].第一次泥沙国际学术讨论会论文集.1980.3:33~62.
    【52】 冉大川,柳林旺,赵力仪.黄河中游河口镇至龙门区间水土保持与水沙变化[M].黄河水利出版社.2000.5:12~14.
    【53】毕慈芬.黄土高原基岩产沙区治理对策探讨[J].泥沙研究,2001,(4):1~5.
    【54】 陈彰岑,等.黄河中游多沙粗沙区快速治理模式的实践与理论[M].郑州:黄河水利出版社,1991.
    【55】 黄铨,史玲芳,王士坤.沙棘种植技术与开发利用[M].北京:金盾出版社,1998.
    【56】 李代琼,等.沙棘改善环境的生态功能及效益试验研究[J].国际沙棘研究与开发,2004,2(2):6~10.
    【57】 李勇,徐晓琴,朱显谟.黄土高原植物根系强化土壤渗透力的有效性[J].科学通报,1992,(4):80~83.
    【58】 钱正英.以开发沙棘资源作为加速黄土高原治理的一个突破口[J].水土保持科技情报.1986,(4):1~2.
    【59】 孙辉,唐亚,等.等高固氮植物篱模式对坡耕地土壤养分的影响[J].中国生态农业学报,2002,10(2):79~82.
    【60】 王玲玲,何丙辉,李贞霞.等高植物篱技术研究进展[J].中国生态农业学报,2003,11(3):131~133.
    【61】 孙辉,唐亚,陈克明.等高固氮植物篱控制坡耕地地表径流的效果[J].水土保持通报,2001,21(2):48~51.
    【62】 Lim T. T., et al. Vegetated Filter Strip Removal of Cattle Manure Constituents in Runoff. Transactions of the ASCE,1998,41(5):1375~1381.
    【63】 Edwards D. R. Vegetative Filter Strip Removal of Metals in Runoff from Poultuy Litter-amended Fescuegrass Plots. Transactions of the ASCE,1997,40(1):121~127.
    【64】 Ericp Webster. Impact of Vegetative Filter Strips on Herbicide Loss in Runoff from Soybean. Weed Science,1996,44:662~671.
    【65】 陈云明,等.人工沙棘林水文水土保持作用机理研究[J].西北植物学报,2003,23(8):1357~1361.
    【66】 陈云明,刘国彬.我国沙棘水土保持功能研究进展与展望[J].中国水土保持科学,2004,2(2):88~92.
    【67】 毕慈芬,李桂芬.沙棘在治理砒砂地区水土流失中的特殊功能[J].水利水电快报,1998,19(18):1~3.
    【68】 毕慈芬,王富贵,李桂芬.砒砂岩地区沟道植物“柔性坝”拦沙试验[J].泥沙研究,2003,4(2):14~ 25.
    【69】 毕慈芬,乔旺林.沙棘柔性坝在砒砂岩地区沟道治理中的试验[J].沙棘,2003,13(1):28~34.
    【70】 毕慈芬.砒砂岩地区沟道植物“柔性坝”拦沙试验[J].中国水土保持,2002,5:18~20.
    【71】 邱秀云,阿不都外力.植物“柔性坝”对水流影响的试验研究[J].水利水电技术,2003,34(9):62~65.
    【72】 程艳,李森,等.河渠种树水流特性试验研究[J].新疆农业大学学报,2003,26(2):59~64.
    【73】 阎洁,周著,等.植物“柔性坝”阻水试验及固沙机理分析[J].新疆农业大学学报,2004,27(3):40~45.
    【74】 刘锋,邱秀云,周著.植物“柔性坝”在不同底坡下水流特性的试验研究[J].新疆农业大学学报,2005,28(3):53~57.
    【75】 拾兵,曹叔尤,付强,李桂芬.密集丛水流的基本方程[J].西南民族学院学报(自然科学版),1999,25(1):1~7.
    【76】 拾兵,付强,曹叔尤.植物对明渠水流的影响[J].西南民族学院学报,1998,24(4):354~357.
    【77】 拾兵,曹叔尤,等.植物因子与明渠推移质输沙率的关系[J].山地研究,1998,16(2):89~93.
    【78】 拾兵.植物治沙力学机理及河宽动力调整研究[D].成都:四川联合大学,1998.
    【79】 杨方社,李怀恩,等.小流域沙棘植物柔性坝系累积水保效应原型试验[J].泥沙研究,2006(4):1~6.
    【80】 李怀恩,同新奇,等.沙棘“柔性坝”对土壤水分调控作用的试验研究[J].农业工程学报,2006,22(11):69~73.
    【81】 李怀恩,谢毅文,等.砒砂岩地区小流域毛沟侵蚀特性分析[J].西北农林科技大学学报(自然科学版),2007,35(3):245~250.
    【82】 李怀恩,张康,等.沙棘植物柔性坝坝体变形初步分析[J].干旱区资源与环境,2007,21(3):144~148.
    【83】 杨方社,李怀恩,毕慈芬.砒砂岩地区沙棘“柔性坝”拦沙与生态效应试验研究[J].水土保持通报,2007,27(1):102~104.
    【84】 杨方社,李怀恩,等.沙棘植物“柔性坝”沟道土壤水分时空动态变化研究[J].水土保持学报,2007,21(1):107~110.
    【85】 杨方社,李怀恩,毕慈芬.沙棘植物柔性坝沟道土壤水分空间变异研究-以内蒙古准格尔旗砒砂岩地区东一支沟为例[J].北京林业大学学报,2008,30(5):104~110.
    【86】 李怀恩,杨方社,等.沙棘柔性坝水流特性的野外试验研究[J].水力发电学报,2009,28(1):124~129.
    【87】 张涛,李怀恩,杨方社,等.沙棘“柔性坝”对沟底土壤有机质影响的现场试验[J].干旱区资源与环境,2008,22(8):174~178.
    【88】 王张斌,程文,李怀恩.流体可视化技术在沙棘柔性坝流场测量中的应用研究[J].水力发电学报,2008,27(1):28~31.
    【89】 郝飞.鄂尔多斯高原东胜区砒砂岩沙棘综合开发技术初探[J].内蒙古水利,2004,(4):55~57.
    【90】余海龙.内蒙古准格尔旗雨水利用的环境效应分析[J].人民黄河.2004,126(5):28~32.
    【91】 金争平,等.砒砂岩区水土保持与农牧业发展研究[M].郑州:黄河水利出版社,2003.
    【92】 李忠锋.准格尔旗土地利用变化与影响因素分析[J].水土保持通报,2003,23(3):42~44.
    【93】 程积民.子午岭森林植被控制水土流失的作用[J].中国水土保持,1987,(5):8~10.
    【94】陈云明.人工沙棘林水文水土保持作用机理研究[J].西北植物学报,2003,23(8):1357~1361.
    【95】 朱显谟.再论黄土高原国土整治“28字方略”[J].土壤侵蚀与水土保持学报,1995,1(1):4~11.
    【96】 陈云明,刘国彬.我国沙棘水土保持功能研究进展与展望[J].中国水土保持科学,2004,2(2):88~92.
    【97】杨芳.沙棘的研究进展[J].第一军医大学分校学报,2004,27(1):79~81.
    【98】 李勇.沙棘林根系强化土壤抗冲性的研究[J].水土保持学报,1990,4(3):15~20.
    【99】王礼先,张志强.森林植被变化的水文生态效应研究进展[J].世界林业研究,1998,6:14~23.
    【100】邵云.沙棘人工林水土保持效益分析[J].辽宁林业科技,1995,(4):62~64.
    【101】郭百平,王子科.天然沙棘林减水减沙效益试验研究[J].沙棘,1996,9(4):32~36.
    【102】孙立达,朱金兆.水土保持林体系综合效益研究与评价[M].北京:中国科学技术出版社,1995.
    【103】胡建忠.黄土高原沟壑区人工沙棘林地土壤抗蚀性研究[J].沙棘,1999,12(01):14~20.
    【104】吴钦孝.森林保持水土机理及功能调控技术[M].北京:科学出版社,2005.
    【105】吴钦孝,丁汉福.黄土丘陵半干旱地区柠条根系的研究[J].水土保持通报,1989,9(3):45~49.
    【106】汪有科,吴钦孝.林地枯落物抗冲机理研究[J].水土保持学报,1993,7(1):75~80.
    【107】李勇.黄土高原植物根系强化土壤渗透力的有效性[J].科学通报,1990,4(3):15~20.
    【108】陈江南,辛瑛,李贵,乔旺林.砒砂岩区沙棘根系的初步调查与分析[J].沙棘,1998,11(2):10~12.
    【109】周跃.西南地区松属侧根的强度特征对其防护林固土护坡作用的影响[J].生态学杂志,2002,21(6):1~4.
    【110】陈云明.黄土丘陵区人工沙棘林水土保持作用机理及效益[J].应用生态学报,2005,16(4):595~599.
    【111】李全忠.浅谈水土保持综合治理在“94·7·13”暴雨中的削洪减灾作[J].中国水土保持,1995,(3):16~19.
    【112】袁浩基.丰富的沙棘资源与广阔的利用前景[J].山西农业科学,1985,(9):3~5.
    【113】贺康宁,张建军.晋西黄土残塬沟壑区水土保持林坡面径流规律研究.北京林业大学学报,1997,19(4):1~6.
    【114】赵鸿雁,吴钦孝.黄土高原人工油松林小流域产流产沙研究[J].自然科学进展,2001,11(8):829~834.
    【115】汪有科,刘国彬.黄土高原植被防止土壤侵蚀的评价因子[J].中国水土保持,2000,7:96~100.
    【116】劳家柽.土壤农化分析手册[M].北京:农业出版社,1988.
    【117】刘登魁,曾宪军.土壤有机质演变规律研究进展[J].湖南农业科学,2006,(5):61~63.
    【118】谢锦升,杨玉盛,解明曙.土壤轻组有机质研究进展[J].福建林学院学报,2006,26(3):281~288.
    【119】王佑民,刘秉正.黄土高原防护林生态特征[M].北京:中国林业出版社,1994.
    【120】 Berndtsson R,Chen H.Variability of soil water content along atransect in a desert area[J].Journal of Arid Environments,1994,27:127~139.
    【121】赵成义,王玉朝.荒漠绿洲边缘区土壤水分时空动态研究[J].水土保持学报,2005,19(1):124~127.
    【122】王晓燕,陈洪松,等.不同利用方式下红壤坡地土壤水分时空动态变化规律研究[J].水土保持学报,2006,20(2):110~114.
    【123】 Costanza R,Arge R,Groot R,et al.The value of the world's ecosystem services and natural capital.Nature,1997,386:253~260.
    【124】程根伟,余新晓,赵玉涛.山地森林生态系统水文循环与数学模拟[M].北京:科学出版社,2004.
    【125】侯景儒,黄竟先.地统计学及其在矿产储量计算中的应用[M].北京:地质出版社,1982.
    【126】 Campbell J.B. Spatial variation of sand content and pH within single contiguous delineations of two soil mapping units [J].Soil Science Society of America Journal,1978,42(3):460~464.
    【127】 Burgess T M,Webster R. Optimal interpolation and isarithmic mapping of soil properties;I, The semi-variogram and punctual kriging[J]. Journal of Soil Science,1980,31(2):315~331.
    【128】 Webster R.Quantitative Spatial analysis of soil in the field[J].Advances in Soil Science,1985,3:1~70.
    【129】杨玉玲.土壤空间变异研究现状及展望[J].干旱区研究,2001,18(2):50~55.
    【130】史海滨,陈亚新.土壤水分空间变异的套合结构模型及区域信息估值[J].水利学报,1994(7):70~77.
    【131】 Cambardella C A,Moorman T B,Novak J M et al.Field-scale variability of soil properties incentral low a soils[J].Soil Sci.Soc.Am.J.,1994,58:1501~1511.
    【132】 Chien,Y J,Dar-Yuan Lee,Horng-Yuh Guo et al.Geostatistical analysis of soil p roperties of mid-west TaiWan soils[J].Soil Science,1997,162(4):291~298.
    【133】王政权.地统计学及在生态学中的应用[M].北京:科学出版社,1999,1~149.
    【134】郭旭东,傅伯杰,陈利顶.河北省遵化平原土壤养分的时空变异特征—变异函数与Kriging插值分析[J].地理学报,2000,55(5):555~566.
    【135】 Robertson C P,et al.Soil resources,microbial activity,and primary production across an agricultural ecosystem[J].Ecological Applications,1997,7:158-170.
    【136】张世熔,黄元仿,李保国.冲积平原区土壤颗粒组成的趋势效应与异向性特征[J].农业工程学报,2004,20(1):56~60.
    【137】贾志清,宋红竹,陈涛.黄家二岔小流域土壤水分空间分布特征[J].北京林业大学学报,1999,21(5):88~91.
    【138】胡克林,李保国,陈德立,R. E. White.农田土壤水分和盐分的空间变异性及其协同克立格估值[J].水科学进展,2001,12(4):460~466.
    【139】王忖.河岸植被对水流影响的研究现状[J].水资源保护,2003,(6):49~53.
    【140】 Hsieh T.Resistance of cylinder piers in opon-charmel tlow[J].J Hydraul Div,Am Soc Civ Eng,1964,90(HY1):161~173.
    【141】 Li R M, Shen H W. Efect of tall vegetation on flow and sediment[J]. J Hydraul Div, Am Soc Civ Eng, 1973,99(5):793~814.
    【142】 Durra C, Lopoz F, Garcia M. Mean flow and turbulence in a laboratory channel with simulated vegetation R J. Civil Engineering Studies Hydro Engineering Series No 51, Dept of Civil Engrg, Univ of Llllnois at Urbana~Champaign,1996.
    【143】 Pasch E, Rouve G. Overbank flow with vegetatively roughened flood plains[J]. J Hydr Engrg, ASCE, 1985,119(9):1262~1278
    【144】 Stephen E. Darby efect of riparian vegetation onflow resistance and flood potential[J]. J Hydr Engrg, ASCE,1999,125(5):443~454.
    【145】黄本胜,赖冠文,等.河滩种树对行洪影响试验研究[J].水动力学研究与进展,1999,14(4):468~474.
    【146】拾兵.植物治沙力学机理及河宽动力调整研究[D].成都:四川大学,1998.
    【147】拾兵,付强,曹叔尤.植物对明渠水流的影响[J].西南民族学院院报(自然科学版),1998(4):334~337.
    【148】韦鹤平.环境系统工程[M].上海:同济大学出版社,1993.
    【149】 Sivazlian B D, Stanfel LE. Optimization techniques in operation research. Prentice-Hall, Inc. Englewood cliffs, New Jersey.
    【150】 Wen Cheng, Yuichi Murai, Toshio Sasaki, Fujio Yamamoto. Bubble velocity measurement with recursive cross correlation PIV technique [J]. Fluid Measurement and Instrumentation.2005,16:35~46.
    【151】康琦,申功忻.全场测速技术进展[J].力学进展.1997,27(1):106~120.
    【152】 Wen Cheng, Yuichi Murai, Fujio Yamamoto. Estimation of the liquid velocity field in two-phase flows using inverse analysis and particle tracking velocimetry [J]. Flow Measurement and Instrumentation. 2005,16:303~308.
    【153】 Castleman K.R. Digital Image. Processing [M].Houston:Prentice Hall,1996.
    【154】王希麟,张大力,常辙.两相流场粒子成像测速技术(PTV-PIV)初探[J].力学学报.1998,01:121~125.
    【155】许联锋.水气两相流动的数字图像测量方法及其应用研究[D].西安:西安理工大学,2004.
    【156】许联锋,陈刚.粒子图像测速技术研究进展[J].力学进展.2003,04:533~540.
    【157】吴志军,孙志军,张建华.粒子图像速度场仪(PIV)成像系统开发[J].吉林工业大学自然科学学报.1993.03:6~11.
    【158】王张彬.流体可视化技术在沙棘柔性坝流场测量中的应用研究[D].西安理工大学硕士论文,2008.4.
    【159】拾兵,曹叔尤.水流中植物的挠曲变形及耗散能[J].西南民族学院院报(自然科学版),1999,25(4):338~342.
    【160】 Yang, C. T.,"Potential energy and stream morphology".American Geophysical Union,Water Resouces Research,1971,7(2):311~322.
    【161】 Yang, C. T.,"Minimum rate of energy dissipation and river morphopogy".D. B. Simons Symposium on Erosion and Sedimentation, Colorado State University,Fort Collins,CO.1983,312~319.
    【162】 Yang, C. T.,"Minimum unit stream power and fluvial hydraulics" Journal of the Hydraulics Division, ASCE,1976, VOL.102, No.HY7, Proceeding Paper12238:919~934.
    【163】 Yang, C. T., Song, C.C.S., and Woldenberg, M.J.,"Hydraulic geom.erty and minimum rate of energy dissipation".Water Resources Research,1981,17(4):1014~1018.
    【164】顾峰峰.芦苇阻力系数物模及湿地水流数模研究[D].大连理工大学博士学位论文,2006.
    【165】 Ree W O. Retardation Coefficients for Row Crops in Diversion Terraces. Transactions of the American Society of Agricultural Engineers,1958,1:78~80.
    【166】 Chow V T. Open-channel hydraulics. McGraw-Hill,1959.
    【167】 CAME Wilson, M S Horritt. Measuring the flow resistance of submerged grass. Hydrol. Proeess, 2002:2589-2598.
    【168】 Fathi-Maghadam M, Kouwen N. Nonrigid, Nonsubmerged, vegetative Roughness on Floodplains. J. Hydrual. Engng.1997,123(1):51-57.
    【169】 Petryk S, Bosmajian Ⅲ G. Analysis of Flow through Vegetation. Proe. ASCE,1975,101(7):871~884.
    【170】 Kutija, Hong H T M. A Numerical Model for Assessing the Additional Resistance to Flow Introduced by Flexible Vegetation. J. Hydraul. Res,1996,34(1):99-114.
    【171】 Ikedas, Kanazawa M. Three dimensional organized vortices above flexible water plantants[J]. Journal of Hydrualic Engineering, ASCE,1996,122(11):634~640.
    【172】 Shi Z, Hughes J M R. Laboratory flume studies of microflow environments of aquatic plants. Hydrological Processes,2002,16(16):3279~3289.
    【173】 Dan Naot, Iehisa Nezu. Hydrodynamic Behavior of partly vegetated open channels, Jr. Hydrual. Engng.1996,122(11):625~673.
    【174】 Lopez F, Garcia M H. Mean flow and turbulence structure of open-channel flow through non-emergent vegetation. Journal of Hydraulic Engineering,2001,127(5):392~402.
    【175】周家苞.人工水草缓流和消波研究[J].河海大学学报(自然科学版),1998,26(5):99~104.
    【176】时钟.海岸盐沼冠层水流平均流速分布的实验研究[J].海洋工程,2001,19(3):51~59.
    【177】李艳红,赵敏.含植物河流动力学实验研究—流速、摩阻流速及曼宁糙率系数垂线分布[J].水动力学研究与进展,A辑,2004,(4):513~519.
    【178】宿晓辉.带有植物的河道水流紊流运动大涡模拟[D].大连理工大学博士学位论文,2000.
    【179】叶一隆.布袋莲对渠槽曼宁系数之影响[J].水利学报.2005,36(9):1127~1132.
    【180】杨克君.植被作用下的复式河槽漫滩水流紊动特性[J].水利学报.2005,36(10):1263~1268.
    【181】潘成忠.牧草对坡面侵蚀动力参数的影响[J].水利学报.2005,36(3):371~377.
    【182】李文文,黄本胜.高桩码头桩群水流特性的试验研究[J].新疆农业大学学报,2004,27(4):78~81.
    【183】胡江.群桩阻力损失与桩前冲刷研究[J].水动力学研究与进展,Ser. A,2006,21(6):776-780.
    【184】邓绍云.桩柱水流绕流阻力特性及其计算[J].中国港湾建设,2007,(1):4~7.
    【185】张瑞瑾.河流泥沙动力学[M].北京:中国水利水电出版社,1998.
    【186】 Ramser, C. E.,"Flow of water in drainage channels",Technical Bulletin NO.179,U.S.Department of Agriculture,November 1929.
    【187】美国陆军工程兵团:《水力设计准则》第一卷,长江水利水电科学研究院译,1979.
    【188】 His,G. and J.H.Nath,"Wind drag within simulated forest canopy field",Technical Report Prepared for U.S. Army Materials Command,Grant No.DA-AMC-28-043-65-G-20,August 1968.
    【189】 Hoerner, S.F.,"Fluid Dynamic Drag", Published by Author,1965.
    【190】 Petryk, S.,"Drag on cylinders in open channel flow",Thesis Presented to Colorado State University at Fort Collins,Colorado in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy,1969.
    【191】张玮,钟春欣.草皮护坡水力糙率实验研究[J].水科学进展,2007,18(4):483~489.
    【192】 Meyer-Peter,E. and R. Muller,"Formulas for bed-load transport,"Report on Second Meeting of International Association for Hydraulic Research,Stockholm, Sweden,1948.
    【193】 Acker, P. and W. R. White,"Sediment transport:A New Approach and Analysis," Journal of Hydraulics Division, American Society of Civil Engineers, Vol.99, No.HY11,1973.
    【194】谢鉴衡,魏良琰.河流泥沙数学模型的回顾与展望[J].泥沙研究,1987,(3):1~13.
    【195】杨国录.河流数学模型[M].北京:海洋出版社,1993.
    【196】 Feldman, A. D. HEC Models for Water Resources System Simulation:Theory and Experience. The Hydraulic Engineering Ceter, Davis, California,1981.
    【197】 Chang, H. H. Fluvial processes in river engineering. Wiley Inter-science. New York, N. Y.429.1988.
    【198】 Chang, H. H. Harrison, L. L. Lee, W. Tu. S. Numerical Modeling For Sediment-Pass-Through Reservoirs,J. Hydr. Engrg, ASCE,122(7),1996.
    【199】 Yang, C. T. Molinas, A. and Song, C. S. "GSTARS-Generalized Stream Tube Model for alluvial river Simulation. " Twelve selected computer stream sedimentation Models developed in the U.S.S.Fan.ed.Energy Regulatory Commission, Washington, D.C.1988.
    【200】 Darby, S. E., Thorne, C. R. Development and testing of riverbank stability analysis. J. Hydr. Engrg. ASCE,122(8),1996.
    【201】 Einstein, H. A., "The bed load function for sediment transportation in open channel flows", U.S. Department of Agriculture, Soil Conservation Service, Tech Bull.1026. Washington, D.C.,1950.
    【202】 Bagnold R A."The Nature of Saltation and Bed Load Transport in Water", Proc.Royal Society, Ser.A. Vol.332,1973.
    【203】 Yang, C.T. and Song, C.C.S.Theory of minimumrate of energy dissipation, Journal of Hydraulic Div. Asce, Vol.105, No.7,1979, P769~784.
    【204】 Fan, S. ed. Twelve selected computer stream sedimentation models developed in the United States.Fed. Energy Regulatory Commission, Washington, D.C.1988.
    【205】李义天,谢鉴衡,吴伟明.二维及三维泥沙数学模型的研究进展[C].全国泥沙基本理论研究学术讨论会论文集(第二卷),1992.
    【206】张启舜,等.河流冲淤过程计算的数学模型[C].第二次国际河流泥沙会议论文集,南京,1983.
    【207】杨国录,贡日,等.冲积河流一维数学模型[J].泥沙研究,1989,(4):41~53.
    【208】钱意颖,等.黄河泥沙冲淤数学模型[M].郑州:黄河水利出版社,1998.
    【209】周雪漪.计算水力学[M].北京:清华大学出版社,1995.
    【210】梁恩佐.发展沟地农业为黄河减沙除害[J].人民黄河,1997,(11):42~45.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700