O-CELL试桩法的若干基本问题
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
O-cell试桩法作为一种新的试桩技术已在国内外许多重大工程中得到应用,但是该法在理论上存在的问题还没有得到系统的归纳和解决。其中,如何由O-cell试桩结果确定整桩竖向承载性能是有关O-cell试桩法研究的根本问题,这也是O-cell试桩法研究中的热点和难点。解决该问题涉及O-cell试桩法若干基础性问题的研究:如何分析和应用O-cell试桩结果,进而确定桩侧阻力和桩端阻力参数;O-cell试桩中上桩与下桩之间相互作用的程度,如何分析上、下桩之间的相互作用;上桩在O-cell试桩时受桩底上顶作用,而在传统静荷试验时相应上桩段受桩顶下压作用,加载方式对上桩桩侧阻力性能的影响机制和考虑方法;最后,如何利用O-cell试桩结果合理确定在竖向荷载下整桩的荷载沉降曲线。
     为研究以上问题,本文建立了O-cell试桩桩土体系和传统静荷试桩桩土体系的模拟分析模型,模型由桩、桩周土和桩土接触面三部分组成,采用有限元法对桩土体系受力进行分析,桩采用线弹性力学模型,桩周土采用邓肯-张力学模型,桩土接触面采用无厚度的Goodman单元,并采用双曲线型剪应力-切向位移差的力学模型。O-cell试桩桩土体系中荷载箱顶面与底面以荷载边界模拟。
     本文提出了通过拟合O-cell荷载位移曲线和各级桩轴力曲线确定桩土接触面和桩周土力学模型参数的方案,并给出了拟合过程中调整模型参数的原则和细节。通过对一个实际工程O-cell试桩结果的拟合分析验证了本文提出的确定桩侧阻力和桩端阻力参数方案的可行性。
     本文利用O-cell试桩体系模型模拟分析了上桩桩底单独加载、下桩桩顶单独加载、上下桩同时加载三种加载方式下上下桩的性能,通过比较三种加载方式下桩土的变形和受力差异研究了上下桩之间的相互作用及影响程度。结果表明,如果载荷箱位于较好的土层中,在O-cell试桩中上下桩的相互作用影响通常很小,可以忽视不计。实际上,在工程实践中,载荷箱通常都放置在较好的土层中。同时研究表明,场地土层条件、桩长、桩径对O-cell试桩中上下桩相互作用影响程度很小,可以忽略。
     本文不考虑桩端阻力模拟分析了在桩顶下压、桩底上顶、桩顶上拉三种加载方式下桩的性能,研究了加载方式对桩侧阻性能的影响机制。比较三种加载方式的分析结果发现,在桩顶上拔和桩底上顶两种加载方式下,竖向荷载引起的附加桩侧向应力比?为负,使总的桩侧向压应力减小,而在桩顶下压加载方式下,竖向荷载引起的附加桩侧向应力比α为正,使总的桩侧向压应力增加。另外,研究了土的类型、桩长、桩径对不同加载方式下附加桩侧向应力比的影响。基于上述结果,本文认为不同加载方式的附加桩侧向应力的不同应是其侧阻力不同的根本原因。
     基于上述关于不同加载方式下桩侧阻力不同的机制研究,建立了一个可以考虑接触面侧向压应力对接触面力学参数影响的模型,该模型给出了在加载过程中接触面的最终剪应力值τ_(ult)、最大切向刚度K_(τ,max)与桩侧向压应力比α之间的关系,并基于破坏时桩土相对位移等效原则给出了确定该模型中的关键参数——等效侧压力比的方法。利用所建立的模型可以由桩底上顶加载时接触面力学参数确定桩顶下压时接触面力学参数。反之,也是适用的。采用所建立的模型考虑加载方式对桩侧阻力的影响,利用桩底上顶的测桩资料对桩顶下压时桩的性能进行了模拟分析。分析结果表明,桩顶下压加载方式下的桩承载力比桩底上顶加载方式下桩的承载力有明显的提高,其提高的程度与工程经验相一致。
     本文考虑加载方式对上桩侧阻力的影响,建立了两个由O-cell试桩结果确定整桩P-S曲线的途径。对一个O-cell试桩实例的分析表明,本文所提供的方法是可行的。本文方法能提供一条包含直线段、过渡段和破坏段的整桩完整的荷载沉降曲线,完全适用于按有关规范规定的准则确定整桩的极限承载力,与现有其他方法所确定的整桩荷载沉降曲线比较表明:等位移法和等荷载法由于没有考虑上桩的压缩量,所确定的荷载沉降曲线显著地低估了桩顶沉降;简化法和精确法所给出整桩荷载沉降曲线与本文方法A和方法B确定的整桩荷载沉降曲线的相应段较为接近,但这一点还需进一步验证,然而这两种方法只能提供仅包括直线段和部分过渡段的不完整的整桩荷载沉降曲线;本文提出的方法B比方法A在理论上更合理,在由O-cell试桩资料确定整桩荷载沉降曲线时还可以考虑场地土层、桩径和桩长的影响。由方法B荷载沉降曲线确定的整桩极限承载力比由方法A确定的约高10%;由O-cell试桩结果确定整桩极限荷载的流行公式低估了整桩的极限荷载,大约20~30%。
As a new pile test technique, O-cell test of pile has been applied in many projects at home and abroad. But some theory problems of O-cell test technique have not been summaried systematically and solved. It is a fundamental problem about O-cell pile test how to determine integer pile vertical behavior based on the O-cell test results of piles. Also, this problem is hot and hard in researches of O-cell pile test. The solution of this problem deal with several basic research of O-cell pile test problems: In order to determine the resistance parameters of pile side and tip, how to analysis and apply results of O-cell pile test; How much the interaction between upper pile and lower pile in O-cell test and how to study the interaction between upper pile and lower pile; For upper pile, load acts on pile bottom pushing upper pile up in O-cell pile test, but load acts on pile top pressing down in conventional pile test, loading mode how to influence on upper pile side resistance, and how the influence to be considered; How to utilize results of O-cell pile test to determine the load-settlement curve of integer pile reasonably.
     In order to study above problems, the simulation analysis models of O-cell pile test and conventional pile test are set up in this paper. The models consist of pile, soil and pile-soil interface. FEM is used to analysis pile-soil system behavior. Pile is regarded as linear elastic. Duncan-Chang model is adopted to consider nonlinear behavior of soils. Nonthick Goodman element is adopted, and the nonlinear relationship between the shear stress and the tangential relative displacement on pile-soil interface is expressed with the hyperbolic curve. Top and bottom of load box are treated as load boundary in O-cell pile-soil system.
     The approach fitting the load-displacement curves and the axial force curves of upper pile and lower pile obtained from the O-cell test of pile is presented. The principle and detail adjusting parameters in process of fitting curves is also presented. With fitting and analysis of O-cell pile test data of a case, the approach to determine resistance parameters of pile side and tip in this paper is verified to be feasible.
     With the models of O-cell pile test, the upper and lower pile behavior are analyzed with numerical simulation method under the three cases: loading upper pile and lower pile simultaneously,loading lower pile individually,and loading upper pile individually . Compared stress and deformation of pile and soil in these three cases, the interaction between upper pile and lower pile is analysised, and the degree of the interaction influence on upper pile and lower pile is studied. The results show that if load box is in relatively hard soil the interaction between upper pile and lower pile in O-cell test is so little that it can be ignored. In fact, load box usually is in relatively hard soil in engineering. The results also show that site soil condition and pile length and pile diameter have such little influence on interaction between upper pile and lower pile in O-cell test as it is can be ignored.
     Without the pile tip resistance, the pile behavior under load of pressing down at pile top, pushing up at pile bottom and pulling up at pile top are analyzed with numerical simulation method. The influence of loading models on pile side resistance is studied same time. The comparing results of three loading models show that the additional pile lateral stress ratio ? induced by load of pulling up at pile top and pushing up at pile bottom is minus, that mean total pile lateral stress decrease; the additional pile lateral stress ratio ? induced by load of pressing down at pile top is plus, that mean total pile lateral stress increase. The influence of soil type and pile length and pile diameter on additional pile lateral stress ratio is also studied. Base on above results, it is accepted that difference of the additional pile lateral stress induced by load models is a fundamental reason of different pile side resistance under different loading model.
     Base on the above research about different side resistance behavior under different load model, a model in which interface lateral stress influence on interface mechanics parameters is considered. In this model the ultimate shear stressτ_(ult) and the max tangential stiffness K_(τ,max) in loading process are related with pile lateral stress ratioα. Equivalent lateral stress ratio is the key parameter of this model. The method by which equivalent lateral stress ratio is determined based on the equivalence of failing relative displacement is provided. With the model, the interface parameters under pressing down at pile top can be got from those under pushing at pile bottom load. Reverse procedure is feasible. Loading model influence on pile side resistance can be considered in this model. With data of pushing at pile bottom, the behavior of pile under press at pile top is simulated and analyzed. Result of analysis shows that the bearing capacity under loading press at pile top is higher than that under pushing at pile bottom, and the increase extent is agree with practical experience.
     In this paper, considering loading model influence on upper pile side resistance, two approaches determining integrate pile P-S curve based on the results of O-cell pile test are presented. The O-cell pile test results of a case are analysised. It is verified that the approaches presented in this paper are feasible. The complete integrate pile P-S curves, which includes linear part, transition part and failure part, can be provided by the methods presented in this paper. The P-S curves can be used to determine bearing capacity of integrate pile by code criterion. The curves determined by methods presented in this paper are also compared with ones determined by other methods. As the compression of upper pile does not been considered,the settlement of the curves determined by Equi-displacement method and Equi-load methods are underestimated. The P-S curve determined by simplified method and accurate method are close to according segment of P-S curve determined by method A and method B. But the conclusion need be checked further. Integrate pile P-S curves from simplified method and accurate method only include linear segment and partial transition segment. In theory, Method B is more reasonable than method A. It also can be considered the influence of soil type pile length and pile radius on integrate pile P-S curves. The bearing capacity determined by method B is 10% more than that determined by method A. The integrate pile bearing capacity is underestimated by popular formulas of determining the bearing capacity of integrate pile from O-cell test results, about 20~30%.
引文
1《桩基工程手册》编写委员会.桩基工程手册.中国建筑工业出版社,1995:1~8.
    2刘金砺,黄强,张雁.桩基承载性能及有关设计问题.桩基工程技术.中国建材工业出版社,1996:1~7.
    3 A. Dodds. A Numerical Study of Pile Behavior in Large Pile Groups Under Lateral Loading. University of Southern California., Ph.D., 2005: 304~367.
    4 Y. A. Khodair, S. Hassiotis. Analysis of Soil-Pile Interaction in Integral Abutment. Computers and Geotechnics. 2005, 32(3): 201~209.
    5 S. C. Wong, H. G. Poulos. Approximate Pile-to-Pile Interaction Factors Between Two Dissimilar Piles. Computers and Geotechnics. 2005, 32(8): 613~618.
    6 M. Achmus, Y. S. Kuo, K. Abdel-Rahman. Behavior of Monopile Foundations Under Cyclic Lateral Load. Computers and Geotechnics. 2009, 36(5): 725~735.
    7 L. Kong. Behaviour of Pile Groups Subjected to Torsion. Hong Kong University of Science and Technology, Ph.D., 2006: 243~304.
    8 Z. Y. Ai, J. Han. Boundary Element Analysis of Axially Loaded Piles Embedded in a Multi-Layered Soil. Computers and Geotechnics. 2009, 36(3): 427~434.
    9 F. G. Bell. Engineering Treatment of Soils. E & FN Spon , 1993: 87~108.
    10 E. L. Hajduk. Full Scale Field Testing Examination of Pile Capacity Gain with Time. University of Massachusetts Lowell., D.Eng., 2006: 46~529.
    11 M. Sabry. In Situ Stresses and Capacity of Driven Piles in Sand. Concordia University (Canada)., Ph.D., 2005: 164~166.
    12 B. Zhu, A. Y. Leung. Linear and Nonlinear Vibration of Non-Uniform Beams On Two-Parameter Foundations Using P-Elements. Computers and Geotechnics. 2009, 36(5): 743~750.
    13 R. Rajapakse. Load Distribution Inside Piles. Butterworth-Heinemann, 2008: 251~257.
    14 J. C. Pegues, W. Anundson, A. Adeyefa. Load Tests Help Optimize Design of Deep Foundations. M. Iskander, D. F. Laefer and M. H. Hussein. Orlando, Florida, 2009: 111~118.
    15 H. Seol, S. Jeong, Y. Kim. Load Transfer Analysis of Rock-Socketed Drilled Shafts by Coupled Soil Resistance. Computers and Geotechnics. 2009, 36(3): 446~453.
    16 R. Rajapakse. Pile Design in Rock. Butterworth-Heinemann, 2008: 223~243.
    17 E. M. Comodromos, M. C. Papadopoulou, I. K. Rentzeperis. Pile Foundation Analysis and Design Using Experimental Data and 3-D Numerical Analysis.Computers and Geotechnics. 2009, 36(5): 819~836.
    18 A. S. Alawneh, O. K. Nusier, A. A. Sharo. Poisson'S Ratio Effect On Compressive and Tensile Shaft Capacity of Driven Piles in Sand: Theoretical Formulation. Computers and Geotechnics. 2007, 34(3): 151~163.
    19 M. Dicleli. Supplemental Elastic Stiffness to Reduce Isolator Displacements for Seismic-Isolated Bridges in Near-Fault Zones. Engineering Structures. 2007, 29(5): 763~775.
    20 W. G. K. Fleming. A New Method for Single Pile Settlement Prediction and Analysis. Geotechnique. 1992, 42(3): 411~425.
    21 W. G. K. Fleming. a New Method for Single Pile Settlement Prediction and Analysis (Discussion). Geotechnique. 1993, 43(4): 615~619.
    22龚维明.润扬大桥12000t试桩顺利结束.岩土工程学报. 2001, 23(2): 200.
    23穆保岗,龚维明,黄思勇.天津滨海新区超长钻孔灌注桩原位试验研究.岩土工程学报. 2008,30(2): 268~271.
    24黄生根,龚维明.苏通大桥一期超长大直径试桩承载特性分析.岩石力学与工程学报. 2004,23(19): 3370~3375.
    25罗骐先.桩基工程检测手册(第二版).人民交通出版社, 2004: 1~7.
    26王常青,刘仁恒,辛欣.一柱一桩基础设计. 98年黑龙江省地基基础学术会议论文. 1998:6~12
    27龚维明,戴国亮.桩承载力自平衡法的几个关键问题讨论.公路. 2005,27(8):24~27.
    28黄强.桩基工程若干热点技术问题.中国建材工业出版社, 1996: 141~264.
    29徐攸在,刘兴满.桩的动测新技术(第二版).中国建筑工业出版社, 2002: 1~22.
    30 B. 8. B. S. Institution. British Standard Code of Practice for Foundations. 1986.
    31 A. S. F. T. Materials. Standard Test Method for Piles Under Static Axial Compressive Load. 2000: 96~106.
    32王幼青,刘悦信.桩破坏标准探讨.哈尔滨建筑大学学报. 1993,126(6): 64~68.
    33王奎华,陈再谦,张智卿.真空负压静力试桩方法有限元分析.浙江大学学报(工学版). 2008,42(1): 88~93.
    34蔡长赓.广东静载试桩堆载达2106吨.岩土工程界. 2000,3(3): 7.
    35李力勇,徐建平,毛景洲.下沙大桥3600t加载力试桩工程.浙江建筑. 2003, (S1): 18~20.
    36戴国亮,游庆仲,龚维明,王峻. 120 000 kN钻孔灌注桩静载荷试验.铁道建筑技术. 2001,(5): 40~44.
    37 E. A. L. Simth. Pile Driving Analysis by the Wave Equation. Transactions of ASCE. 1962, 127(1): 3306~3310.
    38黄锋,刘朝钢,李广信,吕禾.桩承载力确定方法的探讨.清华大学学报(自然科学版). 1998,38(1): 28~32.
    39陈如桂.桩基工程动测技术若干问题讨论.桩基工程技术.中国建材工业出版社,1996: 454~459.
    40 S. H. Ni, L. Lehmann, J. J. Charng, K. F. Lo. Low-Strain Integrity Testing of Drilled Piles with High Slenderness Ratio. Computers and Geotechnics. 2006, 33(6-7): 283~293.
    41 L. F. Johnsen, A. Anderson, J. J. Jagello. Low Strain Testing of Compaction Grout Columns. L. F. Johnson, D. A. Bruce and M. J. Byle. February 10–12, 2003, New Orleans, Louisiana, USA, 2003: 12.
    42 Y. K. Chow, K. K. Phoon, W. F. Chow, K. Y. Wong. Low Strain Integrity Testing of Piles: Three-Dimensional Effects. Journal of Geotechnical and Geoenvironmental Engineering. 2003, 129(11): 1057~1062.
    43 O. Klingmuller, F. Kirsch. A Quality and Safety Issue for Cast-in-Place Piles 25 Years of Experience with Low-Strain Integrity Testing in Germany: From Scientific Peculiarity to Day-to-Day Practice. J. A. Di and M. H. Hussein. Practices and Trends in Deep Foundations 2004 , 2004: 202~221.
    44 F. Rausche, G. G. Goble, G. E. Jr Likins. Dynamic Determination of Pile Capacity. Journal of Geotechnical Engineering. 1985, 111(3): 367~383.
    45 H. A. Simons, M. F. Randolph. Discussion of ``Dynamic Determination of Pile Capacity'' by Frank Rausche, George G. Goble, and Garland E. Likins, Jr. (March, 1985, Vol. 111, No. 3). Journal of Geotechnical Engineering. 1987, 113(9): 1060~1062.
    46 F. Rausche, G. G. Goble, G. E. Jr Likins. Dynamic Determination of Pile Capacity. J. A. Dimaggio and M. H. Hussein. Practices and Trends in Deep Foundations 2004, Los Angeles, California, USA, 2004: 398~417.
    47王成华.单桩竖向静载试验存在的其他理论和实践问题——兼答刘松玉先生.岩土工程学报. 2001,23(5): 644.
    48李素华,吴世明,刘忠孝.工程桩质量检测技术中的若干问题探讨.岩石力学与工程学报. 2002,21(1): 133~135.
    49陈久照,温振统,李廷,张希朝.高应变动力试桩中重锤-桩-岩土冲击响应的理论研究.土木工程学报. 2007,40(5):53~60.
    50李波,康晓娟.国外静力触探技术发展现状及未来趋势.岩土工程界. 2008,11(05): 36~56.
    51 H. Ardalan, A. Eslami, N. Nariman-Zadeh. Piles Shaft Capacity From Cpt and Cptu Data by Polynomial Neural Networks and Genetic Algorithms. Computers and Geotechnics. 2009, 36(4): 616~625.
    52陈强华,陈国铨,蒋博平,龚启昌,徐惠亮.静力触探估算打入桩的单桩承载力(单用探头).同济大学学报(自然科学版). 1984,(4): 30~44.
    53陈强华,洪毓康,高大钊,樊有维.静力触探估算打入桩竖向承载力参数.岩土工程学报. 1992,14(3): 30~39.
    54赵春风,蒋东海,崔海勇.单桩极限承载力的静力触探估算法研究.岩土力学. 2003,(S2): 408~410.
    55陈强华,鲁智明,张鹏飞.静力触探估算钻孔灌注桩单桩极限承载力.第七届土力学及基础工程学术会议论文集. 1994:373~376.
    56彭雄志,赵善锐,罗书学.由静力触探推求钻孔桩承载力的可靠度.勘察科学技术. 2000(1): 19~29.
    57赵春风,徐超,高大钊.静力触探法设计预制桩的分项系数研究.岩石力学与工程学报. 2004,23(4): 673~677.
    58赵春风,叶观宝,李建新,高大钊.由CPT确定灌注桩极限承载力的可靠性分析.岩土力学. 1999,20(1): 65~73.
    59张忠坤.静力触探成果与桩基承载力的回归分析.河海大学学报(自然科学版). 1997,25(4):71~75.
    60 J. H. Schmetmann. Measurement of in-Situ Shear Strength. Proceeding of the Conference of In-Situ Measurement of Soil Properties, 1975.
    61魏杰.静力触探确定桩承载力的理论方法.岩土工程学报. 1994,16(3):103~111.
    62张明义.静力压桩与静力触探对比分析.桩基工程技术.中国建材工业出版社,1996:387~390.
    63 G. G. Meyerhof. Closure to "Scale Effects of Ultimate Pile Capacity'' by George G. Meyerhof (June, 1983). Journal of Geotechnical Engineering. 1984, 110(8): 1159~1160.
    64 M. Jamiolkowski, R. Lancellotta, E. Pasqualini. Discussion of "Scale Effects of Ultimate Pile Capacity'' by George G. Meyerhof (June, 1983). Journal of Geotechnical Engineering. 1984, 110(8): 1156~1159.
    65 R. Hobbs. Discussion of "Scale Effects of Ultimate Pile Capacity'' by George G. Meyerhof (June, 1983). Journal of Geotechnical Engineering. 1984, 110(8):1155~1156.
    66 R. Carpentier. Discussion of "Scale Effects of Ultimate Pile Capacity'' by George G. Meyerhof (June, 1983). Journal of Geotechnical Engineering. 1984, 110(8): 1154~1155.
    67 G. G. Meyerhof. Scale Effects of Ultimate Pile Capacity. Journal of Geotechnical Engineering. 1983, 109(6): 797~806.
    68王钟琦.我国的静力触探及动静触探的发展前景.岩土工程学报. 2000,22(5):517~522.
    69赵剑涛,湛川,高文龙,周旭荣,孙晓明.黄骅港湾地区真空预压处理后地基静力触探研究.岩土力学. 2006,27(12): 2273~2276.
    70高颂东.静力触探技术在天津软土地区的应用研究.天津大学硕士论文. 2006: 1~25.
    71 A. J. Lutenegger, S. P. Kelley. Discussion: Influence of Hammer Type On Spt Results. Journal of Geotechnical and Geoenvironmental Engineering. 1997, 123(9):
    890~891.
    72 E. E. Drumright, C. W. Pfingsten, R. G. Lukas. Influence of Hammer Type On Spt Results. Journal of Geotechnical Engineering. 1996, 122(7): 598~599.
    73 J. O. Osterberg. Load Testing High Capacity Piles: What Have we Learned?. proceedings of the fifth international conference on deep foundation practice, Singapore, 2001.
    74 J. O. Osterberg, H. U. A. The Osterberg Load Cell as a Research Tool. Proceedings of the fifth international conference on soil mechanics and geotechnical engineering, 2001: 977~979.
    75 E. M. Bi-Directional Static Load Testing-State of the Art. Deep foundation on bored and auger piles. 2003: 309~313.
    76戴国亮,吉林,龚维明,王峻,眭峰.自平衡试桩法在桥梁大吨位桩基中的应用与研究.公路交通科技. 2002, (02):63~93
    77龚维明,蒋永生,翟晋.桩承载力自平衡测试法.岩土工程学报. 2000, (5):532~536
    78 G. Russo, B. Recinto, C. Viggiani, L. De-Sanctis. A Contribution to the Analysis of Osterberg’S Cell Load Test. I. Van Wf. Belgium, 2003: 331~338.
    79 J. Han, X. Yang, R. L. Parsons, R. W. Henthorne. Side Resistance Factor for Serviceability-Based Design of Drilled Shafts in Weak Rock Calibrated Using O-Cell Test Data. M. Iskander, D. F. Laefer and M. H. Hussein. Orlando, Florida, 2009: 38.
    80 X. Yang, J. Han, R. Henthorne, R. L. Parsons. Statistical Analysis of O-Cell TestData for Nominal Load Capacities of Drilled Shafts. K. R. Reddy, M. V. Khire and A. N. Alshawabkeh. New Orleans, Louisiana, 2008 (11): 90~97
    81 A. G. Thurman, E. D’appolonia. Computed Movement of Friction and End-Bearing Piles Embedded in Uniform and Stratified Soils. Proc. 6th Int. Conf. Soil Mech. Found. Eng., 1965: 323~327.
    82 E. D’appolonia, J. P. Romualdi. Load Transfer in End-Bearing Steel H-Piles. J.Soil Mech. Found. Div. ASCE. 1963, 89(SM2): 1~25.
    83 H. G. Poulos, E. H. Davis. Pile Foundation Analysis and Design. John Wiley and sons, 1980.
    84 H. G. Poulos, N. S. Mattes. The Behaviour of Axially Loaded End-Bearing Piles. Journal of Geotechnical Engineering. 1996, 122(7): 598~599.
    85 H. G. Poulos, E. H. Davis. the Settlement Behaviour of Single Axially Loaded Incompressible Piles and Piers. Geotechnique. 1968, 18(3): 351~371.
    86 P. H. G. Twenty-Ninth Rankine Lecture: Pile Behavior-Theory and Application. Geotechnique. 1989, 39(3): 363~415.
    87 H. B. Seed, L. E. Reese. The Action of Soft Clay Along Friction Piles. Transactions, ASCE. 1957, 122: 731~764.
    88曹汉志.桩的轴向荷载传递及荷载—沉降曲线的数值计算方法.岩土工程学报. 1986,8(6): 37~49.
    89阳吉宝,钟正雄.超长桩的荷载传递机理.岩土工程学报. 1998,20(06):108~112.
    90 R. W. Cooke, G. Price, K. Tarr. Jacked Piles in London Clay: A Study of Load Transfer and Settlement Under Working Conditions. Geotechnique. 1979, 92(2): 113~147.
    91 M. F. Randolph. Design Methods for Pile Groups and Piled Rafts. 1994, : 61~82.
    92 M. F. Randolph, C. P. Worth. An Anaysis of the Vertical Deformation of Pile Groups. Geotechnique. 1979, 29(4): 423~439.
    93 M. F. Randolph, C. P. Worth. Analysis of Deformation of Vertically Loaded Piles. Journal of Geotechnical Engineering Division, ASCE. 1978, 104(GT12): 1465~1488.
    94 S. W. Abusharar, J. J. Zheng, B. G. Chen. Finite Element Modeling of the Consolidation Behavior of Multi-Column Supported Road Embankment. Computers and Geotechnics. 2009, 36(4): 676~685.
    95 I. Said, G. V. De, R. Frank. Axisymmetric Finite Element Analysis of Pile Loading Tests. Computers and Geotechnics. 2009, 36(1-2): 6~19.
    96 J. J. Zheng, S. W. Abusharar, X. Z. Wang. Three-Dimensional Nonlinear FiniteElement Modeling of Composite Foundation Formed by Cfg-Lime Piles. Computers and Geotechnics. 2008, 35(4): 637~643.
    97 M. T. Chaudhary. Fem Modelling of a Large Piled Raft for Settlement Control in Weak Rock. Engineering Structures. 2007, 29(11): 2901~2907.
    98 D. Sheng, K. D. Eigenbrod, P. Wriggers. Finite Element Analysis of Pile Installation Using Large-Slip Frictional Contact. Computers and Geotechnics. 2005, 32(1): 17~26.
    99 M. A. Habib. Numerical Analysis of Pile Groups in Multi-Layered Soil Subjected to Negative Skin Friction. Concordia University (Canada)., M.A.Sc., 2006: 29~63.
    100 E. M. Comodromos, S. V. Bareka. Evaluation of Negative Skin Friction Effects in Pile Foundations Using 3D Nonlinear Analysis. Computers and Geotechnics. 2005, 32(3): 210~221.
    101王幼青.桩在垂直荷载下的性状.中国土木工程学会第七届土力学及基础工程学术会议论文集.北京,1994:363~367
    102高笑娟,朱向荣.用双曲线法预测挤扩支盘桩的极限承载力.岩土力学. 2006,27(9): 1596~1600.
    103邓聚龙.灰色系统基本方法.华中理工大学出版社,1987: 1~12.
    104戚科骏,徐美娟,宰金珉.单桩承载力的灰色预测方法.岩石力学与工程学报. 2004,23(12): 2069~2071.
    105罗战友,董清华,龚晓南.未达到破坏的单桩极限承载力的灰色预测.岩土力学. 2004,25(2): 304~307.
    106李森,唐孟雄,陈树辉.缓冲算子修正的单桩极限承载力的灰色预测.工程力学. 2008,25(S1): 129~132.
    107杨芳,孙林柱,王铁成.超长桩承载力的灰色优化-马尔柯夫预测模型.岩土力学. 2006,27(3): 423~434.
    108胡庆立.竖向荷载作用下大直径桩的承载性能研究.哈尔滨建筑大学博士论文. 2002: 42~100.
    109 F. Toyokazu, Y. Kiyoomi. The Development of a New Pile Load Testing System.
    110 J. O. Osterberg. What Has Been Learned About Drilled Shafts From the Osterberg Load Test. The Deep Foundations Institute Annual Meeting - October, 1999: 1~13.
    111 K. Ilamparuthi, E. A. Dickin. The Influence of Soil Reinforcement On the Uplift Behaviour of Belled Piles Embedded in Sand. Geotextiles and Geomembranes. 2001, 19(1): 1~20.
    112 R. P. Frizzi, M. E. Meyer, L. J. Zhou. Full Scale Field Performance of Drilled Shafts Constructed Utilizing Bentonite and Polymer Slurries. ASCE Conf. Proc. 135, 39(2004): 2004.
    113 B. Attwooll. I-25 Trex Project: O-Cell Tests and Drilled Shaft Design Recommendations. M. K. Yegian and E. Kavazanjian. GeoTrans 2004, Los Angeles, California, USA, 2004: 108.
    114 G. Zuo, E. C. Drumm, M. Z. Islam, M. Z. Yang. Numerical Analysis of Drilled Shaft O-Cell Testing in Mica Schist. J. P. Turner and P. W. Mayne. GeoSupport 2004, Orlando, Florida, USA, 2004: 46.
    115 M. Z. Yang, M. Z. Islam, E. C. Drumm, G. Zuo. Side Resistance of Drilled Shaft Socketed Into Wissahickon Mica Schist. J. P. Turner and P. W. Mayne. GeoSupport 2004, Orlando, Florida, USA, 2004: 45.
    116罗春波. O法试桩机理分析及技术改进研究.浙江大学硕士论文. 2007:1~18
    117 C. Wm. Drilled and Driven Foundation Behavior in a Calcareous Clay. GEOSUPPORT 2004. Florida: Geotechnical Special Publication No. 124, 2004.
    118前田良刀.第二东名东海大府高架桥工区にぉける壁基础原位置载荷试验.基础の工. 1996,(5):60~66.
    119 J. A. Waxse, J. Osterberg, O. Qudus. Drilled Shaft Value Engineering Delivers Success to Wahoo, Nebraska Bridge. J. P. Turner and P. W. Mayne. GeoSupport 2004, Orlando, Florida, USA, 2004:28.
    120 B. H. Fellenius, A. Altaee, R. Kulesza, J. Hayes. O-Cell Testing and Fe Analysis of
    28-M-Deep Barrette in Manila, Philippines. Journal of Geotechnical and Geoenvironmental Engineering. 1999, 125(7): 566~575.
    121张瑞平,史佰通,龚维明.自平衡试桩法在桩基工程中的应用. BUILDING IN GUANGXI. 2002,27(2):90~93.
    122史佩栋,黄勤.桩的静载荷试验新技术.桩基工程技术.中国建材工业出版社,1996:400~409.
    123史佩栋,陆怡. Osterberg静载荷试桩法10年的发展.工业建筑. 1999,29(13):17~18.
    124史佩栋.桩的静载荷试验新技术──Osterberg试桩法.岩土工程学报. 1996,18(6): 138.
    125戴国亮,龚维明,刘欣良.自平衡试桩法桩土荷载传递机理原位测试.岩土力学. 2003,24(6):1065~1069.
    126鲍育明,刘亚文,李志成,严少华.自平衡法在桩基承载力检测中的应用.解放军理工大学学报(自然科学版). 2003,4(3):49~52.
    127 J. O. Osterberg. The Osterberg Load Test Method for Bored and Driven Piles the First Ten Years. Proceedings of the Seventh International Conference and Exhibitionon Piling and Deep Foundations, Vienna,Austria, 1998:1~17.
    128 J. H. Schmertmann, J. A. Hayes. The Osterberg Cell and Bored Pile Testing - A Symbiosis. The Third Internatioal Geotechnical Engineering Conference, Cairo, 1997:139~166.
    129龚维明,戴国亮.桩承载力自平衡测试技术及工程应用.中国建筑工业出版社, 2006:32~43.
    130 J. S. Lee, Y. H. Park. Equivalent Pile Load-Head Settlement Curve Using a Bi-Directional Pile Load Test. Computers and Geotechnics. 2008, 35(2): 124~133.
    131龚维明,戴国亮,蒋永生,薛国亚.桩承载力自平衡测试理论与实践.建筑结构学报. 2002,23(1):82~88
    132熊巨华,蒋益平,杨敏.自平衡试桩结果的解析转换法.同济大学学报(自然科学版). 2007,35(2):161~165
    133钱家欢,殷宗泽.土工原理与计算.中国水利水电出版社, 1996: 44~90
    134朱百里,沈珠江等.计算土力学.上海科学技术出版社, 1990:336~348.
    135 A. Kirsch. An Introduction to the Mathematical Theory of Inverse Problems. Springer-Verlag, 1999:30
    136 J. M. Duncan, P. Byme, K. S. Wong. Stress-Strain and Bulk Modulus Patameters for Finite Element Analysis of Stress and Movement in Soil Mass. University of California Berkeley Report No.VCB/GT, 1980: 80~81
    137戴国亮,龚维明,蒋永生.桥梁大吨位桩基新静载试验方法的工程应用.东南大学学报(自然科学版). 2001,31(4):1~4.
    138戴国亮,吉林,龚维明,王峻,眭峰.自平衡试桩法在桥梁大吨位桩基中的应用与研究.公路交通科技. 2002,(02): 63~93

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700