土体内球形空穴扩张及挤土桩沉桩机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要研究土体内球形空穴扩张问题,静压挤土桩沉桩机理以及它们在工
    程中的应用。
     在前人工作的基础上,根据土塑性力学的基本原理,假定土体为均质、各向
    同性的理想弹塑性体,考虑到土体具有不同于其他材料的剪胀特性,引入了土性参
    数剪胀角,采用摩尔-库仑屈服函数和不相适应的流动法则首次获得了考虑土体剪
    胀性的球形扩张问题的解析解,包括球形空穴扩张后周围塑性区范围的大小、空穴
    扩张总体积变化、总塑性体积变化、总弹性体积变化、塑性区内平均体积应变、塑
    性体积变化和弹性体积变化,空穴扩张到任一直径时的极限内压力及其周围土体中
    的应力和位移分布。分析了土性参数、流动法则及排水条件变化对解的影响,并得
    出了一些规律性的结论。
     对挤土桩沉桩机理的研究方面,假定桩身沉入时桩尖处各点均按球形空穴扩
    张,创造性地提出利用源-源的影像法和Boussinesq解解决用无限体内球形扩张的
    解答来模拟半无限体中沉桩的问题,同时还考虑了沉桩时桩侧摩阻的影响,获得了
    挤土桩沉桩后在周围土体内产生的应力场、位移场、孔隙水压力场和土体强度变化
    规律的分析方法,并和其它方法进行了比较。研究了土性参数和桩参数变化对应力
    场和位移场的影响。分析了六个工程实例,分别计算了静力压桩压桩力、静力触探
    端阻力、单桩和群桩贯入后产生周围土体的水平位移、强度变化规律,理论计算结
    果与实测值基本一致,说明本文方法的合理性和可靠性,并得出了一系列具有工程
    实用价值的结论。
     在工程应用方面,根据上述理论,本文提出直接利用土性基本参数求得沉桩压
    力的方法,可有效地选择沉桩或桩基设备并较准确地预估桩基承载力。在此基础上
    本文进一步推得了用球形空穴扩张时塑性区半径的大小来确定桩基进入持力层的
    “临界深度”或离软弱下卧层“最小厚度”及其相应端阻的计算公式。分析证明了
    许多学者从现场实测上得到的关于“临界深度”、“最小厚度”及其相应端阻的一
    系列结论,回答了工程上经常碰到的三个问题:(1)对于有软弱下卧层的桩基持力
    层,桩尖离下卧层顶面应留的“最小厚度”;(2)桩尖进入持力层的“临界深
    度”;(3)不同的上下土层或土层组合对“最小厚度”或“临界深度”的影响。对
    现行的《建筑桩基技术规范》关于桩基进入持力层深度及离软弱下卧层距离大小进
    行了讨论,并提出了自己的见解。根据本文推得的计算方法和现场实测,初步探讨
    了群桩施工迎桩面和背桩面挤土问题的遮帘效应。
     文章最后提出了还有待解决的问题和进一步研究工作的建议。
Spheric cavity expansion, static piling in subsoils and its application have been studied in this paper.
    Soil is assumed to be a homogeneous, isotropic and elastic-perfectly plastic material, and a dilational angle is used to consider soil dilatancy. By using the principle of the elasto-plastic theory, the analytical solution of the spherical cavity expansion including the ultimate pressure, the stress field and displacement field, plastic scope, the total volumetric increase, plastic and elastic volumetric increase was obtained. The effect of flow rule, the variations of the soil parameters and the drainage conditions of subsoils on the calculated results have been discussed and several conclusions are presented.
    On the study of the mechanism of static piling, a model of spherical cavity expansion at the pile toe while piling is introduced. The problem of static piling in half-space medium has been creatively solved by a source-source imaging technique and Boussinesq's solution. The solutions of a stress field, a displacement field, a pore pressure field and the variation of soil strength for pile installing have also been proposed. The resistance, displacement field, variation of soil strength caused by pile installation and the end bearing of static sounding have been calculated for six cases. It has been founded that the calculated results are approached to those of the observation in site.
    In practical application, the analytical solutions can be used to assess the resistance while piling and to select efficiently the piling equipment. Moreover, the formulas of calculating the "Critical Depth" and the "Minimal Thickness" are proposed. Several qualitative conclusions proposed by other scholars with in-site measurement results are theoretically confirmed. Three problems encountered in engineering have been solved: (1) the minimal thickness which the pile toe has to keep from the interface between the bearing stratum and the soft substratum; (2) the critical depth in which the pile toe thrusts in bearing stratum; (3) the variation of the critical depth and the minimal
    thickness for two different soil stratum. The critical depth and the minimal thickness determined by current pile code are compared with the presented results. A case of pile installation are analyzed, the effect of group piling on lateral displacement has been discussed and compared with in-site measurement results. Some suggestions have been proposed in this paper.
引文
Adms J.I.& Hanna, T. H. (1971), Ground movements due to pile driving. Behaviour of Piles, 127-133, London: Instruction of Civil Engineers.
    Asaoks, A. et al(1994), Soil-water coupled behaviour of saturated clay near/at critical stal Soil & Foundations, Vol. 34, No.1, 91-105.
    Baligh, M. M. (1985), Strain path method. J. Geotech. Engng Div. Am.Soc. Civ. Engsl11, GT9, 1108-1136.
    Baligh, M. M. (1986a), Undrained deep penetration, I: shear stresses,Geotechnique 36, No.4, 487-501.
    Baligh, M. M. (1986b), Undrained deep penetration, II: pore pressures, Geotechnique 36, No.4, 471-485.
    Baerjee P. K. Drvies, T. G. & Fathallah, R. C.(1982),Behavior of axially loaded driven piles, in (P. K. Banerjee and R. Butterfield eds), Chapter 7 in Developments in Soil Mechanics and Foundation Engineering -1, Elsevier Applied Science, London.
    Banerjee P. K. & Fathallah, R. C.(1979), An Eulerian formulation of the finite element method for predicting the stresses and pore water pressures around A driven pile, Proc. 3rd Int. Conf. On Numer. Meth. Geomech, Aachen, pp.1053-1060.
    Begemann "The influence of excavation on soil strength below excavation level".
    Biarez, J.et al "Essais et suggestions pour le calcul de la firce portante des pieux en millieu pulve'rulent" Geotechnique, vol,22,No.2,1972
    Bishop, R. F. Hill, R. & Nott, N. F. (1945), Theory of indentation and hardness tests, Proc Phys. Soc. 57, 147-159.
    Boulon M.et al "Tassement et force portante limite des pieux en milieu pulve 'rulent" 6~(th) European Conf. SMFE, Vol. 1.2,1976.
    Burland, J. B. (1973), Shaft friction of piles in clay -a simple foundational approach. Ground Engng 6, No.3, 30-42.
    Butterfield R. and Bannerjee, P. K. (1970), The effect of pore-water pressures on the ultimate bearing capacity of driven piles, Proc. 2rd Southeast Asian Conf on Soil Engng, Singapore, June.
    Chandler,R. J. (1968), The shaft friction piles in cohesive soil in terms of effective stress. Civ Engng Publ. Wks rev. 63, 48-51.
    Carter, J.P, Randolph, M.F.& Wroth,C.P.(1979),stress and pore pressure changes in clay during and after expansion of a cylindrical carity. Int. J. Numer. Analyst. Mech.Geomech.3, No.4,305-322.
    Carter, J.P.,Booker,J.R.& Yeung,S.K.(1986),Cavity expansion in cohesive frictional soils. Geotechnique 36,No.3, 349-353.
    Chadwick, P.(1959),The Quasi-static expansion of a spherical cavity in metals and ideal soils.Q.J.Mech. Appl. Math.12,52-71.
    Chan, S. H. & Tuba,I.S.(1971),A finite element method for contact problems of solid bodies,Int.J.Mech. Sciences 13,615-639.
    陈云敏等,利用桩顶加速度分析打桩时桩端土的静阻力,岩土工程学报,1997年第6期
    陈云敏等,利用桩顶加速度分析打桩时桩端土的静阻力的几点说明—答周立运等同志,岩土工程学报,1998年第4期
    
    
    陈仲颐,叶书麟主编(1995),基础工程学、北京:中国建筑工业出版社。
    Chopra, M.B.& Dargush,G.F.(1992),Finite-element analysis of time-dependent large deformation problems, Int. J. for Numer. Analyst. Meth. Geomech. Vol.16, 101-130.
    Chow, Y.K. and Teh C.I.(1990), A theoretical study of pile heave, Geotechnique 40,No.1,1-14.
    Cooke, R.W.& Price,G.(1973),Strain and displacements around friction piles, Proc 8th Int. Conf. Soil Mech. Fdn Engng,Moscow,2 No.1,53-60.
    Dafalias, Y.F.&Herrmann,L.R.(1986),Bounding surface plasticity, II: application to isotropic cohesive soils,J.Eng. Mech..ASCE, 112,1263-1291.
    Davis, R.O.Scott, R. F. & Mullenger, G.(1984), Rapid espansion of a cylindrical carity in a rate-type soil. Int. J. Analyst. Meth. Geomech. 8 No.2,25-140.
    DeBeer, E.E. "Decrease in penetration resistance due to excavation in an overconsdidated Glauconitie sand" ESOPT,Vol.2.2,1974.
    De Beer, E.E.et al "Scale effects in results of penetration tests performed in stiff clays" ESOPT,Vol.2,1974.
    Dudler, I. V. et al(1968), Experience gained in using the penetrometer probe for soil investigation in conjunction whit energy-relater construction in Sovier Union, INFORM-ENERGO, Moscow, Sovier Union.
    Duncan, J. M. and Chang, C. Y.(1970), Nonlinear analysis of stress-strain for soils, proc. ASCE, V96, Sm5, 1629.
    Durgunoglu, H.T.et al"Static penetration resistance of soils I-Analysis"In-situ Measurement of Soil Properties, Vol.1, 1975.
    Eide, O. Hutchinson, J. N. & Landva, A. (1961), Short and long term test loading of a friction pile in clay, Proc. 5th Int. Conf. Soil Mech. Fds Engng, Paris, 45-54.
    Foray, P.et al "Influence de la compressibilite' sur la force portante a la rupture des pieux en milieu pulve'eulwnr"AITBTP, No.339.1976.
    Gibson R. E. & Anderson, W. F. (1961), In-site measurement of soil properties with the pressuremeter, Civ. Engng Pub. Wks Rev 56, 615-618.
    Goodman, R. E., Taylor, R. L. & Brekke, T. L. (1968), A model for the mechanics of jointed rock. J. Soil Mech. Div., ASCE, 94.
    Hagerey, D. J. &Peck, R. B.(1971), Heave and lateral movements due to pile driving, J. Soil Mech. Found. Div. ASCE, Vol. 97,SMⅡ, 1513-1532.
    Hallquist J. O., Goudreau & Benson D. J.(1985), Sliding interfaces sith contactimpact in large-scale Lagrangian computations, Comp. Method Appl. Mech. Eng. 51, 107-137.
    Hammond, A. J. Mitchell, J. M. & Lord, J. A.(1970) Desing and comstruction of driven cast in site piles in stiff fissured clays, Recent Developments in the Desing and Construction of Piles, 157-168, London: Institution of Civil Engineers.
    Herrmann, L. R. Kaliakin, V. & Shen, C. K. Mish, K. D. & Zhu, Z. Y. (1986), Numerical implementation of plasticity model for cohesive soils, J. Eng. Mech. ASCE, 113, 500-519.
    Hill, R.(1950), The mathematical theory of plasticity. Oxford University Press.
    Houlsby, G. T. Clarke, B. G. & Wroth. C. P. (1986), Analysis of the unloading of a pressuremeter in sand. Porc. 2nd Int. Symp. On the pressuremeter and its Marine Applications, Texas, 245-262.
    
    
    Houlsby, G. T. & Withers, N. J. (1988), Analysis of the cone pressuremeter test in clay Geotechnique 38, 573-587.
    土工原理与计算,华东水利学院土力学教研室主编(1982),上、下册,水利电力出版社。
    Hughes, J. M. O. Wroth, C. P. & Windle, D. (1977), Pressuremter test in sands. Geotechnique 27, 455-477.
    Janbu, N. (1963), Soil compressibility as determined by Oedometer and triaxial tests. Proc. European Conf. On Soil Mech. & Found. Engng. N1, 19.
    <<建筑桩基技术规范>>JGJ94-94。
    Kaliakin V. N. & Dafalias Y. F. (1989), Simplifications to the bounding surface model for cohesive soils. Int. J. Numer. Anal. Method Geomech. 13, 91-100.
    Katona, M. G.(1983), A simple contact-friction interface element with applications to buried culverts. Int. J. Number. Anal. Method Geomech 7, 371-384.
    Kondner, R. L.(1963), Hyperbolic stress-strain respones: cohesive soils, Proc. ASCE JSMFD, V89, N1,115.
    Kerisl, J.et al. "Fondations profondes"AITBTP No.179,1962.
    Landayi, B."Deep punching of sensitive clays"Proc.3th Pan American Conf.SMFE, Vol.1,1967.
    李月健、陈云敏(1998),软粘土地基中静力压桩引起地表垂直隆起计算模型的研究,中国土木学会第八届土力学及岩土工程学术会议论文集,万国出版社。
    李月健、陈云敏(2001),粘性土地基中群桩施工产生的位移场(已录用在建筑结构学报2001年第3期)。
    李月健、陈云敏(2001),粘性土地基中打桩前后土体强度的变化(已录用在铁道学报2001年第4期)。
    李月健、陈云敏,凌道盛(2001),土体内空穴球形扩张问题一般解及应用(已录用在土木工程学报2001年第4期)。
    李月健、陈云敏,凌道盛(2001),静力压桩“临界深度”的探讨,(已录用在岩土工程学报)。
    鲁祖统(1998),软粘土地基中静力压桩挤土效应的数值模拟,浙江大学博士学位论文。
    雷晓燕,G.Swododa,杜庆华(1994),接触摩擦单元的理论及其应用,岩土工程学报,Vol.16,No.3。
    Mabsout M. E. & Tasoulas J. L.(1994), A finite element model for the simulation of pile driving, Int. J.Numer. Meth.Engng,Vol.37,257-278.
    Mcclelland, B.(1972), Design ad performance of deep foundations in clay. General Report, ASCE, Specialty Conf. of Earth and Earth-supported Structures 2, 111-114.
    Mehtab, M. A., Goodman, R. E.(1970), Three dimensional finite element analysis of jointed rock slopes. Proc. 2~(nd) Congress Int. Soc. Rock Mech., Belgrade, 3.
    Mesri, G. er al(1990), Postdensification penetration resistance of clean sands, Journal of Geotechnical Engineering, ASCE, Vol.116, No.11.
    Meyerhof, G. G.(1976), bearing capacity and settlement of pile foundations, Eleventh Terzaghi Lecture. J. Geotech. Engng Div. ASCE 102, GT3, 195-228.
    Meyerhof, G.G. et al "Bearing capacity of piles in layeral soils" proc.9 ICSMFE Vol.1.1977.
    
    
    Meyerhof, G.G.et al"Bearing capacity of piles in layeral soils" part I,part II ,Canadian Ge'otechnigue Vol.No.1,1978.
    Michell, J. K., Zoltan V. S. (1984), Time-dependent Strength Gain in Freshly Deposited or Densefied Sand, Journal of Geotechnical Engieering, ASCE, Vol.110,No.11.
    Moller, B., U. Bergdahl (1981), Dynamic pore pressure during pile driving in fine sand, Proc. 10th Conf. On Soil Mech. And Found. Eng., A. A. Balkima, Rotterdam, The Netherlands.
    Muhs,H."Uber das Verhalten bein Bruch,die Grenztragfahigkeit und die zulassige Belastung von Saand"Baumashine und Bautechnik Heft 1,Heft 2,1957.
    Nagtegaal, J. C.(1982), On the implementation of inelastic constirutive equations with special reference to large deformation problems, Comp. Method Appl. Mech. Eng., 33,469-484.
    Okamoto, N. & Nakazawa, M.(1979), Finite element incremental contact analysis with various frictional conditions, Int. J. Numer Method Engng, 14, 337-357.
    Orrje O. & Broms B. B.(1967), Effects of pile driving on soil properties, J. Soil Mech. Found. Div ASCE, Vol.93, SM5,59-73.
    Palmer, A. C.(1972), Undrained plane strain espansion of a cylindrical cavity in clays. Geotechnique 22, 451-457.
    樊良本(1979),关于打桩引起的土位移及土中应力状态变化的探讨,同济大学硕士学位论文。
    Pande, G. N., Beer, G. & Williams, J. R.(1990), Numerical Methods in Rocd Mechanics, John Wiley & Sons Ltd.
    Pande, G. N., Bicanic, N., & Zienkiewicz, O. C.(1979), Influence of joint interface nonlinearity on strengthening of dams, Short Comm., Int. J. Numer. Anal. Meth. Geomech. 3,293-300.
    Panet, M "E'trde des fondations sur sable enmedole se'drit" AITBTP, No.291, 1972.
    Parsons, J. D.(1966), piling difficulties in the New York area, J. Soil. Mech. And Found. Div., ASCE, Vol.117, No.9.
    Parry, R. H. G. & Swain, C. W.(1977a), Effective stress methods of calculating skin friction on driven piles in soft clay, Ground Engng 10,No.3,24-26
    Parry, R. H. G. & Swain, C. W.(1976b), A study of skin friction on driven piles in stiff clay, Ground Engng 10, No.8, 33-37
    Puech, A et al "Contribution to the study of static and dynamic penetrometers" ESOPT,Vol.2.2,1974.
    Randolph, M. F., Carter, J. P. & Wroth, C. P.(1979), Driven piles in clay---the effects of installation and subsequent consolidation, Geotcchnique 29,No.4,361-393
    Randolph, M. F., Steenfelt, J. S. & Wroth, C. P. (1978), The effect of pile type on design parameters for driven piles. Proc., 7th European Conf Mech. Fdn Engng 2, 107-114.
    Schmertmann, J. H.(1987) Discussion of "Time-dependent Strength Gain in Freshly Deposited or Densefied Sand", Journal of Geotechnical Engineering, ASCE, Vol.113, No.2.
    Seed H. B. & Reese, L. C.(1955), The action of soft clay along fricition piles, Proc. Am. Soc. Civ. Engrs 81, Paper 842.
    Selvadurai, A. P. S.(1984), Large stain and dilatancy effective in pressuremeter. J. Geotech. Engng Div., ASCE 110, 421-436.
    
    
    Sagaseta, C.(1987), Analysis of undrained soil deformation due to ground loss. Geotechnique 37, No.3, 301-320.
    Sagaseta, C., Houlsby, G. T., Norbury, J. & Wheeler, A. A.(1984), Quasi-static undrained expansion of a cylindrical cavity in clay in the presence of shaft friction and anisotropic initical stresses. Report, Department of Engineering Science, University of Oxford.
    Schwer, L. E. Rosinsky, R. & Day, J.(1988) A axisymmetric Lagrangian technique for predicting earth penetration including penetrator response, Int. J. Numer. Anal.Method Geomech., 12, 235-262.
    Skempten, A.W.et al "The'orie de la force portante des pieux"AITBTP, 1953.
    Swododa, G., Ebner, H., Wang, S. J., Zhang, J. M. (1988), Application of the decoupled finite element analysis in tunneling, Numerical Methods in Geomechanis (Innsruck), Swododa Edt.
    Tavenas, F. & Audy, R.(1972), Limitation of the driving formulas for predicting the bearing capacities of settlement in sand, Can. Geotech. J., Canada, 9(1), 47-62.
    Tcheng, Y. "Mesures experimentales en milieu pulverulent" AITBTP, No.332,1975.
    Tomlinson, M. J.(1957), The adhesion of pile driven in clay soils, Proc. 4th Int. Conf. Soil Mech. Fdn Engng, London 2, 66-71.
    Tummay, M. T., Acar, Y. B., Cekirge, M. H. & Rmesh, N.(1985), Flow field around cones in steady penetration, J. Geotech. Engng Div. ASCE 111, GT2, 193-204.
    Vesci, A. S.(1972), Expansion of cavities in infinite soil mass, J. Soil Mech. Fndn Engng Div., ASCE 98,265-290.
    Vesic, A.S. "Principles of pile foundation design" Lecture series on deep foundation. Boston Society CE,ASCE. 1975.
    Vesic "Tests on instrumented piles" ASCE SM2, 1970.
    Vesic, A.S."Ultimate loads and settlements of deep foumdation in samd"Sympoium of bearing capacity and settlement of foundation,Duke University, 1967.
    王启铜,龚晓南,曾国熙(1992),考虑土体拉、压模量不同时静压桩的沉桩过程,浙江大学学报,Vol.6,No.26。
    Wroth, C. P.(1972) discussion on Specialty Conf. Performance of Earth an Earthsupported Structures 3,231-234, NewYork, ASCE.
    Worth, C. P. & Hughes, J. M. O (1973), An instrument for the insitu measurement of the properties of soft clays, Proc. 8th Int. Conf. Soil Meeh Fdn Engng, Moscow 1,487-494
    谢新宇、朱向荣(1997),静压桩的挤土效应及现场监测,浙江大学学报,Vol.31,增刊。
    Yang, N. C.(1970), Relaxation of piles in sand and inorganic silt, J. Soil. Mech. And Found. Div, ASCE, Vol.96,SM2.
    Yu, H. S. & Houisby, G. T.(1991), Finite cavity expansion in dilatant soils: loading analysis, Geotechnique 41, No. 2, 173-183.
    郑钢(1994),预估静力压桩沉桩阻力,浙江省第六届土力学及基础工程学术会议论文集,绍兴,杭州:浙江大学出版社。
    《桩基工程手册》编写委员会,《桩基工程手册》,中国建筑工业出版社。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700