软化剪胀土中孔扩张理论及沉桩挤土性状研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究内容主要包括软化剪胀土中的球形(柱形)孔扩张问题和沉桩挤土效应问题。
     使用变换法,获得了小应变情况下,弹塑性材料中孔扩张问题一般解,进一步推导了理想弹塑性和弹脆塑性土体中孔扩张问题的解答,另外还分析了弹脆塑性材料的弹塑性交界面两侧的速度间断。
     在前人研究的基础上,假定土体为均质各向同性的弹塑脆塑性体,用应力跌落模型描述土体的应变软化,引入剪胀角来考虑土体的剪胀特性,采用双剪统一强度理论和不相关联的流动法则,获得了考虑土体软化和剪胀特性的任意变形情况下的球形(柱形)孔扩张统一解,分析了孔扩张后的体积变化,并给出了孔扩张后卸载情况下的应力和位移解答,在此基础上,分析了土性参数如弹性模量、泊松比、抗剪强度、应变软化系数、剪胀角以及考虑中间主应力影响与否、大小应变等因素对解答的影响,并将本文方法计算的极限扩张压力值与实测值进行了比较,结果吻合得很好,从而验证了该方法的合理性和可靠性。
     将土体视为各向同性的弹脆塑性体,用应力跌落模型描述应变软化,采用双剪统一强度理论和不相关联的流动法则,利用0初始孔径孔在极限扩张压力作用下,塑性区位移场具有几何自相似的特性,推导了极限扩张压力的精确相似解。
     假定桩沉入时桩尖附近土体按球形孔扩张,以无限空间中球形孔扩张解为基础,借助源源和源汇的手段,模拟了在半无限空间中的沉桩挤土问题,获得沉桩挤土位移场的半数值解。
     对沉桩后桩周土体中的超静孔压消散进行了解析分析。分析中不考虑竖直方向的变化,认为土体只在径向上固结,将问题简化为平面应变问题,但考虑了土体的黏性性质和桩体本身的半渗透性,得到了超静孔压的解析表达式,在此基础上,讨论了土的性质以及桩、土的渗透性对孔压消散的影响。
     将沉桩后土中应力松弛问题简化为无限空间中无限长圆柱形孔扩张后的应力松弛问题,将土视为最一般的粘弹粘塑性材料,采用由饱依丁—汤姆逊元件和宾汉姆元件串连而成的粘弹—粘塑性模型作为沉桩后桩周土的模型,推导出桩周土中应力、粘塑性区半径等与时间的关系式,通过编制程序计算,得到了它们随时间变化的数值结果,并就有关因素对应力松弛的影响进行了讨论。
     鉴于目前绝大多数用有限元法分析沉桩挤土问题都没有考虑土体剪胀性的事实,本文利用大型商用有限元软件ABAQUS,对具有应变软化和剪胀特性的土体中沉桩挤土应力场和位移场进行了性状分析,在分析中考虑了土体大变形,得出了一些规律性结论。另外,还分析了若干因素对沉桩挤土效应的影响。
Cavities expansion in soils with softening and dilation and pile driving effects ware studied.By using variable transform, general solutions to cavities expansion in elastoplastic material ware obtained in case of small deformation, the solutions to cavities expansion in elastic-perfectly plastic materials and in elastic-brittle-plastic ones ware deduced.On the base of past researches, soil was assumed to be a homogeneous, isotropic and elastoplastic-brittleplastic material, stress dropping model was used to describe strain softening, a dilation angle was used to consider dilation. By using twin-shear united strength theory and non-associated flow rule, united solutions to spherical and cylindrical cavities expansion in the soils with softening, dilation and large deformation ware obtained, volume changes of the soil after expansion ware analyzed, the stresses and displacements in case of unloading after expansion ware obtained too. On these bases, some factors influencing solution results ware analyzed, and limit expansion pressures from computation ware compared with ones from survey.By making use of the characteristic of cavities expansion with zero initial radius that under limit expansion pressure, displacement field in plastic zone is self-similarity, rigorous similarity solution to limit expansion pressure was obtained.On the study of displacement after pile driving, a model of spherical cavity expansion at the pile top wile pile driving ware introduced, by making use of the solution to spherical cavity expansion and a source-source and a source-sink imaging technique, a half-numerical solution to displacement field in the soil surrounding pile ware obtained.On the premise that the problem about the excess pore pressure dissipation ware reduced to be a plane strain problem, in which the soil ware regarded as a viscoelastic material, and partially permeable characteristic of the pile was considered, a formulas of the pore pressure was obtained. Moreover, some factors influencing the pore
    
    pressure penetration ware analyzed.By regarding the problem on stresses relaxation in the soil after pile driving as a plane strain problem, and assuming that the soil was a viscoelastic-viscoplastic material, formulae of the stresses and radius of the viscoplastic zone ware deduced, and by computation with program compiled by author, numerical results ware presented, moreover, several relative factors ware discussed.Famous software ABAQUS was used to analyze the stress and displacement fields due to pile driving considering softening, dilation and large strain, moreover, some factors ware discussed, and several conclusions ware presented.
引文
Adms J. I. and Hanna, T. H., Ground movements due to pile driving, Behaviour of piles, 1971, London:Instruction of civil engineers. 127-133
    Aleksandar Sedmak Vesic, Expansion of cavity in infinite soil mass, Journal of the soil mechanics and foundations division proceedings of the American society of civil engineers, 1972, 3,265-291.
    Baligh M. M., Undrained deep penetration, I: shear stress, Geotechnique, 36(4): 471-485.
    Baligh M. M., Undrained deep penetration, II: pore pressures, Geotechnique, 36(4): 487-501.
    Banerjee P. K. and Fathallah,R. C, An Eulerian formulation of the finite element method for predicting the stresses and pore water pressures around driven pile, 1979, Proc. 3rd Int. Conf. On Numer. Meth. Geomech. Aachen,: 1053-1060.
    Bigoni D. and Laudiero E, The quasi-static finite cavity expansion in a non-standard elasto-plastic medium, The J. Mech. Sci. 1989,31(11):825-837.
    Been, K., Jefferies, M. A state parameter for sands, Geotechnique, 1985,35(2):99-112.
    Bolton M. D., The strength and dilatancy of sands, Geotechnique, 1986,36(1):65-78.
    Bozozuk, M., Fellenius,B. H. and Samson, L. Soil disturbance from pile driving in sensitive clay, Can. Geotech. J. 1978,15:346-361.
    Bums,S. E. and Mayne,P. W., Analytical cavity expansion critical state model for piezocone dissipation in fine-grained soils, Soil and foundations, 2002,42(2):131-137.
    Burland, J. B., Shaft friction of piles in clay) -a simple foundational approach, Ground Engng. 6(3):30-42.
    Butterfield R. and Bannerjee, P. K., The effect of pore-water pressures on the ultimate bearing capacity of driven piles, Proc. 2rd Southeast Asian Conf. on Soil Engng. Singapore, 1970, June.
    Carranza-Torres Carlos, Self-similarity analysis of the elasto-plastic response of underground openings in rock and effects of practical variables, the University of Minnesota[D], 1998.
    Chandler, R. J., The shaft friction piles in cohesive soil in terms of effective stress, Civ. Engng. Publ., Wks rev. 63, 48-51.
    Chan, S. H. and Tuba, I. S., Afinite element method for contact problems of soild bodies, Int. J. Mech. Sci., 1971,13:615-639.
    Chopra, M. B. and Dargush, G. E, Finite element analysis of time-dependent large-deformation problems, Int. J. for Numer. Analyst. Mech. Geomech.,1992, Vol. 16:101-130.
    Chow Y. K. and Teh C. I., A theoretical study of pile heave, Geotechnique, 1990,40(l):l-14.
    
    Collins F. and Stimpson J. R., Similarity solution for drained and undrained cavity expansions in soils, Geotechnique, 44(l):21-34.
    Collins, I., Pender,M., and Wang Yan, Cavity expansion in critical state soils, International Journal of numerical and analytical methods in Geomechanics, 1996,20:489-516.
    Collins, I. F. and Yu,H. S., Undrained cavity expansions in critical state soils, International Journal of numerical and analytical methods in Geomechanics, 1996,20:489-516.
    Cooke, R. W., Price, G and Tarr, K., Jacked piles in London clay: A study of load transfer and settlement under working conditions, Geotechnique, 1979,29(2):113-147.
    Coop, M. R. and Wroth C.P., Field studies of an instrumented model pile in clay, Geotechnique, 1989,39(4):679-696.
    Cooke, R. W. and Price, G, Strain and displacements around friction piles, Proc. 8th Int. Conf. Soil Mech. Fdn. Engng., 1973, Moscow, 2(1):53-60.
    Carter J. P., Cavity expansion in cohesive frictional soils, Geotechnique, 1986,36(3):349-358.
    Cao L. F., The C. I., Undrained cavity expansion in modified Cam clay I: Theoretical analysis, Geotechniqus, 2001,51(4):323-334.
    Dafalias, Y. F. and Herrmann, L. R., Bounding surface plasticity, II: application to isotropic cohesive soils, J. Eng. Mech. ASCE, 1986,112:1263-1291.
    Davis, R. O., Scott, R. F. and Mullenger, G, Rapid expansion of a cylindrical cavity in a rate-type soil, Int. J. Analyst. Mech. Geomech. 1984,8(2):25-140.
    Eide, O. Hutchinson, J. N. and Landva, A., Short and long term test loading of a friction pile in clay, Proc. 5th Int. Conf. Soil Mech. Fds. Engng., 1961, Paris, 45-54.
    Emmanuel Detournay, Elastoplastic model of a deep tunnel for a rock with variable dilatancy, Rock mechanics and rock engineering, 1986,19:99-108.
    Guo Wei Dong, Visco-elastic consolidation subsequent to pile installation, Computers and Geotechnics, 2000, 26,113-144.
    Hwang Jin-Hung, Ground response during pile driving, Journal of Geotechnical and Geoenvironmental engineering, 2001,11, 939-949.
    Gupta,R. C, Finite strain analysis for expansion of cavities in granular soils, Soils and Foundations,2002,42(6): 105-115.
    Joseph D. Hagerty, Heave and lateral movements due to pile driving, Journal of the soil mechanics and foundations division, proceedings of the American Society of Civil Engineer, 1971,11,1513-1532.
    Kavvadas M., A constitutive model for structured soils, 2000,50(3):263-273.
    Dunja Peric, Mohammed A. Ayari, Influence of lode's angle on the pore pressure generation in soils, International Journal of Plasticity, 2002,18:1039-1059.
    
    Lee F. H., Juneja A., Stress and pore pressure changes due to sand compaction pile installation in soft clay, Geotechnique, 2004,54(1): 1-16.
    Li X., Stress and displacement fields around adeep circular tunnel with partial sealing, Computers and Geotechnics, 1999, 24:125-140.
    Li X. S. and dafalias Y. E, Dilatancy for cohesionless soils, Geotechnique, 2000,50(4):449-460. Mabsout M. E. and Tasoulas J. L., A finite element model for the simulation of pile driving, Int. J. Numer. Meth. Engng., 1994, Vol. 37,:257-278.
    Mantaras F. M. and F. Schnaid, Cylindrical cavity expansion in dilatant cohesive-frictional materials, Geotechnique, 2002, 52(5):337-348.
    Mckinley John D., Coupled consolidation of a solid, infinite cylinder using a Terzaghi formulation, Coumpers and Geotechnics, 1998,23,193-204.
    Meyerhof, G G. et al, Bearing capacity of piles in layeral soils, part I, Part II, Canada Geotechnique, 1978(1).
    Niels Saabye Ottosen, Behaviour of viscoelastic-viscoplastic spheres and cylinders - Fully plastic vessel walls, Int. J. Solids Structures, 1985,21(6):561-572.
    Niels Saabye Ottosen, Behaviour of viscoelastic-viscoplastic spheres and cylinders-Partly plastic vessel walls, Int. J. Solids Structures, 1985,21(6):573-595.
    Niels Saabye Ottosen, Viscoelastic-viscoplastic formulas for analysis of cavity in Okamoto, N. and Nakazawam M., Finite element increment contact analysis with various friction condition, Int. J. Numer. Meth. Engng., 1979,14:337-357.
    Orrje O. and Broms B. B., Effects of pile driving on soil properties, J. Soil Mech. Found. Div ASCE, Vol. 93, SM5,59-73.
    Palmer, A. C, Undrained plan strain expansion of a cylindrical cavity in clays. Geotechnique, 1972, 22:451-457.
    Palmer A. C, Undrained plane-strain expansion of a cylindrical cavity in clay: a simple interpretation of the pressuremeter test, Geotechnique 1972,22(3):451-457.
    Pestana Juan M., Soil deformation and excess pore pressure field around a closed-ended pile, Journal of Geotechnical and Geoenvironmental engineering, 2002,1,1-12.
    Poulos H. G, Effect of pile driving on adjacent piles in clay, Can. Geotech. J., 1994, 31:856-867.
    Randolph M. F, Carter J. P., Driven piles in clay-the effects of installation and subsequent consolidation, Geotechnique, 1979, 29(4):361-393.
    Sagaseta Cesar, Prediction of ground movements due to pile driving in clay, Journal of Geotechnical and Geoenvironmental engineering, 2001,127(1), 55:65.
    
    Sagaseta C., Analysis of undrained soil deformation due to ground loss, Geotechnique, 1987,37(3):301-320.
    Sagaseta Cesar, Whittle,A. J.,Discussion to effect of pile driving on adjacent piles in clay, Can.Geotech. F., Ottava, 1996,33(3):525-527.
    Sayed S.M., Cylinderical cavity expansion in nonlinear dilatant media, Mechanics research communications, 1987,14(4):219-227.
    Schnaid F. and Mantaras F. M., Cavity expansion in cemented materials: Structure degradation effects, Geotechnique, 2003, 53(9):797-807.
    Sikhanda Satapathy, Calculation of penetration resistance of brittle materials using spherical cavity expansion analysis, Mechanics of Materials, 1996,23:323-330.
    Soderberg, L. O. Consolidation theory applied to foundation pile time effects, Geotechnique,1962,12:217-225.
    Teh C. I. and Houlsby G. T., An analytical study of the cone penetration test in clay,Geotechnique, 1991, 41(1):17-34.
    Yu H.S. and Carter J.P, Rigorous similarity solution for cavity expansion in cohesive-frictional soils, The international journal of geomechanics, 2002, 2(2):233-258.
    Yu H.S. and Houlsby G. T., Finite cavity expansion in dilation soils: loading analysis,Geotechnique,1991, 41(2):173-183.
    卞立民,徐海波,徐建平,沉桩挤土效应研究综述,华中科技大学学报(城市科学版),2002,19(3):68-72.
    蒋明镜,沈珠江,考虑剪胀的弹脆塑性软化柱形孔扩张问题,河海大学学报,1996,24(4):65-72.
    蒋明镜,沈珠江,考虑剪胀的线性软化柱形孔扩张问题,岩石力学与工程学报,1997,16(6)-550-557.
    罗晓辉,何立红,土体应变软化特性的柱孔扩张弹塑性解,武汉城市建设学院学报,15(1):16-20.
    陈文,施建勇,龚友平,周林根等,饱和黏土中静压桩挤土效应的离心模型试验研究,河海大学学报,1999,27(6):103-109.
    丁佩民,肖志斌,施建勇,松砂中大型静压沉桩模型试验研究桩基挤土加密效应,工业建筑,2003,33(3):45-48.
    樊良本,关于打桩引起的土体位移及土中应力状态变化的探讨,同济大学硕士学位论文,1981.
    樊良本,打桩抬高的机理及对策,浙江工业大学学报,1998,26(1):73-77.
    龚晓南,李向红,静力压桩挤土效应中的若干力学问题,工程力学,2000,17(4):7-12.
    
    龚晓南,十塑性力学,浙江大学出版社,1999。
    胡中雄,饱和软黏土中单桩承载力随时间的增长,岩土工程学报,1985,7(3):58-61.
    李向红,软土地基静力压桩挤土效应问题研究,浙江大学博士学位论文,2000
    李月健,土体内球形孔扩张及挤土桩沉桩机理研究,浙江大学博士学位论文,2001。
    刘云云,砂土中静压单桩的模型试验与分析,同济大学博士学位论文,1999。
    鲁祖统,软黏土地基中静力压桩挤土效应的数值模拟,浙江大学博士学位论文,1998。
    罗战友,杨晓军,龚晓南,考虑材料的拉压模量不同及应变软化特性的柱形孔扩张问题,工程力学,2004,21(2)。
    罗战友,静压桩挤土效应及施工措施研究,浙江大学博士学位论文,2004。
    施建勇,陈文等,沉桩挤土效应分析,河海大学学报,2003,31(4).
    施建勇等,沉桩挤土效应研究综述,大坝观测与土工测试,2001,25(3):5-9.
    沈珠江,岩土破损力学:理想脆弹塑性模型,岩土工程学报,2003,25(3):253—257。
    王浩,魏道垛,表面约束下的沉桩挤土效应数值模拟研究,岩土力学,2002,23(1):107-110.
    王家来,熊巨华,应变软化土体中柱形扩孔解析,应用力学学报,1998,16(4):58-62.
    王伟堂,裘华君等,压桩挤土位移的预估与防治的研究,岩土工程学报,2001,23(3):378-379。
    谢新宇,朱向荣,静压桩的挤土效应及现场监测,浙江大学学报,1997,增刊。243-247。
    徐建平,周健,许朝阳,沉桩挤土效应的数值模拟,工业建筑,2000,30(7):1-6.
    徐建平,周健,许朝阳等,沉桩挤土效应的模型试验研究,岩土力学,2000,21(3):235-238.
    俞茂宏,岩土类材料的统一强度理论及其应用,岩土工程学报,1994年,3月,第二期:1-10.
    姚笑青,胡中雄,饱和软土中沉桩引起的孔隙水压力估算,岩土力学,1997,18(4):30-35.
    张明义,邓安福,干腾君,静力压桩数值模拟的位移贯入法,岩土力学,2003,24(1):113—117.
    郑刚,顾晓鲁,软土地基上静力压桩若干问题的分析,建筑结构学报,1998,19(4):54-60.
    朱晓林,预估桩的沉桩阻力和沉桩可能性,软土地基理论与实践,北京:中国建筑工业出版社,1992,125—128。
    《桩基工程手册》编委会,桩基工程手册,北京:中国建筑工业出版社,1995。
    周小平,张永兴,王建华,考虑中间主应力影响时的圆筒形孔扩张问题的弹塑性解,重庆建筑大学学报,2002,24(2):35-38.
    朱奎,考虑竖向平面内屈服的单桩挤土效应以及孔隙水压力分析,建筑技术开发,2004,31(3):34-44

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700