液压振动桩锤沉桩动力学及调频调矩控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
液压振动桩锤是一种以油压力为驱动力产生偏心激振、强迫桩土振动,使沙土液化以实现轻松沉桩的新型环保型桩工机械。国内振动桩锤设计理论很落后,也没有自己成熟的产品;国外液压振动锤问世已有二十多年历史,产品相对成熟,但对沉桩理论、尤其对沉桩阻力研究还远远不够。国内外液压振动桩锤产品存在着这样的共同问题:一方面,目前各种液压振动桩锤液压控制技术水平低下,功能普遍比较简单,另一方面,调频调矩机构复杂,导致机械故障率普遍较高,制约了设备向高性能的发展。
     本文在研究振动沉桩过程地质特性的基础上,深入研究了桩—土作用机理,形成了一种面向地基土的液压振动桩锤研究设计新方法,提出新型四轴振动锤结构,其调矩机构不需齿轮传动,针对这种新型机构,研究了新型机电液控制方案,研究设计了频率调节控制、在线辩识近共振频率实现近共振沉桩及相位差在线调节实现偏心矩柔性调节的控制系统,并且深入研究了这种新型四轴惯性振动机的同步特性,完成了较系统的调频调矩动力学及其控制的研究与设计。论文进行了大量的仿真研究,针对局部问题进行了现场实验研究。论文主要研究内容如下:
     论文首先研究了沉桩过程地质特性和土的阻力问题。在研究对比静载荷、非液化低振幅振动载荷和振动液化载荷这三种情况下的地质特性基础上,借助于动力地基刚度经验算法、土动力学对土的应力—
A hydraulic vibratory pile hammer is a new type of environmental-friendly pile machine which depends on oil pressure to generate eccentric vibration and forces the soil to vibrate so that the soil can be liquefied to realize easy pile sinking. The domestic theory of vibratory pile hammer falls behind and there are no mature products of our own; In overseas, the hydraulic vibratory hammer have came out for more than 20 years ,their products are much more mature ,but their researches for the theory of pile sinking especially for the resistance of pile sinking are not enough. The domestic and foreign hydraulic vibratory pile hammers have common problems: on one hand, at present the hydraulic control engineering level of various hydraulic vibratory pile hammers is prevalently low and the functions are all simple; On the other hand, its frequency and amplitude modulation frameworks are complex, so that the machinery failure rate is prevalently high, therefore, the direction towards high performance of facilities is restricted.In the foundation of researching the geological characteristics of ground soil, the paper goes deep into the mechanism of the pile-soil function, forms a new hydraulic vibratory hammer design method orienting to the ground soil, designs a new type of 4-shafted vibratory hammer which can modulate the moment according to the gearless self-readjustment phase difference modulation, explores a new type of mechanical-electrical scheme and a control system which can control frequency modulation, on-line identify the frequency of near-resonant vibration to realize near-resonant pile sinking and the on-line eccentric moment self-readjustment modulation, and then researches the synchronism of this machine ,completes the design and research of its frequency and amplitude modulation dynamics and its control systematically . The paper runs large amounts of simulation researches and field experiments aiming at solving local problems. The main contents of this paper are:At first, the paper researches the geological characteristics of ground
    soil and the resistance of it during the pile sinking process, presents a new concept of geologic characteristics and pile sinking resistance orienting to the ground soil. When the ground soil is loaded with steady load, non-liquefied low amplitude vibration load or liquefied load, the geologic properties are different, the paper compares the three different circumstances, with the help of classic dynamics force ground rigidity algorithm, the new research and experiment achievements based on the soil's stress-strain relation and the field experiment data, the paper gets a newly practical formula and a theoretical model whose soil dynamic rigidity and dynamic damp are determined by the type of ground soil, the structure and the depth of the pile; Considering the effects of the inner friction coefficient and viscous force caused by the vibration pile sinking, going from the utmost dynamic stress state of the soil and the theory of shear dynamic intensity, the paper researches the resistance at the pile tip and the pile side. With the help of the name, the depth, the physical mechanics of the soil (the steady load friction angle, viscous force of the soil), the size of the pile and the coefficient of the pile hammer presented by the report of geologic survey, we can get any soil foundation's dynamic rigidity, dynamic damp and dynamic resistance during the pile sinking process.Then the paper researches the load problem of the pile machine's hydraulic system orienting to the ground soil. With the help of the linear vibration theory, the paper deduces a series of models showing the relations among the force exerted by the pile tip, the inertia force of the pile, the vibration frequency and the phase difference. Also with the help of the new Case formula and the dynamic rigidity, the dynamic damp and the dynamic resistance formula which the paper researched before, the paper establishes a mechanical condition which can guarantee the pile to sink in order to determine the vibration frequency and eccentric force moment. By researching the characteristic of the load force moment caused by the vibration of the hydraulic motor, the paper gets the model showing the relations among the load pressure of the hydraulic system, the power, the vibration frequency, the phase difference, the structure of the pile hammer and the geologic characteristics, also it gets the vibration
    condition which can guarantee the resonance vibration and non-resonance vibration pile sinking under special condition, so that we can determine the coefficient of the structure of pile hammer and the coefficient of its control. At last, the paper sums up a set of new method of researching and designing the hydraulic vibration hammer orienting to the ground soil.The paper applies the research method of the parameters of the pile hammer orienting the ground soil into predicting pile sinking of a special ground soil, researches the geological characteristics, load properties, and frequency modulation properties during the pile sinking process, and the paper predicts the depth of the pile sinking, gets the rule of the parameters' change and the rule of modulation control; By running the simulation of the pile sinking process of the newly zzyyl60 hydraulic vibration machine and researching the dynamic response, the paper gets the vibration frequency, the rigidity of the ground soil, the damp parameters, and the properties which affect the displacement, the acceleration and the force at the pile tip.In the foundation of the research of the pile-soil functioning and load property of the pile hammer mentioned above, the paper designs a new type of mechanical-electrical control scheme of the gearless moment modulation pile hammer, considers such functions as electric-hydraulic proportion frequency modulation, prevention of motor absorbing the air, energy conservation and so on, then determines to adopt fuzzy control strategy to modulate the frequency and the moment and adopt the control scheme to on-line search the pile-soil resonance frequency.Kinematics and dynamics model building and simulation analysis has been carried out comprehensively for the newly frequency modulation system, in which motor is controlled by high-pressure and heavy-flow electric-hydraulic proportional flow modulation valve. And the velocity modulation characteristics of system can be known. General PID controller and fuzzy PID controller have been designed for frequency modulation system. Controlling parameters of general PID controller and fuzzy PID controller has been designed and adjusted by the debugging of simulation experiment. The simulation result indicates that fuzzy PID controller is better. In the foundation of fuzzy frequency modulation,
    general fuzzy PID controller and parameter self-adjusting fuzzy PID controller have been designed to search for the pile-soil's near-resonant frequency. The simulation result indicates that parameter self-adjusting online fuzzy PID controller is better than general fuzzy PID controller. And it leads to a control system which can on-line modulate frequency intelligently and realize the pile sinking at the near-resonant frequency.In order to design the control system which can realize self readjustment of the phase difference, a mechanical electrical hydraulic coupling model has been developed at the beginning, and then synchronicity mechanism and synchronizing characteristics of mechanic system and hydraulic system have been studied without monitoring the phase difference. By carrying the dynamic simulation of the mechanical-electrical hydraulic coupling model, we know the interaction between parameters of the synchronizing system, which includes mechanical parameter, hydraulic parameter, characteristic parameter of the ground soil and the modulation of frequency and vibration amplitude, etc. And synchronous stability and synchronous transition characteristics have been studied. Stable average mathematic model of control system without monitoring the phase difference has been developed for vibratory machine. And the condition of stable synchronization can be deduced, which provides method for the design of mechanical-electrical and hydraulic system on gearless self-readjustment synchronizing machine. Measures to improve synchronization have been put forward. The preceding study of mechanical electrical hydraulic coupling relating to the synchronization of hydraulic vibratory machine fills in the gap between our nation and foreign countries.The preceding study focuses mainly on synchronization of mechanical electrical and hydraulic system with electric-hydraulic frequency modulation and the system is not monitored with the phase difference. Based on this, the control system with flexible adjustment of amplitude has been developed, which is achieved by parameter self-adjusting fuzzy control for phase difference modulation. Fuzzy controller has been designed. So parameter self-adjusting fuzzy controller for phase difference has been optimized and checked in simulation. Simulation
    studies the characteristics of change of parameter in fuzzy regulation, including vibration amplitude, load moment and pressure, etc. Simulation result shows that parameter self-adjusting fuzzy control system for phase difference is what we expect in the construction process without the resonance of pile and bay and in the process of the self-adjusting control during pile sinking.The new method for the selection of parameters of hydraulic vibration pile hammer and the prediction of the load characteristics in pile sinking can be used to predict the load characteristics in pile sinking process and the depth of pile sinking on condition of resonance and non-resonance, which is based on geological survey report. And field experiment has been carried out to demonstrate it. The result shows that this new project is feasible.The paper presents a relatively intact theory and method for designing and researching the hydraulic vibratory pile hammer and its dynamic characteristics. The research achievements relating to the characteristics of the synchronism can be extended to the application of the general vibratory machine driven by hydraulic pressure.The dissertation includes 90 thousand words and 107 diagrams.
引文
[1] 郭传新.振动桩锤原理及研制进展[J].建筑机械,1999(8):45~46
    [2] 游善兰.国外液压振动桩锤和钻孔机械技术发展现状[J].工程机械与维修,2002(4):21~25
    [3] 中港集团.全液压振动沉拔桩机[J].水运工程,1999(4):56
    [4] 兰毓番.我国桩工机械的现状与发展[J].建筑机械化,2002(1):13~16
    [5] 沈保汉.振动法沉桩[J].施工技术,2001,10(11):44~47
    [6] 王进怀.高频液压振动桩锤[J].高层建筑桩基工程技术,1998(8):166~172
    [7] 刘金砺.高层建筑桩基工程技术[M].北京:建筑工业出版社,1999
    [8] CE Inc. Resonant-Rree~(TM)Vibratory pile driver /extractors. Website: www.iceusa.com, 2003
    [9] F. Rausche. Modeling of vibratory pile driving [J]. Journal of Geotechnical Engineering, Ⅲ(3):367~383
    [10] Leonards, G. A. Driveability, load and bearing capacity of piles installed with vibratory hammers. Final Report Submitted to the Deep Foundations Institute. 1995
    [11] Holeyman. Soil modeling for Pile vibratory pile driving [J]. Int. Cont. On Desigin and Construction of Deep Foundations, 1994, V2, 116~178
    [12] Holeyman, A. E. A method to predict the driveability of vibratory piles, Fifth Int. On the Use of Stress Ware Measurements on Piles, 1996
    [13] Linkins,G.Rausche. Evaluation of Stress Wave Theory to Piles, PP433~436, 1992
    [14] Coyle, H. M. Empirical damping constants of sands and clays [J]. Journal of zhe Soil Mechanics and Foundations Division, 2001, 21 (5): 200~208
    [15] 中南大学液压机械与控制技术研究所.ZZY160型液压振动沉拔桩机设计资料.长沙,2002
    [16] 中南大学液压机械与控制技术研究所.混凝土预制桩施工振动机理研究(纵向科研课题:04GK3041).2004.
    [17] 霍晓强等.振动沉拔桩机主要参数的选择与计算[J].工程机械,2000(10):14~16
    [18] 贾武学.振动打桩机沉桩的理论计算[J].机械研究与应用,1999(增刊):20~22
    [19] 贾强.沉管灌注柱沉管阻力的经验计算方法[J].工业建筑,2000,30(11):68~70
    [20] 王杰等.振动沉管入土深度预测[J].沈阳建筑工程学院学报,2001(3):187~189
    [21] 曹折风.岩土工程技术论文集[C].西安:西安交通大学出版社,1989
    [22] 常士骠.简明工程地质手册[M].北京:中国建筑工业出版社,1998
    [23] 长沙市勘测设计研究院.陂子街商城岩土工程详细勘察报告.2002
    [24] 湖南省农林工业勘察设计研究院.长沙市天英学校教学楼工程地质勘察报告.1998
    [25] 湖南建材地质工程勘察院.株洲工学院体育馆岩土工程勘察报告.2002
    [26] 长沙市勘测设计研究院.联丰住宅南栋基桩低应变动测报告.2001
    [27] 贾强.沉管灌注桩沉管阻力的经验计算方法[J].工业建筑,2000(11):68~70
    [28] 王建等.振动沉拔桩机工作机构动态特性的计算机仿真[J].建筑机械,1998(1):9-12
    [29] 陈建业.振动桩锤减震系统设计分析[J].建筑机械化,1999(10):31~33
    [30] 梁俞川.振动沉拔桩机工作机构动态特性的计算机仿真.建筑机械化,1995(6):20~23
    [31] 王建等.振动沉拔桩机工作机构动态特性的计算机仿真[J].建筑机械,1998(1):9~12
    [32] 杜立杰.振动沉拔桩机系统振动的力学模型及其隔振设计[J].石家庄铁道学院学报,1995,8(1):12~15
    [33] 刘古岷.桩工机械[M].北京:机械工业出版社,2000
    [34] 蔡绍琚.液压控制式变频变矩高频振动桩锤[J].建筑机械,1998(12):19-21
    [35] 陈鸣.ICE液压振动沉拔桩机结构特点及应用[J].建筑机械,1999(2):54~56
    [36] 冯彬.振动桩锤激振器齿轮副运动状态分析及齿轮侧隙的合理确定[J].建筑机械,1996(2):23~25
    [37] 刘建忠等.泵控与阀控补偿的高精度同步系统的探讨[J].机械开发,1998(4):15~18
    [38] 烫绍和.ICE液压振动沉拔桩机[J].建筑机械,1999,18(3):21~23
    [39] ICE Inc.The ICE design approach.2003
    [40] 陈建业.振动桩锤关键零件的抗疲劳设计探讨[J].建筑机械化,2000(3):49-51
    [41] HMC Inc. The HMC Model 26 Vibratory Driver/Extractor. Website: www.HMC.com, 2003
    [42] ICE Inc. Operating and Maintenance Mannual: ICE MODEL815. website: www.iceusa.com, 2003
    [43] 闻邦椿.机械系统的振动同步、控制同步、复合同步[J].工程设计,1999(3):1~5
    [44] 闻邦椿.振动机械的理论与动态设计方法[M].北京:机械工业出版社,2001
    [45] Stefan Van Baars. Design of Sheet Pile installation by Vibration. 3thInt. Cont. on the Application of stress-wave Theory to Piles,Orlando,USA, 1955, pp. 1101~1112
    [46] 王杰贤.动力地基与基础[M].北京:科学出版社,2001
    [47] 杨桂通.土动力学[M].北京:中国建材工业出版社,2000
    [48] 陈希哲.土力学地基基础[M].北京:清华大学出版社,1997
    [49] 张世英.筑路机械工程[M].北京:机械工业出版社,1998
    [50] 广州市勘测设计研究院.中山市八角亭—福园小区综合楼岩土工程勘察报告.2004
    [51] 周林森.冲击式振动锤沉桩的土力学特性研究[J].建筑机械,1996(10):25~28
    [52] 雷林源.桩基动力学[M].北京:冶金工业出版社,2000
    [53] 王安德等.振动沉管中的一种“反常现象”的处理及原因分析[J].地质与勘探,2002 (2):41~42
    [54] 章宏甲.液压与气压传动[M].北京:机械工业出版社,2000
    [55] 马桂秋等.工程机械负载反馈液压系统设计.辽宁省交通高等专科学校学报.2000-6,第2卷第2期:30~32
    [56] 赵显新.建筑机械高效节能液压系统.建筑机械.1995(7):30~33
    [57] 张海涛等.LUDV负荷传感系统在液压挖掘机上的应用.设计制造,2004
    [58] 倪振华.振动力学[M].西安:西安交通大学出版社,1988
    [59] 闻邦椿.机械系统的振动同步与控制同步[J].振动工程学报,1997(3):264~272
    [60] 赵春雨等.同向回转双机传动振动系统的相位差的模糊监督控制[J].振动工程学报,2001,28(3):42~46
    [61] 闻邦椿.振动机械的理论及应用[M].北京:机械工业出版社,1980
    [62] 张鼎恕.ZC-3型振动锤[J].建筑机械化,1983(5):23~25
    [63] 赵伟民等.灌注桩施工机械实时监控系统的发展现状[J].建筑机械,2001(2):8~9
    [64] 路甬祥.电液比例控制技术[M].北京:机械工业出版社,1988
    [65] 田维泽.机械零件及建筑机械[M].北京:中国建筑工业出版社,1987
    [66] 张忠海.液压式振动桩锤发展现状及选型应用[J].建筑机械,2001(3):39~41
    [67] 赵亚明等.DZJ系列新型振动桩锤[J].建筑机械,2000(9):51~52
    [68] 胡寿松.自动控制原理[M].北京:国防工业出版社,1998
    [69] 周立新.振动桩锤运动的分析计算和功率引证[J].建筑机械化,1989(6):20~22
    [70] 艾国柱.从国外施工实例看振动打桩机的广泛用途[J].施工技术,1993(9):40~42
    [71] 皮齐宝.振动锤的力学和数学模型[J].力学与实践,1993(3):49~52
    [72] 李士勇.模糊控制,社经控制和智能控制论[M].哈尔滨:哈尔滨工业大学出版社,1998
    [73] 朱晓宏等.参数自整定PID模糊控制器的设计及Simulink仿真[J].汽车科技,2003(1):10~12
    [74] 高山.国内外桩工机械生产发展状况[J].工程机械与维修,1997(4):40~42
    [75] 薛定宇.反馈控制系统设计与分析[M].北京:清华大学出版社,2000
    [76] 周福田.土工试验及地基承载力检测[M].北京:人民交通出版社,2000
    [77] 高大钊.地基基础测试新技术[M].北京:机械工业出版社,2002
    [78] S.普拉卡什.土动力学[M].北京:水利电力出版社,1984
    [79] 张克绪.土动力学[M].北京:地震出版社,1989
    [80] 林宗元.岩土工程试验监测手册[M].沈阳:辽宁科学技术出版社,1994
    [81] 薛定宇.科学运用语言MATLAB5.3程序设计与应用[M].北京:清华大学出版社,2000
    [82] 张国良.模糊控制及其MATLAB应用[M].西安:西安交通大学出版社,2002
    [83] 林建业.液压元件[M].北京:机械工业出版社,1988
    [84] 李永堂.液压系统建模与仿真[M].北京:冶金工业出版社,2002
    [85] 陈火鑫.日本打桩机械的现状与发展[J].建筑机械化,1991(5)20~22
    [86] 李济华.DZ120A新型振动锤[J].兰州科技情报,1996(6):3~4
    [87] 莫乃榕.工程流体力学[M].武汉:华中科技大学出版社,1999
    [88] 王进.施工机械概论[M].北京:人民交通出版社,2002
    [89] 朱保达.工程机械[M].北京:人民交通出版社,1996
    [90] 哈尔滨建筑工程学院.混泥土机械和桩工机械[M].北京:中国建筑工业出版社,1982
    [91] 刘古岷.振动桩锤的选型与使用[J].建筑机械,1998(2):39~P42
    [92] 中南大学液压机械与控制技术研究所.BT25高压大流量电液比例调速阀设计资料.长沙,2003
    [93] 吴伟辉.BT25高压大流量电液比例调速阀的设计与研究.中南大学硕士学位论文,2004
    [94] 何平.模糊控制器的设计及应用[M].北京:科学出版社,1997
    [95] 刘增良.模糊技术与应用选编(第二册)[M].北京:北京航空航天大学出版社,1997
    [96] 霍晓强等.振动沉拔桩机主要参数的选择与计算[J].工程机械,2000(2):14~16
    [97] 闻新.MATLAB模糊逻辑工具箱的分析与应用[M].北京:科学出版社,1988
    [98] 李树成等.液压沉拔桩机的特点及应用性能[J].森林工程,2000(6):50-51
    [99] 彭天好等.变频泵控马达调速系统节能实验研究.煤炭学报,2004(2):14~16
    [100] 刘少军.现代控制方法及计算机辅助设计[M].长沙:中南大学出版社,2003
    [101] 法国PTC公司及其振动锤[J].中地装备,1999(1):27~29
    [102] 赵志缙.高层建筑施工手册[M].上海:同济大学出版社,1991
    [103] 史佩栋.实用桩基工程手册[M].北京:中国建筑工业出版社,1999
    [104] 左名麒.桩基础工程(设计/施工/检测)[M].北京:中国铁道出版社,1996
    [105] 陈仲颐.土力学[M].北京:清华大学出版社,1994
    [106] 汪闻韶.土的动力强度和液化特性[M].北京:中国电力出版社,1997
    [107] 马六成.国外液压锤的发展与应用[J].机械工程师.1997(5):52~54
    [108] 王国祥.电液比例阀在岩滩升船机控制控制系统中的应用[J].红水河.18(4):60~62
    [109] 吴宏鑫.PID控制的应用与理论依据[J].控制工程,2003,10(1):37~39
    [110] 王宝烨.桩机基础的发展及其应用[J].建筑技术与应用,2002,15(2):12~13
    [111] 靳红涛.振动锤在桥梁基础施工中的应用[J].西部探矿工程,2001,增刊:21~22
    [112] 高山.国内外桩工机械生产发展状况[J].工程机械与维修,1997(4):45~48
    [113] 杨忠海.液压式振动桩锤发展及选型应用[J].建筑机械,2001(3):39~41
    [114] 杨育超.DJZ37可调偏心力之飞振动锤[J].建筑机械,1999(5):2~4
    [115] 王欣丽.EP180新型振动桩锤[J].建筑机械,1997(3):3~4
    [116] 姜伟.新型液压振动打桩机的性能研究[J].建筑机械化,1997(5):27~30
    [117] 艾国柱.从国外施工实例看振动打桩机的广泛应用前途[J].施工技术,1993(5):40~43
    [118] 吴名.法国PTC公司及其振动锤[J].中地装备,1999(1):27~29
    [119] 张忠海.液振动锤的开发建议[J].机电产品开发与创新,2001 (2):26~28
    [120] 胡晶侠等.振动沉管灌注桩单桩承载力影响因素[J].汽油田地面工程,2001(5):66~69
    [121] 张阿舟等.桩机故障诊断理论分析(一)[J].振动、测试与诊断,1991(3):1~8
    [122] 左小襄.振动桩锤的设计计算简介[J].建筑机械技术与管理,1998(3):27~28
    [123] 霍晓强等.DZ60KS型振动桩锤的试验研究及改进措施[J].工程机械,2000(12):12~14
    [124] 严世榕.考虑塑性变形的振动压路机非线性动力学分析[J].筑路机械与施工机械化,1994(4):13~16
    [125] 严世榕.振动压路机的一种非线性动力学仿真[J].建筑机械1999(2):35~37
    [126] 高秀成.振动沉拔桩机系统参数估计的计算机仿真[J].机械研究与应用,2001,14(1):9~10
    [127] 罗光明.基于MATLAB的模糊自整定PID参数控制器计算机仿真[J].机械与电子,2001(2):23~26
    [128] 何清华等.基于模糊PID的液压同步控制[J].机械与电子,2001(1):13~15
    [129] 赵春雨等.多机传动机械系统的同步控制[J].控制理论与应用,1998,16(2):179~183
    [130] 郑江等.电液比例流量控制系统的参数自整定Fuzzy-PI控制[J].液压与气动,2003(5):33~36
    [131] 赵亚明.DZJ系列新型振动桩锤[J].建筑机械,2000,(9):P51~P52
    [132] 罗光明.基于MATLAB的模糊自整定PID参数控制器计算机仿真[J].机械与电子,2001(2):23~26
    [133] 成晓明.基于PLC的炉温多级模糊控制的优化与实现[J].电子技术应用,2001(12):31~33
    [134] 李辉.用计算机模拟桩—土体系振动试验研究[J].重庆建筑大学学报,2001(1):52~54
    [135] 吴兴序.桩的端阻和侧摩阻的相互作用及其工程应用价值[J].西南交通大学学报,1997,32(6)
    [136] 王野牧等.电液比例阀控制液压同步系统动态研究[J].沈阳工业大学学报,1996,18(4):79~83
    [137] 刘汉银.预应力混泥土打入桩施工动力计算[J].铁道建筑技术,2001(4):12~14
    [138] 陈建业.振动桩锤减振系统设计分析[J].建筑机械化,1999(1):31~33
    [139] 万里翔.FFC变量泵/马达的研究[J].机床与液压,2002(4):244~245
    [140] 薛晓虎.液压系统阀控液压马达回路的动态特性分析[J].起重运输机械,2002(8): 23-28
    [141] 李向明等.自校正自调整PID模糊控制器仿真研究[J].武汉理工大学学报,2003,25(3):74~77
    [142] 闻邦椿.自同步振动机的同步理论与调试方法[J].矿山机械,1979(5):35~45
    [143] 周林森等.振动冲击锤动力学模型研究[J].工程机械,2002(6):30~32
    [144] 李伟.自寻优模糊控制器的研究与应用[J].1997,14(2):93~96
    [145] 程启明.自校正模糊控制器的设计及其应用研究[J].系统工程理论与实践,1999(6):56~61
    [146] 李川香.自动修正因子Fuzzy控制方法研究[J].武汉科技大学学报,2000,23(3):299~301
    [147] 熊万里等.机电偶合自同步系统的过渡过程分析[J].东北大学学报,2000,21(2):158~161
    [148] 熊万里等.利用机电耦合模型研究自同步振动机械系统的动力学特性[J].矿山机械,1999,27(7):64~66
    [149] 刘子和等.控制同步理论及其应用[M].全国第四届非线性振动会议论文集,1989
    [150] 熊万里等.自同步振动及振动同动传动的机电耦合机理[J].2000,17(3):25~331
    [151] 赵春雨等.多机传动系统的同步控制[J].控制理论与应用,1999(2):88~92
    [152] 范俭等.双机传动机械系统同步控制的研究[J].东北大学学报,1994(6):566~570
    [153] 范俭等.同向回转自同步振动机零相位差同步控制[J].矿山机械,1993,4
    [154] 张天侠等.振动同步系统中的耦合效应[J].东北大学学报,2003,24(9):839~842
    [155] Vulcan Iron Works Inc. Efficiency and energy Transfer in Pile Driving systems. University of Tennessee at Chattanooga, 2002
    [156] APE Inc. How a Vibratory Driver/Extractor Works. 2003
    [157] Vulcan Iron Works Inc. Russian Impact-Vibration Pile Driving Equipment. University of MKT GEOTECHNICAL SYSTEMS. Operating Maintenance And Parts Manual For V-20/HP-350. 1999
    [158] ICE. International Construction Equipment-Here's why we've never lost a Model 44 vibrator gear case. Website: www.iceusa.com
    [159] S. Abe, and C. M. Morgano. Three Case Studies On Static And Dynamic Testing of Piles. Ground Engineering, September, 1998
    [160] DonC, Warrington. Russian Impact-Vibration Pile Driving Equipment. 2002
    [161] TRAMAC Inc. Tracks and Wheels Construction Equipment. Website: www.tracksandwheels.com, 2004
    [162] H&M VIBRO Inc. H&M Vibratory construction Equipment. Website: www.H and M.com, 2003
    [163] Tennessee at Chattanooga, 2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700