自锚式斜拉—悬索协作体系桥的Pushover分析及减隔震研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自锚式斜拉-悬索协作体系桥是一种新型的桥梁结构形式,不仅具备了传统的斜拉-悬索协作体系桥的诸多优点,而且由于取消了庞大的锚碇,更增加了其在不良地质环境条件下的竞争力,目前已被工程界采纳。但从目前已有的文献看,对这种桥型动力性能的研究还很少见,且主要以非线性时程分析为主。但是由于时程分析技术复杂、工作量大、结果处理繁杂,而且分析结果的准确性很大程度上依赖于所选择的输入地面运动情况,因此在实际工程设计中并没有得到广泛的应用。而Pushover分析方法概念明了,计算简便,能有效地评估结构的抗震性能,近年来逐渐受到结构工程师们的关注。但传统的Pushover方法皆采用固定的侧向荷载分布模式,没有考虑高阶振型的影响以及结构屈服后振动特性的改变,只适用于桥墩高度较低的梁式桥,不能对高阶振型影响显著桥梁进行抗震性能评价。为了克服这些局限性,结合以自锚式斜拉一悬索协作体系桥为研究主体的研究课题:交通部西部交通建设科技项目“斜拉一悬索协作体系桥梁的研究”,以已建的庄河建设大桥和大连湾跨海大桥设计方案为算例,对该新型结构体系的静力弹塑性分析和减隔震等动力问题进行了深入的研究,主要工作如下:
     1.在动力学理论的基础上,对各阶振型完全解耦的MPA方法进行改进,提出了部分两阶段荷载模式的Pushover分析方法(PSMPA法)。通过单墩模型和受高阶振型影响的连续梁全桥模型的算例,对典型地震动输入下改进的部分两阶段Pushover方法、传统的Pushover分析方法及非线性时程分析方法进行对比分析;验证了提出的改进部分两阶段荷载模式的合理性和准确性,不论是对单墩模型还是全桥模型分析,改进的部分两阶段模态Pushover方法可以考虑高阶振型的影响以及结构屈服后振动特性的改变和内力重分配问题,其计算结果均比倒三角分布和均布荷载模式更接近时程分析的结果;尤其是受高阶振型影响明显的跨度较大的连续梁全桥模型的计算,改进的部分两阶段模态Pushover方法更显示出其优越性,计算精度高,误差小。
     2.自锚式斜拉-悬索协作体系桥为复杂的多自由度结构体系,其在地震中的反应受高阶振型影响显著,等效地震力的分布模式十分复杂,传统的基于力的Pushover方法无法对协作体系桥纵桥向进行静力弹塑性分析。提出了基于位移的改进模态Pushover方法(简称DSMPA法),利用位移模式对结构进行Pushover分析,通过对一自锚式斜拉-悬索协作体系桥算例纵桥向地震反应的研究,验证该方法能真实的反应结构在地震作用下的动力特性,计算结果与动力时程分析的结果吻合的较好。同时,由于和采用双控方法确定参与计算振型数的结合,计算过程也大为简化。
     3.引入地震反应位移修正系数的概念,提出了能够考虑高振型影响及结构屈服后振型形状向量改变的目标位移计算方法(IMP法)。对自锚式斜拉-悬索协作体系桥算例,采用了四种不同的目标位移计算方法预测结构纵向地震作用下的目标位移,结果与非线性时程分析相比,改进方法(MP)的结果与时程分析结果最为接近,能力谱方法稍差,等效单自由度体系法预测值偏小;等效位移系数法的预测值偏离程度最大。通过考察三个跨径不同的协作体系桥,采用四种目标位移计算方法预测结构的目标位移,根据计算结果,给出了目标位移修正系数的参考值,从而为该桥型应用Pushover分析方法来确定结构的非线性地震响应提供了依据和参考。
     4.基于弹塑性分析结果,首先采用三种铅芯橡胶支座布置方案对大跨度自锚式斜拉-悬索协作体系桥进行了多维地震作用下的隔震分析;并在此三种铅芯橡胶支座布置方案基础上,在纵向地震输入情况下,对协作体系桥又加入粘滞阻尼器的耗能减震分析;粘滞阻尼器的设置方式采用三种工况:1)仅边墩与加劲梁之间设置阻尼器;2)边墩和主塔均与加劲梁之间设置阻尼器;3)仅主塔与加劲梁之间设置阻尼器。分析结果表明,与仅采用隔震支座的方案相比较可以看出,采用铅芯橡胶支座与粘滞阻尼器的混合振动控制对于控制节点位移和控制截面的内力的降低有更加明显的效果。
     5.基于模糊决策理论,对大跨度自锚式斜拉-悬索协作体系桥的动力减隔震模型方案进行了多层多目标模糊优选,采用二元比较论解决了定性指标的量化问题,区分了“重要性”和“优越性”的概念;将模糊决策的方法与工程实践相结合,基于第四章自锚式斜拉-悬索协作体系桥算例的动力减隔震模型弹塑性分析结果,提出了五种方案进行多目标多层次模糊优选,比较分析认为边墩、主塔下横梁与加劲梁间均设置铅芯橡胶支座,主塔与加劲梁之间设置阻尼器相结合的方案相对合理,该方法为实际工程概念设计阶段的选型提供了借鉴和参考。
As a new type of bridge, self-anchored cable-stayed suspension bridge has been widely used so far because it has not only some advantages of traditional cable-stayed suspension bridge, but also is more adaptive to being built in bad geologic conditions owing to canceling giant anchor block. Many researches have been devoted to the nonlinear time history analysis of this type of bridge while seldom to dynamic properties. Nonlinear time history analysis is considered to be the most accurate method for elasto-plastic analysis of bridges, but it isn't widely applied in engineering design owing to its complex technology, complicated calculation and miscellaneous result processing, and the accuracy depends greatly on the input ground motions. Recently, with the development of performance-based seismic design, Pushover analysis procedure has been accepted and gradually used for estimating the seismic performance for bridges because of its simple concept and easy calculation. All the classic Pushover analysis procedures are based on the invariant force distributions, but none of the invariant force distributions can account for the contributions of higher modes to response, or for a redistribution of inertia forces after structural yielding and the associated changes in the vibration properties of the structure. So the classic Pushover analysis procedures are just suitable for the beam bridges with low piers, not for high piers or cable-stayed bridge. To overcome these limitations, combining the West Traffic Construction Project of Science and Technology, the built Zhuanghe Bridge and the construction of Dalian Bay Sea-Crossing Bridge are taken as the project background. The research of static elasto-plastic analysis and seismic energy dissipation dynamic problems for this new type system are discussed, the main findings are listed as follows:
     1. The MPA method complete decoupling for all order modes has been improved based on dynamics and the portion two-stage loading mode-based Pushover analysis method (PSMPA) is proposed. Taken single pier model and continuous beam entire bridge affected by high order formation as examples, analysis are compared among improved PSMPA method, classical Pushover method and nonlinear time history analysis method under typical seismic input. The effectiveness and feasibility of the improved mode is verified. No matter single pier model or continuous beam entire bridge is analyzed, the improved PSMPA method can consider the effect of high order models, the associated changes in the vibration properties of the structure and redistribution of inertia forces. The results are closer to the time analysis results than inverted triangular distribution and uniform load models. The advantage of improved PSMPA method is displayed in calculation precision and error especially for the calculation of continuous beam entire bridge affected by high order formation.
     2. Self-anchored cable-stayed suspension bridge is a system with complex multi-degree of freedom. It is affected by high order mode in the earthquake response. Equivalent earthquake force distribution patterns are very complex. The classic Pushover analysis procedure based on force can not do static elasto-plastic analysis for cooperation system bridges. An improved modal Pushover method based on displacement is proposed (DSMPA), which utilize displacement mode to do Pushover analysis for structures. The numerical analysis of a self-anchored cable-stayed suspension bridge as an example demonstrates that this new method can indicate dynamic characteristics of structures under the earthquake actually and the calculating results have a good agreement with the results calculated from dynamic time history analysis. Meanwhile, the calculating procedure is more convenient because double control method is utilized to determine the number of involved vibration type.
     3.Introducing the correction coefficient of seismic displacement response, a new method for calculating the target displacement is proposed. The new method considers the effect of high order mode and change of yield formation shape vector for structures (IMP). A self-anchored cable-stayed suspension bridge is taken as an example and four different computation methods are used to predict the target displacement of structures. Compared with the results of nonlinear time history analysis, the predicting values of equivalent single degree of freedom system is smaller, while the deviation of predicting values of equivalent displacement coefficient method is the largest. In general, the results of IMP method are most close to those of time history analysis, while the capacity spectrum method is slightly worse. Considering three cooperation system bridges with different span, four methods are utilized to predict the target displacement of the structure. According to the results, the correction coefficients' value range of target displacements is suggested for self-anchored cable-stayed suspension bridge, which gives suggestion and conclusions for application of Pushover method to determine the nonlinear seismic responses of structures.
     4. Based on the results of elastic plastic analysis, three kinds of lead rubber bearing arrangement scheme are considered in the analysis of multidimensional seismic isolation for long span self-anchored cable-stayed suspension bridge. For the three arrangement cases of lead rubber bearing, energy dissipation analysis are done for the cooperation system bridge with viscous dampers under the action of longitudinal seismic input. Three different arrangements of viscous dampers are done,1) Dampers only placed between pier and girder;2) Dampers are placed not only between pier and girder, but also main tower and girder;3) Dampers are only placed between main tower and girder. The numerical analysis indicates that using both lead rubber bearing and viscous dampers can reduce the joint displacement and internal forces of sections efficiently compared with only using isolation bearing.
     5. Based on fuzzy decision theory, multi objective fuzzy optimization is done for the dynamic isolation model scheme of self-anchored cable-stayed suspension bridge. Using two comparison theory solves the problem of quantifying the qualitative indexes and distinguish the concepts of importance and superiority. Combining the fuzzy decision method with engineering practice and using the results of chapter four, three cases are proposed for multi objective fuzzy optimization. Comparison results show that it is more reasonable to place viscous dampers not only between pier and girder, but also main tower and girder. This method can provide a reference for structure selection in practical conceptual design phase.
引文
[1]范立础.桥梁抗震[M].上海:同济大学出版社,1997.
    [2]曹均旺.自锚式悬索-斜拉组合结构体系桥梁索力优化方法研究[D].西安:长安大学,2008.
    [3]陈政清,颜全胜.大跨度斜拉桥的非线性分析[J].长沙铁道学院学报,1991(3):29-33.
    [4]Bruno D, Leonardi A. Natural periods of long-span cable-stayed bridges[J]. Journal of Bridge Engineering,1997,2(3):105-115.
    [5]周念先.特大跨斜张桥与悬索桥的对比[J].江苏交通工程,1993(1):16-20.
    [6]陈明宪.斜拉桥的发展与展望[J].中外公路.2006,26(4):76-86.
    [7]王伯惠.斜拉-悬索协作体系桥[J].辽宁省交通高等专科学校学报.2000,2(03):1-6.
    [8]王伯惠.斜拉-悬索协作体系桥(续)[J].辽宁省交通高等专科学校学报.2000,2(4):1-7.
    [9]唐寰澄.世界长大桥梁技术和艺术的发展趋向[J].广东公路交通.2000,(66):73-79.
    [10]罗福午.19世纪第一悬索桥-布鲁克林桥.建筑技术[J].2001,(10):690-691.
    [11]柳春光,秦泗凤,林皋,王会利.改进的适应谱Pushover方法评价桥梁结构的抗震性能[J].哈尔滨工业大学学报,2008(10):1644-1648.
    [12]黎祖华.超大跨度桥梁形式的探讨[J].国外桥梁.1992,(4):13-15.
    [13]潘家英编译.直布罗陀海峡桥渡[J].国外桥梁,1991,69(4):1-8.
    [14]Irvine M. Cable Structures[M]. New York:Dover,1992.
    [15]苗峰.自锚式斜拉-悬索协作体系桥动力学问题研究[D].大连:大连理工大学,2009.
    [16]王伯惠.台湾的斜拉桥[J].东北公路.2000,23(4):56-61,45.
    [17]干伯惠.伶仃洋三大航道桥桥方案探讨(二)伶仃东桥[C].中国公路学会桥梁和结构工程学会一九九九年桥梁学术讨论会,2000:565-577.
    [18]方世乐,王萍.伶仃东航道桥方案设计与构思[J].广东公路勘察设计.1999,(3):36-48.
    [19]孙淑红,蒙云.吊拉组合桥交接区域吊杆的疲劳问题研究[J].重庆交通学院学报.1999,018(004):13-18.
    [20]蒙云,孙淑红.吊拉组合桥结构体系研究与决策[C].中国公路学会桥梁和结构工程学会一九九九年桥梁学术讨论会,厦门,2000:691-697.
    [21]孙淑红,蒙云.吊拉组合体系预应力连续加劲梁性能分析[J].重庆交通学院学报.1999,(04):30-39.
    [22]孙淑红,蒙云.几种吊拉组合体系主梁结构性能计算分析[C].中国公路学会桥梁和结构工程学会一九九九年桥梁学术讨论会,厦门, 2000:697-705.
    [23]蒙云.大跨径P.F.C 吊拉组合索桥结构计算分析[C].中国公路学会桥梁和结构工程学会1995年桥梁学术讨论会,广州,1995:377-382.
    [24]孙淑红.大跨度吊拉组合体系及计算方法研究[D].重庆:重庆交通学院,1999.
    [25]大连理工大学桥梁工程研究所.大连小平岛圣岛大桥改造工程[R].大连:大连理工大学,2006.
    [26]万国朝.大贝尔特悬索桥设计[J].国外公路.1995,(1):11-17.
    [27]铁道部大桥工程局桥梁科学研究所编.悬索桥[M].北京:科学技术文献出版社,1996.
    [28]陈炳坤.十耳其伊兹米特海湾上混合型缆索承重桥的设计-为纪念伟大的预想家弗兰茨·迪辛格而作[J].国外桥梁,1997,(3):11-14.
    [29]周孟波,刘自明,王邦楣.悬索桥手册[M].北京:人民交通出版社,2006.
    [30]大连理工大学桥梁工程研究所.大连市跨海大桥工程预可行性研究报告[R].大连:大连理工大学,2004.
    [31]张永杰.自锚式吊拉组合桥设计及力学性能分析[D].大连:大连理工大学,2006.
    [32]王会利.自锚式斜拉-悬索协作体系桥结构性能分析与试验研究[D].大连:大连理工大学,2006.
    [33]黄海新,张哲,石磊.自锚式斜拉-悬索协作体系桥动力分析[J].大连理工大学学报,2007,47(4):557-562.
    [34]张凯.自锚式斜拉-悬索协作体系桥地震反应分析[D].大连:大连理工大学,2006.
    [35]黄海新.自锚式斜拉-悬索协作体系桥动力响应研究[D].大连:大连理工大学,2006.
    [36]Priestley M J N. Performance based seismic design[A]. Proc.12WCEE[C].2000, Vol.1, 2831.
    [37]吕西林,周定松.考虑场地类别与设计分组的廷性需求谱和弹塑性位移反应谱[J].地震工程与工程振动,2004,24(1):39-48.
    [38]李琪.基于位移的抗震设计中位移模式的确定[J].扬州大学学报.2005,8(2):65-68.
    [39]Chopra A K. Dynamics of Structures:Theory and Applications to Earthquake Engineering[M]北京:清华大学出版社,2005.
    [40]李琪,顾荣蓉.基于位移的抗震设计中位移模式的确定明[J].扬州大学学报,2005,8(2):65-69
    [41]谢礼力,罗学海.“国际减轻自然灾害十年”和地震研究的任务[J].地震工程与工程振动,1990,10(4):101-108.
    [42]袁一凡,陈永.日本阪神大震灾在应急救灾上的几点教训[J].自然灾害学报,1995,4(4):53-61.
    [43]范立础,卓卫东.桥梁延性抗震设计[M].北京:人民交通出版社,2001.
    [44]罗奇峰,谢礼立.世界抗震设计规范发展趋势研究[J].地震工程与工程振动,1993,133(3):89-101.
    [45]李刚,程耿东.基于性能的结构抗震设计-理论、方法与应用[M].北京:科学出版社,2004.
    [46]IAEE. Earthquake Resistant Regulations A World List-1996[M].
    [47]谢礼立,张晓志,周雍年.论工程抗震设防标准[J].地震工程与工程振动,1996,16(1):1-18.
    [48]IAEE. Earthquake Resistant Regulations A World List-1996[M]. Supplement-2000.
    [49]龚思礼,王广军.中国建筑抗震设计规范发展回顾.中国工程抗震研究四十年[M].北京:地震出版社,1989.
    [50]刘志刚.工程结构抗震设计标准的几个基本问题.中国工程抗震研究四十年[M].北京:地震出版社,1989.
    [51]Freeman S A. Prediction of response of concrete buildings to severe earthquake motion[J]. Publication SP-55, American Concrete Institute, Detroit, MI.1978,589-605.
    [52]Freeman S A, Nicoletti J P, Tyrell J V. Evaluations of existing buildings for seismic risk -A case study of Puget Sound Naval Shipyard, Bremerton, Washington[J]. Proceedings of 1st US National Conference on Earthquake Engineering, EERI, Berkeley,1975,113-122.
    [53]杨溥,李东,李英民,赖明.抗震结构静力弹塑性分析(Push-over)方法的研究进展[J].重庆建筑大学学报,2000,22:87-92.
    [54]SEAOC Vision 2000 Committee. Performance-based seismic engineering of buildings[R]. Report Prepared by Structural Engineers Association of California. Sacramento, California. USA,1995.
    [55]ATC-40, Seismic evaluation and retrofit of concrete bui ldings[C]. Applied Technology Council. Red Wood City, California,1996.
    [56]Bozorgnia Y, Bertero V V. Earthquake engineering from engineering seismology to performance-based engineering[M]. CRC Press,2004.
    [57]Bertero R D, Bertero V V. Performance-based seismic engineering:The need for a reliable conceptual comprehensive approach[J]. Earthquake Engineering and Structural Dynamics,2002,31:627-652.
    [58]Krawinkler H. A few basic concepts of performance-based seismic design[C]. Proceedings of the 11th World Conference on Earthquake Engineering, Acapulco Mexico,1996.
    [59]Krawinkler H. A general approach to seismic performance assessment[C]. Proceedings of the International Conference on Advanced and New Challenges in Earthquake Engineering Research, CSNCEER, Hong Kong,2002.
    [6[)]罗奇峰,王玉梅.结构性能设计理论及其发展趋势[C].第五届全国地震工程会议论文集(Ⅱ),1998.
    [61]周锡元.基本功能的建设抗震设计:概念和实施方略[C].大型复杂结构体系的关键科学问题及设计理论研究论文集,2000.
    [62]Building Center of Japan. Report of development of new engineering framework for building structures[R]. Integrated Development Project, Ministry of Construction,1996, 1997 and 1998.
    [63]谢礼立.抗震性态和基于性态的抗震设防.国家自然科学基金“九五”重大项目:大型复杂结构的关键科学问题及设计理论研究论文集[M].大连:大连理工大学出版社,1999.
    [64]钱稼茹,罗文斌.静力弹塑性分析:基于性能/位移抗震设计的分析工具[J].建设结构,2000,30(6):23-26.
    [65]谢晓健,蒋永生,梁书亭等.基于结构功能设计理论的发展综述[J].东南大学虚学报(自然科学版),2000,30(4):9-15.
    [66]李峻,叶燎原Push-over分析法及其非线性动力分析法的对比[J].世界地震工程,1999,15(2):34-39.
    [67]叶燎原,潘文.结构静力弹塑性分析(push-over)的原理和计算实例[J].建筑结构学报,2000,21(1):37-43.
    [68]钱稼茹,邹积麟.钢筋混凝土房屋结构全过程静力推覆分析[C].大型复杂结构体系的关键科学问题及设计理论研究论文集.上海:同济大学出版社,2001:120-130.
    [69]王光远,吕大刚.基于最优设防烈度和损伤性能的抗震结构优化设计[J].哈尔滨建筑大学学报,1999,32(5):1-5.
    [70]王光远,顾平,吕大刚.基于规范和最优设防烈度的抗地震结构优化设计[J].土木工程学报,1999,32(2):41-46.
    [71]谢礼立,马玉宏.基于性态的抗震设防标准研究[J].地震学报,2002,24(2):200-209.
    [72]马玉宏,谢礼立,赵桂峰.抗震设防烈度的决策分析方法研究[J].世界地震工程,2007,23(1):86-90.
    [73]谢礼立,马玉宏.控制大员伤亡的抗震设防标准的决策模型分析.大型复杂结构体系的关键科学问题及设计理论研究论文集编辑委员会编:国家自然科学基金“九五”重大项目“大型复杂结构体系的关键科学问题及设计理论研究论文集”[M].上海:同济大学出版社,2001,30-37.
    [74]钱稼茹,罗文斌.建筑结构基于位移的抗震设计[J].建筑结构,2001,4.
    [75]钱稼茹等.基于位移延性的剪力墙抗震设计[J].建筑结构学报,1999,3.
    [76]李刚,程耿东.基于性能的结构抗震设计:理论、方法与应用[M].北京:科学出版社,2004.
    [77]李刚,杨迪雄,程耿东.基于功能的基础隔震结构一体化优化设计[J].应用力学学报,2004,21(1):13-16.
    [78]李刚,杨迪雄,程耿东.基于性能的隔震结构动力优化设计[J].大连理工大学学报.2006.
    [79]汀梦甫,周锡元.基于性能的建筑结构抗震设计[M].建筑结构,2003,3.
    [80]章从俊,李爱群.基于性能的消能减震结构抗震设计思想研究[J].建筑结构,2006,36(增刊):51-54.
    [81]黄镇,李爱群,秦新刚.大跨结构基于性能的消能减振加固研究[D].第二届全国抗震加固改造学术交流论文,54-63.
    [82]叶列平,程光煌,齐玉军.体系能力设计法在消能减震结构设计中的应用[R].第七届中日建筑结构技术交流会,重庆,548-553.
    [83]李波,梁兴文,杨克家. 非弹性单自由度体系附加粘滞阻尼器基于性能的抗震设计[J].工程力学.2007,24(6):147-152
    [84]张思海.被动耗能减震结构基于性能的抗震设计方法[D].西安建设科技大学硕十学位论文(导师 梁兴文),2005.
    [85]郝娜.橡胶垫基础隔震结构基于性能的抗震评估方法[D].西安建设科技大学硕十学位论文(导师 史庆轩),2007.
    [86]郝娜,史庆轩,门进杰.基础隔震结构基于性能的抗震性能评估[J].防灾减灾工程学报,2007,27(增刊):239-242.
    [87]阎茹.基于性能的粘弹性阻尼器减震体系抗震设计应用研究[D].兰州理工大学硕士学位论文,2007.
    [88]赵玉成.基于性能的隔震加固实用设计方法研究[D].北京工业大学工学硕士学位论文,2007.
    [89]朱海华.基于性能的隔震结构非结构构件抗震性能研究[D].北京工业大学工学硕士学位论文,2006.
    [90]周云,丁春花,邓雪松.基于性能的耗能减震加固设计理论框架[J].工程抗震与加固改造,2005,27(5):45-49.
    [91]郭永恒.基础隔震结构基于性能的设计方法研究[D].广州大学硕士学位论文,2007.
    [92]汤统壁.耗能减震钢结构基于性能的抗震设计方法研究[D].广州大学硕士学位论文,2007.
    [93]王烨华.粘弹性阻尼高层钢结构基于性能的抗震设计方法研究[D].广州大学硕士学位论文,2006.
    [94]FEMA-273. NEHRP Commentary on the Guidelines for the Rehabilitation of Buildings[R]. Federal Emergency management Agency, Washington D. C., September,1996.
    [95]SEAOC Vision 2000 Committee. Performance-Based Seismic Engineering of Building[R]. Report Prepared by Structural Engineers Association of California, Sacramento, California, USA,1995.
    [96]Smith K G. Innovation in earthquake resistant concrete design philosophies:A century of progress since hennebique's patent[J]. Engineering Structures.2001,23:72-81.
    [97]沈章春,王金凤.基于性能抗震设计理论于实用方法[J].四川建筑科.学研究,2008,34(3):136-140.
    [98]王会利,李海滨,黄才良等.两级模糊优选模型及非结构性模糊决策理论在桥梁方案比选中的应用[J].公路交通科技,2004,21(7):79-82.
    [99]柳春光,林皋.桥梁结构push-over方法抗震性能研究[J].大连理工大学学报,2005(3):395-400.
    [100]张哲,王会利,石磊,黄才良.桥梁方案多层多目标模糊优选模型及其应用[J].哈尔滨工大学学报,2006,38(9):1567-1571.
    [101]钱稼茹,罗文斌.静力弹塑性分析-基于性能/位移抗震设计分析工具[J].建筑结构,2000,30(6).
    [102]李康宁,Kubo T, Ventura C (?)建筑物三维分析模型及其应用于结构地震反应分析的可靠性[J].建筑结构.2000,30(6).
    [103]张朋来.建力Pushover分析在大震作用下变形验算中的应用研究[D].浙江大学硕士学位论文,2006.
    [104]李康宁,洪亮,叶献国.结构三维弹塑性分析方法及其在建筑物震害研究中的应用[J].建筑结构,2001,31(3):53-61.
    [105]蒋蝶.基于滞回牦能的Pushover分析方法研究[D].湖南大学硕士学位论文,2007.
    [106]杨晓持Pushover分析方法的进一步研究及在基础隔震结构中的应用[D].合肥工业大学硕十学位论文,2007.
    [107]郑宇淳.大跨度拱形立体桁架结构的推倒分析[D].天津大学硕十学位论文,2007.
    [108]Giuseppe Faella. Evaluation of the R/C Structures Seismic Response by Means of Nonlinear Static Push-over Analysis[C].11th World conference On Earthquake Engineering, 1996.
    [109]Tso W K, Moghadam A S. Seismic response of asymmetrical buildings using Pushover analysis[A]. Seismic Design Methodologies for the Next Generation of Codes[C]. Balkema Rotterdam. In:Fajfar P, Krawinkler H, edition,1997,311-321.
    [110]Bracei J M. Kunnath S K, Reinhorn. A. M. Seismic performance and retrofit evaluation of RC structures[J]. J. of struct Engrg, ASCE,1997,123(1),3-10.
    [111]Balram Gupta, Sashi K. Kunnath, Adaptive spectra-based Pushover procedure for seismic evaluation of structures[J]. Earthquake Spectra,2000,16(2):367-391.
    [112]ATC. Seismic Evaluation and Retrofit of Concrete Buildings[R]. Applied Technology Council, Redwood, City, California,1996.
    [113]Building Seismic Safety Council(BSSC). NEHRP Guidelines for the Seismic Rehabilitation of Buildings[R]. FEMA273/274. developed for the Federal Emergency Agency, Washington DC,1997.
    [114]冯峻辉,闫贵平,钟铁毅.地震工程中的静力弹塑性(Push over)分析法[J].贵州工业大学学报,2003,32(2):89-102.
    [115]熊向阳,戚震华.侧向荷载分布方式对静力弹塑性分析结果的影响[J].建筑科学,2001,17(5):8-13.
    [116]侯爽,欧进萍.结构Pushover分析的侧向力分布及高阶振型影响[J].地震工程与工程振动,2004,24(3):89-97.
    [117]Kalkan E, Kunnath S K. Lateral load distribution in nonlinear static procedures for seismic design[J]. Proceedings of the 2004 Structures Congress,2004(5):22-26.
    [118]Eberhard M O, Sozen M A. Behavior based method to determine design shear in earthquake-resistant walls[J]. Journal of Structural Engineering, ASCE,1993,119(2): 619-640.
    [119]Bracci J M, Kunnath S K, Reinhorn A M. Seismic performance and retrofitevaluation of reinforced concrete structures[J]. Journal of Structural Engineering, ASCE,1997,123(1): 3-10
    [120]侯爱波,汪梦甫,周锡元Pushover分析方法中各种不同的侧向荷载分布力式的影响[J].世界地震工程,2007,23(3):120-128.
    [121]朱敏纳,王社良,胡紫城Pushover水平侧向力分布模式研究评述[J].山西建筑,2007,33(33):11-12.
    [122]周建锋.基JPushover力‘法的框架结构抗震性能评价研究[D].华中科技大学硕士学位论文,2006.
    [123]崔烨.静力弹塑性Pushover分析方法的研究和改进[D].西安建筑科技大学硕十学位论文,2004.
    [124]张运龙.静力弹塑性方法的水平加载模式和目标位移的研究和应用[D].西安建筑科技大学硕十学位论文,2007.
    [125]汪梦甫,王锐.基于位移的结构静力弹塑性分析方法的研究[J].地震工程与工程振动,2006,26(5):73-80.
    [126]Freeman S A. Prediction of response of concrete buildings to severe earthquake mot ion[J]. Publication SP-55, American Concrete Institute, Detroit, MI,1978:589-605.
    [127]Freeman S A, Nicolctti J P, Tyre11 J V. Evaluations of existing buildings for seismic risk-A case study of Puget Sound Naval Shipyard, Bremerton, Washington[J]. Proceedings of 1st US National Conference on Earthquake Engineering, EERI, Berkeley,1975:113-122.
    [128]ACT-40. Seismic Evaluation and Retrofit of Concrete Building[S].
    [129]FEMA273, FEMA274. NEHRP Commentary on the Guidelines for the Rehabilitation of Building[R]. Federal Emergency Management Agency, Washington D C,1996.
    [130]Krawinkler H. Pushover Analysis:Why, How, When, and When not to Use it[R]. Proceeding for SEAOC 65thAnnual Convention. Structural Engineering Association of California, MAUI, HAWAII,1996.
    [131]Kircher C A. Capacity Spectrum Pushover Method:Seeing is Believing[R]. Proceeding for SEAOC 65thAnnual Convention. Structural Engineering Association of California, MAUI, HAWAII,1996.
    [132]小谷俊介.日本基于性能结构抗震设计方法的进展[J](叶列平译).建筑结构,2000,(6).
    [133]Chopra A K, Goel R K. Capacity-demand-diagram Methods for Estimating Seismic Deformation of Inelastic Structures:SDF Systems[R]. Pacific Earthquake Engineering Research Center, University of California at Berkeley,1999.
    [134]柳春光,包峰.基于公路工程规范地震需求谱研究[J].世界地震工程,2006(3):21-26.
    [135]Sun Jingjiang. Lateral load pattern in Pushover analysis[J]. Earthquake Engineering And Engineering Vibration,2003,2(1):99-107.
    [136]易伟建,蒋蝶.一种基于滞回耗能的改进(?)(?)ushover分析方法[J].自然灾害学报,2007,16(3):104-108.
    [137]易伟建,张海燕.弹塑性反应谱的比较及其应用[J].湖南大学学报,2005,32(2):42-45.
    [138]Gupta B, Kunnath S K. Adaptive spectra-based Pushover procedure for seismic evaluation of structures[J]. Earthquake Spectra,2000,16(2):367-391.
    [139]易伟建,蒋蝶Pushover分析中抗力曲线的概率研究[J].地展工程与工程振动,2009,29(1):78-82.
    [140]欧进萍,侯钢领,吴斌.概率Pushover分析方法及其在结构体系抗震可靠度评估中的应用[J].建筑结构学报,2011,22(6):81-86.
    [141]何浩祥,李宏男.基于规范弹性谱建立需求谱的方法[J].世界地震工程,2002,18(3):57-63
    [142]尹华伟,易伟建.结构地震效应Pushover位移形状向量的选取[J].湖南大学学报,2004,31(5):88-93.
    [143]种迅,叶献国,吴本华Pushover分析中侧向力分布形式的影响[J].工程力学增刊,2001:298-302
    [144]朱丽佳,张俊发,闻建军.钢筋混凝土框架结构考虑P-△效应的Push-over分析[J].西安理工大学学报,2005,21(2):211-215.
    [145]叶献国.多层建筑结构抗震性能的近似评估—改进的能力谱方法[J].工程抗震,1998,12(4):10-14.
    [146]叶献国,周锡元.建筑结构地震反应简化分析方法的进一步改进[J].合肥工业大学学报,2000,23(2):149-153.
    [147]潘文Push-over方法的理论与应用[D].西安:西安建筑科技大学,2004.
    [148]叶献国,种迅,李康宁等Pushover方法与循环往复加载分析的研究[J].合肥工业大学学报(自然科学版),2001,24(6):1019-1024.
    [149]李刚,刘永.三维偏心结构的Pushover分析[J].计算力学学报,2005,22(5):529-232
    [150]周定松,吕西林.延性需求谱在基于性能的抗震设计中应用[J].地震工程与工程振动,2004,24(1):30-38.
    [151]Saiidi M, Sozen M A. Simple nonlinear analysis of R/C structures[J]. Journal of Structural Division, ASCE,1981,107(ST5):937-952.
    [152]Fajfar P, Fischinger M. N2-a Method for Nonlinear Seismic Analysis of Regular Structures[C]. Proceedings of 9th World Conference of Earthquake Engineering. Tokyo-Kyoto, Japan,5:111-116.
    [153]Mwafy A M, Elnashai A S. Static Pushover versus dynamic collapse analysis of RC buildings[J]. Engineering Strutures,2001,23(5):407-424.
    [154]Chopra A K, Goel R K. A modal Pushover analysis procedure to estimate seismic demands for buildings:theory and preliminary evaluat.ion[R]. Report No. Peer-2001/03, Pacific Earthquake Engineering Research Center, University of California, Berkeley,1999,1-87.
    [155]Chopra A K, Goel R K. A modal Pushover analysis procedure for estimate seismic demands for buildings[J]. Earthquake Engineering and Structure Dynamics,2002,31(3):561-582.
    [156]Newmark N M, Hall W J. Proceduress and criteria for earthquake resistant design[J]. Building Research Series No.46. National Bureau of Standards, U. S. Dept of Commerce. Washington,1973,11:209-236.
    [157]Miranda E. Site-dependent strength reduction factors[J]. Journal of Structural Engineering,1993,116(12):503-3519.
    [158]Vidic T, Fajfar P. Consistent inelastic design spectra:strength and displacement[J]. Earthquake Engineering and Structural Dynamics,1994,24(5):507-521.
    [159]Li Hyung Lee, Sang Whan Han, Young Hun Oh. Determination of ductility factor considering different hysteretic models[J]. Earthquake Engineering and Structural Dynamics, 1999,28(9):957-977.
    [160]Borzi B, Elnashai A S. Refined force reduction factors for seismic design[J]. Engineering Structures,2000,22(9):1244-1260.
    [161]Jennings P C. Equivalent viscous damping for yielding structures[J]. Engineering Mechanics, ASCE,94 (1):103-116
    [162]Vidict T, Fajfar P. Consistent inelastic design spectra:strengthen and displacement [J]. Earthquake Engineering and Structure Dynamics,1994,24(5):507-521.
    [163]Gupta B, Kunnath S K. Adaptive spectra-based Pushover procedure for seismic evaluation of structure[J]. Earthquake Spectra,2000,16(2):367-391.
    [164]Peter K, Badoux M, Application of the capacity spectrum method to R. C. buildings with bearing walls[C]. Proceedings of the 12th World Conference of Earthquake Engineering, Paper No.1972, Auckland, New Zealand,2000.
    [165]Ventura C E, Ding Y W, Linear and nonlinear seismic response of a 52-storey steel frame building[J]. The Structural Design of Tall Buildings,2000,9:25-45.
    [166]Luco N, Mori Y, Funahashi Y, Cornell C A, Nakashima M. Evaluation of predictors of non-linear seismic demands using 'fishbone' models of SMRF buildings, Earthquake Engng Struct[J]. Dyn.2003,32:2267-2288.
    [167]Kilar V. Simple push-over analysis of asymmetric building[J]. Earthquake Engineering and Structural Dynamics,1997,26(2):233-249.
    [168]Scott Lawson R. Nonlinear Static Push-over Analysis-Why, When, and How?[C].5th U. S. national Conference on Earthquake Engineering,1994.
    [169]Helmut Krawinkler. Pros and Cons of a Pushover Analysis of Seismic Performance Evalualion[J]. Engineering Structures,1998,20.
    [170]Hiroshi Kuramoto. Predicting the Earthquake Response of Buildings Using Equivalent Single Degree of Freedom System[C].12th World Conference On Earthquake Engineering, Paper No.1039,2000.
    [171]Giuseppe Faella. Evaluation of the R/C Structures Seismic Response by Means of Nonlinear Static Push-over Analysis[C].11th World Conference On Earthquake Engineering, 1996.
    [172]Kaspar Peter. Application of the Capacity Spectrum Method to R. C. Buildings with Bearing walls[C].12th World Conference On Earthquake Engineering, Paper No.0609,2000.
    [173]Hulmut Krawinkler, Seneviratna G D P K. Pros and Cons of A Pushover Analysis of Seismic Performance Evaluation[J]. Engineering Structure. Vol.20:452-464,1998.
    [174]Chopra A K, Goel R K. A Modal Pushober Analysis Procedure for Estimating Seismic Demands for Buildings[J]. Earthauake Endineering and Structural Dynamics,2002,31: 561-582.
    [175]秦泗凤.桥梁抗震性能评价的静非线性分析方法研究[D].大连理工大学博十学位论文,2008.
    [176]魏巍.几种push-over分析方法对比研究[D].哈尔滨:中国地震局工程力学研究所,2001.
    [177]周云,安宇,梁兴文.基于性态的抗震设计理论和方法的研究与发展[J].世界地震工程,2001,17(2):1-7.
    [178]Mervyn J Kowalsky, Nigel Priestley M J, Gregory A Macrae. Displacement-based design of RC bridge columns in seismic regions[J]. Earthquake Engineering and Structural Dynamics, 1995,24(12):1623-1643.
    [179]Calvi G M, Kingsley G R. Displacement-based seismic design of multi-degree-of-freedom bridge Structures[J]. Earthquake Engineering and Structural Dynamics,1995,24(9): 1247-1266.
    [180]Medhekar M S, Kennedy D J L. Displacement-based seismic design of buildings-theory [J]. Engineering Structures,2000,22(3):201-209.
    [181]MedhekarM S, Kennedy D J L. Displacement-based seismic design of buildings-application[J]. Engineering Structures,2000,22(3):210-221.
    [182]Panagiotakos T B, Fardis M N. A displacement based seismic design procedure for RC building and comparison with EC8[J]. Earthquake Engineering and Structural Dynamics,2001, 30(10):1439-1462.
    [183]Chopra A K, Goel R K. Direct displacement based design; use of inelastic vs. elastic design spectra[J]. Earthquake Spectra,2001,17(1):47-64.
    [184]Qiang Xue. A direct displacement seismic design procedure of inelastic structures [J]. Engineering Structures,2001,23(11):1453-1460.
    [185]Qiang Xue, Cheng-Chung Chen. Performance based seismic design of structures:a direct displacement based approach[J]. Engineering Structures,2003,25(14):1803-1813.
    [186]罗文斌,钱稼茹.钢筋混凝十框架基于位移的抗震设计[J].土木工程学报,2003,36(5):22-29.
    [187]Chopra A K, Goel R K. Capacity demand diagram method for estimating seismic deformation of inelastic structures:SDOF System[R]. University of California, Berkeley, PEER Report 1999/02.
    [188]Peter Fajfar. Capacity spectrum method based on inelastic demand spectra[J]. Earthquake Engineering and Structural Dynamics,1999,28(9):979-993.
    [189]Mark Aschheim. Seismic design based on the yield displacement[J]. Earthquake Spectra, 2002,18(4):581-600.
    [190]戴君武,张敏政,黄玉龙.偏心结构扭转振动研究中几个基本参量的讨论[J].地震工程与下程振动,2002,22(6):38-43.
    [191]戴显荣,刘建勋.大跨度斜拉桥减震耗能非线性纵向地震反应分析[J].桥梁建设,2004(6):17-19.
    [192]李建中,袁万城.斜拉桥减震,耗能体系非线性纵向地震反应分析[J].中国公路学报,1998,11(1):71-76.
    [193]叶爱君.桥梁抗震[M].北京:大民交通出版社,2002.
    [194]吴彬.铅芯橡胶支座力学性能及其在桥梁工程中减、隔震应用的研究[D].北京:铁道科学研究院,2003.
    [195]钟铁毅,李宇,杨风利等.铅芯橡胶支座隔震连续梁桥的地震能量反应分析[J].中国铁道科.学,2009,30(3):9-14.
    [196]曾攀,阎贵平.铅芯橡胶支座动力特性对连续梁桥地震响应的影响[J].铁道学报,2001,23(5):96-100.
    [197]大连理工大学桥梁工工程研究所.大连市跨海大桥工程预可行性研究报告[R].大连:大连理工大学,2004.
    [198]张哲,朱巍志,王会利. 自锚式斜拉-悬索协作体系桥的方案设计[J].桥梁建设,2009,2009(4):50-53.
    [199]周云.粘滞阻尼器减震结构设计[M].武汉:武汉理工大学出版社,2006.
    [200]王志强,胡世德,范立础.东海大桥粘滞阻尼器参数研究[J].中国公路学报,2005,18(3):37-42.
    [201]宋旭明,戴公连,曾庆元.自锚式悬索桥的粘滞阻尼器减震控制[J].华南理工大学学报(自然科学版),2009(3):104-108.
    [202]朱巍志.自锚式斜拉-悬索协作体系桥合理成桥状态确定与若干问题研究[D].大连:大连理工大学,2009.
    [203]王克海.基于模态分析的Push-over方法在桥梁抗震分析中的应用[J].铁道学报,2006,28(2):79-84
    [204]Chopra A K, Gool R K. A modal Pushover analysis procedure to estimate seismic demands for buildings:theory and preliminary evaluation[R]. Report No. PEER-2001/03. Pacific Earthquake Engineering Research Center, University of California, Berkeley,2001.
    [205]JTJ 024-85,公路桥涵地基与基础设计规范[S].
    [206]刘哲锋.地震能量反应分析方法及其在高层混合结构抗震评估中的应用[D].长沙:湖南大学,2006.
    [207]Rawinkler H, Senerviratna G D P K. Pros and cons of a push-over analysis of seismic performance ealuation[J]. Engineering Structures,1998,20(4):452-464.
    [208]Saiidi M, Sozen M A. Simple nonlinear seismic analysis of R/C structures[J]. Journal of Structural Division ASCE),1981,107(8):937-952.
    [209]袁波.基于位移的结构弹塑性地震反应简化分析方法的研究[D].泉州:华侨大学,2004.
    [210]吕西林,周定松.考虑场地类别与设计分组的延性需求谱和弹塑性位移反应谱[J].地震工程与工程振动,2004,24(1):39-48.
    [211]陈守煜.工程模糊集理论与应用[M].北京:国防工业出版社,1998.
    [212]Zadeh L A. Fuzzy sets[J]. Information and Control.1965, (8):338-353.
    [213]Zadeh L A. Some reflections on the anniversary of Fuzzy Sets and Systems[J]. Fuzzy Sets and Systems.1998 November 16,1998,100(1-3):5-7.
    [214]汪培庄.模糊集合论及其应用[M].上海:上海科学技术出版社,1983.
    [215]陈守煜.相对隶属函数的系统辩证论哲学基础[J].系统辩证学学报.1996,4(2):26-29.
    [216]Chen S-y. Theory of fuzzy optimum selection for multi-stage and multi-objection decision making system[J]. Fuzzy mathematics,1994,2(1):163-174.
    [217]Wang H-L, Zhang Z, Huang C-L, Shi L. Using a fuzzy optimum model to assess bridge design options[J]. Bridge Engineering,2006,159:9-15.
    [218]Zhang Z, Wang H-L, Huang C-L, Shi L. Application of dual-pole fuzzy pattern recognition model to bridge engineering[C]. Proceedings of the World Engineers'Convention 2004, Vol C, Transportation and Sustainable Mega-Cities-Transportation and Sustainable Mega-Cities, Beijing:China Science Technology Press,2004:208-213.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700