预制带肋底板叠合板抗震性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了研究预制带肋底板叠合板的抗震性能,本文设计制作了14个正方形足尺叠合板和对比现浇板试件,进行了面内低周反复水平加载试验。试件顶部没有施加竖向荷载,叠合板的叠合面为自然粗糙面。14个试件中,无左右边梁试件2个,包括叠合板和对比现浇板试件各1个。有左右边梁试件共12个,包括对比现浇板试件2个;标准叠合板试件2个;无支座负筋和支座负筋根数加倍叠合板试件各1个;预制底板板缝与加载方向平行的试件2个,其中1个试件的配筋与标准叠合板相同,另1个试件的支座负筋根数加倍;无穿孔钢筋和穿孔钢筋根数加倍叠合板试件各1个;此外,还有1个标准叠合板试件用于单向重复加载,1个叠合板试件增配了防裂钢筋。
     试验表明,预制带肋底板叠合板破坏时裂缝少、多分布在板下半部分的1/3左右。加载方向与底板板缝垂直时,试件裂缝呈倒“八”字形;加载方向与底板板缝平行时,裂缝主要呈水平状。增设左右边梁或增加负筋、横向穿孔钢筋的配置后,裂缝分布的范围更广、发展的更加充分。
     试验发现,预制带肋底板叠合板有3种特有的裂缝形式。第1种是多数叠合板出现的板与下边梁连接处板的水平通缝;第2种是加载方向与预制底板板缝平行时可能出现的预制底板板缝的裂缝,第3种是在后浇面可能产生的预制底板板肋对应位置处的裂缝。
     分析试件破坏特征发现,板底左右边梁纵筋拉断、混凝土压碎是试件破坏的最主要原因。板的破坏模式均以弯曲破坏为主、剪切破坏为辅。
     根据试验绘制了滞回曲线和骨架曲线。叠合板和现浇板试件破坏时,滞回曲线均呈“Z”形,有一定的捏缩现象。进行滞回分析发现,叠合板试件开裂后还有较大的变形能力,开裂荷载为峰值荷载的一半左右,耗能能力与现浇板相当。设置左右边梁、增加负筋配置均能提高叠合板的变形能力、承载力和耗能能力。
     基于软化撑杆-系杆的理论,提出了叠合板的承载力计算模型,并建立了有限元模型。在试验结果和有限元模拟的基础上,给出了适合于预制带肋底板叠合板的撑杆横截面深度的计算公式。采用本文提出的模型对叠合板的峰值承载力进行计算,计算值和试验值吻合良好。
     本文提出了叠合板初始刚度的计算公式,然后采用退化四线型骨架曲线确定了各特征点之间连线刚度与初始刚度的关系,按照试验统计分析结果给出了试件开裂承载力、屈服承载力和极限承载力与峰值承载力的关系,提出了计算叠合板在水平集中力作用下顶点位移的方法。最后模拟了叠合板的骨架曲线和滞回曲线,模拟的曲线和试验曲线吻合良好。
     分析发现,各种损伤指标中,基于位移和能量耗散的混合损伤指标能够较好反映预制带肋底板叠合板的损伤。对叠合板进行的损伤分析表明,增加左右边梁、支座钢筋、穿孔钢筋均可以减小了叠合板的损伤。
     最后,本文提出了预制带肋底板叠合板的抗震承载力、变形的设计计算方法,并给出了抗震构造措施。
     根据试验、数值分析和理论研究,本文认为,预制带肋底板叠合板具有良好的整体性,其适用范围与现浇板基本相同,不应限制叠合板仅用于50m以下的建筑。
In the paper,14geometrically identical full-size square RC panels were constructed and tested under quasi-static reversed cyclic lateral loading, in order to investigate the secismic performance of composite slab with precast ribbed bottom panels. In this test, no vertical load was applied to specimens. No surface finishing was conducted on the precast ribbed panels before the concrete topping was cast. Among14specimens, two of which have not boundary beams on both sides:one is a composite slab with precast ribbed panels and the other is a comparing cast-in-situ RC slab. Twelve specimens have boundary beams on both sides, including two comparing cast-in-situ RC slabs and ten composite slabs with precast ribbed bottom panels. Among ten composite slabs, two of which were standard composite slabs reinforced according to GanSu standard design; one of which was not reinforced to resist structural negative moment, and one of which was reinforced doubly to resist structural negative moment; two of which were loaded in the direction parallel to slab joints of precast ribbed panels:one specimen was reinforced the same as standard composite slabs, the other was reinforced doubly to resist structural negative moment; one of which was not reinforced in transverse direction, and one of which was reinforced doubly in transverse direction; and the other two are specimens which was, respectively, subjected to low-frequency repeated horizontal loading and reinforced along the slab joints between precast ribbed panels.
     According to test results, the crack of composite slab are less in number than that of cast-in-situ slab and mainly distributed over the areas below one third height of center composite slab. Several splayed cracks are observed as the loading direction is prependicular to the slab joints while several horizontal cracks are observed as the loading direction is parallel to the slab joints. The boundary beams can improve the distributed areas of cracks and increase the plastic zones at the bottom of composite slabs. The cracks distributed over larger areas with more structural negative moment reinforcements and transverse reinforcements.
     Three failure modes was observed for composite slabs with precast ribbed bottom panels. One was that several longitudinal cracks at the connections between composite slab and bottom beams were observed for most specimens. The second was that the slab joints cracked seriouly as the loading direction is parallel to slab joints. The third was that some lognitudinal cracks on cast-in-situ concrete layer was observed along the rib of precast slab, mainly due to poor manufacture quality.
     Some longitudinal reinforcements in boundary beams were tensed to failure and concrete at the bottom of boundary beams was crushed to failure. The failure mode of composite slabs is controlled by bending moment at the bottom of composite slab, also with a small amount of shear deformation.
     The hysteretic curves and skeleton curves of specimens were drawn according to test results. Both for composite slabs and cast-in-situ slabs, the hysteretic curves were developed to Z shape at ultimate state which indicates pinch phenomenon of hysteretic curves. It is known that composite slabs still remain much potential for deformation after cracking state; the cracking load is almost the half of peak load; the energy dissipation capacity of composite slabs is as good as that of cast-in-situ slabs. It is also shown that the boudary beams and structural negative moment reinforcements can both increase the deformability, load-carrying capacity and energy dissipation capacity for composite slabs.
     A mechanical model based on the strut-and-tie theory was proposed to calculate the load-capacity of composite slabs. Some finite element models for specimens are created to conduct parameter analysis. A modified formula of the depth of strut for composite slabs with precast ribbed bottom panels was proposed on the base of experiment and finite element simulation results. It was indicated that the theoretical and experimental load-carrying capacity agreed very well.
     A formula of initial stiffness of the composite slabs with precast ribbed bottom panels was proposed and the relationships between the stiffness of connection between adjacent feature points and initial stiffness was determined on the basis of degenerate four-linear skeleton curves. Then the relationships between crack bearing capacity, yield bearing capacity, ultimate bearing capacity and peak bearing capacity were respectively established. A mothod for calculating the top displacements of specimens was then proposed. The skeleton curves and hysteretic curves of specimens were finally calculated and both were in good agreement with test ones.
     Several damage indexes were evaluated and the mixed damage index between displacement and energy dissipation was better to reflect the damage of the composite slab with precast ribbed bottom panels. The results showed that the boundary beams, structural negative moment reinforcements and transverse reinforcements can reduce the damage of composite slabs.
     At last, a method for calculating seismic bearing capacity and deformation of the composite slab with precast ribbed bottom panels has been proposed. And some details of seismic design has been put forward.
     According to experimental and theoretical study, composite slabs with precast ribbed bottom panels demonstrate good integrity. The application of composite slabs with precast ribbed bottom panels is the same with that of cast-in-situ slabs, which indicates that composite slabs precast ribbed bottom panels should not be limited on buildings with height below50meters.
引文
[1]住房和城乡建设部建筑市场监管司,住房和城乡建设部政策研究中心.中国建筑业改革与发展研究报告(2011)—“十二五”蓝图与新时期战略[M].北京:中国建筑工业出版社,2011.
    [2]纪颖波.建筑工业化发展研究[M].北京:中国建筑工业出版社,2011.
    [3]杜启荣,徐寿松.我国住宅建设“四耗”严重[J].建筑工人,2007,(2):60-60.
    [4]汪光焘.建设节约型社会必须抓好建筑“四节”——关于建设节能省地型住宅和公共建筑的几点思考[J].中国建筑金属结构,2005(6):4-7.
    [5]刘志峰.大力推进住宅产业化加快发展节能省地型住宅[J].住宅科技,2005(7):7-10.
    [6]谢立辉,刘晓君.面向“节约型”社会的住宅建筑节地研究[J].工业建筑,2007,37(8):36-38.
    [7]国务院办公厅.关于进一步推进墙体材料革新和推广节能建筑的通知(国办发[2005]33号).2005.
    [8]马静,陈涛,申碧峰,等.水资源利用国内外比较与发展趋势[J].水利水电科技进展,2007,27(1):6-10.
    [9]黄海龙,宋百军.提高节水意识,降低施工现场水资源消耗[J].中国科技财富,2009,(8):15-15.
    [10]赵霄龙,张仁瑜.建筑节材功在当代利在千秋[J].住宅产业,2006,(6):18-18.
    [11]祝连波,任宏.基于循环经济的建筑节材研究[J].生态经济:学术版,2008(1):185-187.
    [12]陈家珑,高振杰,周文娟,等.对我国建筑垃圾资源化利用现状的思考[J].中国资源综合利用,2012,30(6):47-50.
    [13]马彩霞,张朝能,宁平.城市建筑施工主要环境污染及其防治对策[J].环境科学导刊,2007,26(4):55-58.
    [14]徐小忠,李小燕.建筑施工中的环境污染问题及防治措施[J].安全与环境工程,2009,16(005):62-64.
    [15]关柯,芦金锋,曾赛星.现代住宅经济[M].北京:中国建筑工业出版社,2002.
    [16]秦耕.解密城市住宅生命周期[J].中国地产市场,2005,(03):16-23.
    [17]中国工程院土木水利与建筑学部工程结构安全性与耐久性研究咨询项目组.混凝土结构耐久性设计与施工指南[M].北京:中国建筑工业出版社,2004.
    [18]住房和城乡建设部.建筑业发展“十二五”规划.2011.
    [19]蒋勤俭,刘吴,钟志强.混凝土预制构件行业发展与定位问题的思考[J].混凝土世界,2011(4):20-22.
    [20]刘东卫,蒋洪彪,于磊.中国住宅工业化发展及其技术演进[J].建筑学报,2012,4:10-18.
    [21]卢锡鸿.对我国预制构件行业起落的反思及发展意见[J].建筑技术,2001,32(002):82-84.
    [22]上海市建设委员会.关于提高本市住宅工程质量的若干暂行规定(沪建建(99)第0037号).1999.
    [23]天津市建设工程质量监督管理总站.关于征求《天津市多层砖砌体住宅建筑温度裂缝控制若干暂行规定》意见的函([1999]建质设便函43号).1999.
    [24]潘宗生,高永孚.预应力圆孔板应用问题述评[J].混凝土,2000(11):11-14.
    [25]蒋勤俭,钟志强.2011年中国预制混凝土构件行业发展概况[J].混凝土世界,2012(1):94-99.
    [26]住房和城乡建设部住宅产业化促进中心.CSI住宅建设技术导则(试行).北京:中国建筑工业出版社,2010.
    [27]刘子洁.世构体系中的叠合板应用[J].房材与应用,2003,31(3):40-41.
    [28]刘亚非,庞涛,顾西平,等.预制预应力混凝土装配整体式房屋结构的施工实践[J].江苏建筑,2002,(3):10-14.
    [29]蔡建国,朱洪进,冯健,等.世构体系框架中节点抗震性能试验研究[J].中南大学学报(自然科学版),2012,43(5):1894-1901.
    [30]樊骅.装配整体式混凝土墙结构体系技术研究[J].住宅科技,2010,30(012):27-33.
    [31]蒋庆,叶献国,种迅.叠合板式剪力墙的力学计算模型[J].土木工程学报,2012,45(1):8-12.
    [32]连星,叶献国,蒋庆,等.一种新型绿色住宅体系——叠合板式剪力墙体系[J].工业建筑,2010(6):79-84.
    [33]郭正兴,董年才,朱张峰.房屋建筑装配式混凝土结构建造技术新进展[J].施工技术,2011,40(6):1-2.
    [34]刘文清.用工业化生产方式建设住宅[J].住宅产业,2010(009):17-21.
    [35]姜洪斌,陈再现,张家齐,等.预制钢筋混凝土剪力墙结构拟静力试验研究[J].建筑结构学报,2011,32(6):34-40.
    [36]姜洪斌,张海顺,刘文清,等.预制混凝土插入式预留孔灌浆钢筋搭接试验[J].哈尔滨工业大学学报,2011,10:005.
    [37]肖健.预制装配整体式剪力墙结构体系技术和应用研究[J].住宅产业,2012(5):48-50.
    [38]朱张峰,郭正兴.预制装配式剪力墙结构节点抗震性能试验研究[J].土木工程学报,2012,45(1):69-76.
    [39]张军,侯海泉,董年才,等.全预制装配整体式剪力墙住宅结构设计及应用[J].施工技术,2009(005):22-24.
    [40]封浩,颜宏亮.工业化住宅技术体系研究——基于“万科”装配整体式住宅设计[J].住宅科技,2009(8):33-38.
    [41]樊则森.塑造装配清水——中粮万科假日风景D1,D8号住宅楼预制装配新技术的创新[J].建筑学报,2012(4):63-64.
    [42]秦珩.万科北京区域工业化住宅技术研究与探索实践[J].住宅产业,2011,(6):25-32.
    [43]涂胡兵,谭宇昂,王蕴,等.万科工业化住宅体系解析[J].住宅产业,2012,(7):28-30.
    [44]黄小坤,田春雨.预制装配式混凝土结构研究[J].住宅产业,2010(009):28-32.
    [45]刘正勇,应惠清.预制装配式混凝土结构的施工现状及改进建议[J].建筑技术开发,2009(6):65-66.
    [46]长沙远大住宅产业化发展进程[J].住宅产业,2012,(7):24-25.
    [47]MorrisA E J. Precast Concrete in Architecture[M]. London:George Godwin L imited,1978.
    [48]孙品礼,唐明贤.对国外混凝土预制构件试验研究工作的思考[J].混凝土,2002,(3).
    [49]http://www.latticegirder.info.
    [50]http://www.britishprecast.org/index.php.
    [51]http://www.precastfloors.info/index.html.
    [52]李镇强.西欧预制装配混凝土建筑结构技术发展概况[J].建筑结构,1997(8):36-38.
    [53]法国住宅建筑工业化的发展[J].中国建设信息.1998,(35):72-73.
    [54]卿启付.法国的半预制板构造及应用[J].建筑技术,1993,20(008):493-495.
    [55]李晓明.装配式混凝土结构关键技术在国外的发展与应用[J].住宅产业,2011(6):16-18.
    [56]Scott N L. Reflections on the Early Precast/Prestressed Concrete Industry in America[J]. PCI journal,2004,49(2):20-33.
    [57]D Arcy T J, Nasser G D, Ghosh S K. Building Code Provisions for Precast/Prestressed Concrete:A Brief History [J]. PCI journal,2003,48(6):116-124.
    [58]Yee A A, Eng P E H D. Social and environmental benefits of precast concrete technology[J]. PCI JOURNAL,2001,46(3):14-19.
    [59]Yee A A, Eng P E H D. Structural and economic benefits of precast/prestressed concrete construction[J]. PCI journal,2001,46(4):34-43.
    [60]http://www.pci.org/intro.cfrn.
    [61]Raths D C, Nasser G D. Historical Overview of the PCI Journal and Its Contributions to the Precast/Prestressed Concrete Industry [J]. PCI JOURNAL,2007,52(1):32.
    [62]Industry Handbook Committee. PCI Design Handbook:Precast and Prestressed Concrete[M].6th ed. Chicago, IL:PCI,2004.
    [63]Pessiki S, Prior R, Sause R, et al. Review of existing precast concrete gravity load floor framing systems[J]. PCI journal,1995,40(2):52-68.
    [64]Buettner D R, Becker R J. Manual for the Design of Hollow Core Slabs[M].2nd ed. Chicago, IL:PCI,1998.
    [65]郭彪.日本鹿岛住宅建筑工业化技术与工程实践[J].住宅产业,2012(6):76-80.
    [66]吴东航,章林伟.日本住宅建设与产业化[M].北京:中国建筑工业出版社,2011.
    [67][口]社团法人预制建筑协会.预制建筑总论[M].朱邦范,译.北京:中国建筑工业出版社,2012.
    [68]Tam C M, Deng Z M, Zeng S X. Evaluation of construction methods and performance for high rise public housing construction in Hong Kong[J]. Building and environment,2002, 37(10):983-991.
    [69]张海燕,申琪玉,黄玉龙.香港地区新型预制混凝土结构体系施工研究[J].建筑技术,2009,40(008):747-750.
    [70]Lam SC, Chung KC, Sham SW.A breakthrough in precasting of public housing blocks in Hong Kong//Tall Buildings:From Engineering to Sustainability[C]:6th International Conference on Tall Buildings/Mini Symposium on Sustainable Cities/Mini Symposium on Planning, Design and Socio-Economic Aspects of Tall Residential Living Environment, Hong Kong, DEC 06-08,2005, Hong Kong, P. R. CHINA:635-640.
    [71]Jaillon L, Poon C S, Chiang Y H. Quantifying the waste reduction potential of using prefabrication in building construction in Hong Kong[J]. Waste Management,2009,29(1): 309-320.
    [72]刘洁林.新加坡工业化建筑方法[J].住宅科技,1989,(3):4344.
    [73]张振坤,杜喜凯,陈恒超.预制-现浇混凝土结构在新加坡某写字楼中的应用[J].建筑结构,2007,37(7):5-7.
    [74]史双元.预制施工体系在印度住宅建筑中的应用[J].建筑技术开发,1994,(5):34-36.
    [75]R·派克,M·L·根勃尔.钢筋混凝土板[M].黄国桢,成源华,译,上海:同济大学出版社,1992.
    [76]程文瀼.混凝土楼盖设计[M].北京:中国建筑工业出版社,1998.
    [77]徐金声,薛立红.现代预应力混凝土楼盖结构[M].北京:中国建筑工业出版社,1998.
    [78]王晓锋,徐有邻,程志军,等.国家建筑标准图集《预应力混凝土圆孔板》(SG4351~2)简介[J].建筑结构,2005,35(2):76-78.
    [79]张敬书,吴奕宏,王尔昌,等.铁道部标准图《钢筋混凝土槽形板》简介[J].铁道标准设计,2001,21(5):40-40.
    [80]国家建委建筑科学研究院建筑标准设计研究所,二机部第二研究设计院.预应力钢筋混凝土双(单)T板的设计与生产[J].建筑结构,1977,(2):12-16.
    [81]赵西安.从汶川地震看结构抗震设计与施工中的一些问题[J].建筑科学,2009,24(7):97-100.
    [82]徐有邻.由地震引发对预制预应力圆孔板的思考[J].建筑结构,2009,38(7):7-9.
    [83]张敬书,周绪红,姜丽娜,等.理性思考汶川地震中砌体结构的抗震能力[J].防灾减灾工程学报,2009,29(005):591-595.
    [84]徐有邻,巩耀娜.汶川地震中教学楼倒塌调查分析——5·12汶川地震三周年祭[J].建筑结构学报,2011,32(5):9-16.
    [85]周炳章.我国砌体结构抗震的经验与展望[J].建筑结构,2011,41(9):151-158.
    [86]重庆市公共建筑屋面禁用预制板[J].新型建筑材料,2009,(10):49-49.
    [87]周旺华.现代混凝土叠合结构[M].北京:中国建筑工业出版社.1998.
    [88]赵顺波,张新中.混凝土叠合结构设计原理与应用[M].北京:中国水利水电出版社.2001.
    [89]Zhang J S, Nie H H, Yang Y L, et al. Research and Application of Pre-Stressed Concrete Composite Slabs[J]. Applied Mechanics and Materials,2012,166:131-139.
    [90]徐天爽,徐有邻.双向叠合板拼缝传力性能的试验研究[J].建筑科学,2003,19(6):11-14.
    [91]http://www.fdu.de/en.
    [92]http://www.fdu-china.com/.
    [93]徐吉恩,骆艳斌,贺采旭.钢纤维混凝土预应力连续叠合板变形研究[J].武汉水利电力大学学报,2000,22(1):11-15.
    [94]吴瑾,刘翠兰,祁学仁.无筋结合面陶粒砼叠合板抗剪性能研究[J].混凝土与水泥制品,1997,(2):57-59.
    [95]中国建筑标准设计研究院.06SG439-1预应力混凝土叠合板(50mm、60mm实心底板)[S].北京:中国建筑标准设计研究院.2006.
    [96]胡铁明,黄承逵,陈小锋.构造钢筋影响下新老混凝土结合面抗剪试验研究[J].混凝土,2009(3):26-28.
    [97]陈振基,吴超鹏,黄汝安.香港建筑工业化进程简述[J].墙材革新与建筑节能,2006,5:83-85.
    [98]唐维新,范培福,曾志明,等.带肋式无结合钢筋迭合楼板在迭合面层处允许剪应力 的取值[J].建筑施工,1990,(6):15-16.
    [99]刘汉朝,蒋青青.倒“T”形叠合简支板的试验研究[J].中南大学学报:自然科学版,2004,35(001):147-150.
    [100]吴俊喜,王亦德,王庆民.一种轻型楼面叠合板:中国,200620161890.5[P].2006-12-30.
    [101]Scott N L. Performance of Precast Prestressed Hollow Core Slab with Composite Concrete Topping[J]. PCI Journal,1973,18(2):64-77.
    [102]朱茂存,陈忠汉.预应力砼大跨夹芯叠合板的施工工艺研究[J].苏州科技学院学报(工程技术版),2005,(1):43-46.
    [103]周又香,王非平.钢筋混凝土双向密肋夹心(空心)叠合板楼盖的研究[J].南华大学学报,2005,(1):91-95.
    [104]周绪红,吴方伯,张敬书,等.新型单向预应力双向钢筋混凝土叠合楼盖在震后重建中的应用[C]//陈肇元,钱稼茹:汶川地震建筑震害调查与灾后重建分析报告,2008年汶川地震建筑震害分析与重建研讨会论文集.北京:中国建筑工业出版社,2008.
    [105]周绪红,吴方伯,等.JGJ/T258-2011预制带肋底板混凝土叠合楼板技术规程[S].北京:中国建筑工业出版社.2011.
    [106]吴方伯.一种带肋预应力钢筋混凝土预制构件板:中国:200410046665.2[P].2005-03-23.
    [107]周绪红,吴方伯,张敬书,等.甘11G13预制带肋底板混凝土叠合楼板[S].兰州:甘肃省工程建设标准管理办公室.2011.
    [108]田稳苓,赵志方.新老砼的粘结机理和测试方法研究综述[J].河北理工学院学报,1998,20(1):84-94.
    [109]Hanson N W. Precast-Prestressed Concrete Bridges:2. Horizontal Shear Connections[M]. Portland Cement Association, Research and Development Laboratories,1960.
    [110]Scott N L. Performance of Precast Prestressed Hollow Core Slab with Composite Concrete Topping[J]. PCI Journal,1973,18(2):64-77.
    [111]Paulay T, Park R, Phillips M H. Horizontal construction joints in cast-in-place reinforced concrete[J]. ACI Special Publication SP-42:Shear in Reinforced Concrete,1974,2: 599-611.
    [112]Barker J M. Research, Application, and Experience With Precast Prestressed Bridge Deck Panels[J]. PRECAST/PRESTRESSED CONCRETE INSTITUTE. JOURNAL,1975,20(6): 66-85.
    [113]Barnoff R M, Orndorff Jr J A, Harbaugh Jr R B, et al. Full Scale Test of a Prestressed Bridge with Precast Deck Planks[J]. PRECAST/PRESTRESSED CONCRETE INSTITUTE. JOURNAL,1977,22(5):66-83.
    [114]PCI Bridge Producers Committee. Recommended Practice for Precast Concrete Composite Bridge Deck Panels[J]. PCI JOURNAL,1988,33(2):67-109.
    [115]装配整体梁板研究专题科研组.装配整体梁板设计方法的试验研究[J].建筑结构学报,1982,(6):1-19.
    [116]桑爱华,林远征.预应力薄板叠合楼板的研究和应用[J].建筑技术,1984,(11):1-9.
    [117]殷芝霖.钢筋混凝土和预应力混凝土组合梁迭合面的抗剪强度[J].工业建筑,1984,(5):1-11.
    [118]陈祖述,周明华.关于无箍迭合面抗剪强度的讨论[J].东南大学学报(自然科学版). 1988,18(01):145-148.
    [119]Seible F, Latham C T. Horizontal load transfer in structural concrete bridge deck overlays[J]. Journal of Structural Engineering,1990,116(10):2691-2710.
    [120]Seible F, Latham C T. Analysis and design models for structural concrete bridge deck overlays[J]. Journal of Structural Engineering,1990,116(10):2711-2727.
    [121]范培福,曾志明,王泽仁,唐维新.带肋式无结合钢筋迭合板的设计与施工[J].建筑施工,1990(6):13-14.
    [122]Ueda T N, Stitmannaithum B. Shear Strength of Precast Prestressed Hollow Slabs with Concrete Topping[J]. ACI Structural Journal,1991,88(4):402-410.
    [123]黄家维,蒋德彬.预应力迭合连续板试验研究[J].重庆交通学院学报,1991,10(2):42-50.
    [124]侯建国,贺采旭.预应力混凝土叠合板的叠合面受力性能研究[J].武汉水利电力大学学报,1993,26(3):73-82.
    [125]侯建国,贺采旭.高强刻痕钢丝预应力连续叠合板试验研究[J].建筑结构,1994,(10):43-48.
    [126]Loov R E, Patnaik A K. Horizontal shear strength of composite concrete beams with a rough interface[j]. PCi Journal,1994,38(1):48-69.
    [127]Kumar N V, Ramirez A J. Interface Horizontal Shear Strength in Composite Decks with Precast Concrete Panels[J]. PCI journal,1996,41(1):42-55.
    [128]Gohnert M. Horizontal shear transfer across a roughened surface[J]. Cement and Concrete Composites,2003,25(3):379-385.
    [129]Julio E N B S, Branco F A B, Silva V D. Concrete-to-concrete bond strength. Influence of the roughness of the substrate surface[J]. Construction and Building materials,2004,18(9): 675-681.
    [130]李耀庄,蒋青青,黄赛超,等.混凝土倒T形叠合连续板的试验研究[J].中南工业大学学报(自然科学版),2003,34(6):695-698.
    [131]Dowell R K, Smith J W. Structural tests of precast, prestressed concrete deck panels for California freeway bridges[J]. PCI journal,2006,51(2):2-13.
    [132]王振领,林拥军,钱永久.新老混凝土结合面抗剪性能试验研究[J].西南交通大学学报,2005,40(5):600-604.
    [133]虞建成,左文生,程祖辉,等.叠合式混凝土板梁桥叠合而受力性能分析[J].东南大学学报:自然科学版,2007,37(2):222-228.
    [134]张晓光,陈泽赳,刘星,等.新旧混凝土结合面抗剪性能现场试验研究[J].结构工程师,2011,26(6):70-75.
    [135]郭进军,王少波,张雷顺,等.新老混凝土粘结的剪切性能试验研究[J].建筑结构,2002,32(8):43-45.
    [136]张雷顺,闫国新,张晓磊,等.沟槽式新老混凝土粘结面抗剪强度试验研究[J].郑州大学学报:工学版,2006,27(2):24-28.
    [137]张雷顺,王二花,闫国新.植筋法新老混凝土粘结面剪切性能试验研究[J].郑州大学学报:工学版,2006,27(003):34-37.
    [138]管大庆,石韫珠.界面处理对新老混凝土粘结性能的影响[J].混凝土,1994(5):16-22.
    [139]王少波,李小枝.界面剂对新老混凝土粘结的剪切性能的影响[J].工业建筑,2001, 31(011):35-38.
    [140]高剑平,潘景龙.不同界面剂对新旧混凝土粘结强度影响的试验研究[J].哈尔滨建筑大学学报,2001,34(5):25-29.
    [141]徐礼华,李书进.配筋钢纤维混凝土叠合梁受力性能试验研究.郑州工学院学报,1991,12(3):53-60.
    [142]邵永松,王洪达.钢纤维混凝土叠合梁理论及试验研究[J].哈尔滨工业大学学报,1994,26(4):116-120.
    [143]Chen P W, Fu X, Chung D D L. Improving the bonding between old and new concrete by adding carbon fibers to the new concrete[J]. Cement and concrete research,1995,25(3): 491-496.
    [144]袁海庆,邹菁,袁军.钢纤维预应力叠合板结合面性能初探[J].工程力学,1998(A02):185-189.
    [145]Mattock A H. Cyclic shear transfer and type of interface[J]. Journal of the Structural Division,1981,107(10):1945-1964.
    [146]杨宜民.钢筋混凝土迭合板动力性态的试验研究[J].浙江大学学报(工学版),1987,21(1):126-134.
    [147]林少明,贺采旭.低周反复荷载下钢筋混凝土连续迭合梁的抗剪性能[J].武汉大学学报(工学版),1987,2:73-83.
    [148]伋雨林.迭合构件延性系数p的计算[J].工业建筑,1989,(2).
    [149]薛伟辰,杨云俊,窦祖融,等.钢筋混凝土T型叠合梁抗震性能试验研究[J].建筑结构学报,2009,29(6):1-8.
    [150]黄承逵.应重新审视预制板砖混结构校舍建筑的抗震性能[C].//2008年汶川地震建筑震害分析与重建研讨会论文集.2008:272-279.
    [151]侯霍岩,骆万康.装配式钢筋混凝土楼盖在水平荷载往复作用下的变形性能[J].重庆建筑大学学报,1985,(2):36-51.
    [152]JGJ3-2010高层建筑混凝土结构技术规程[S].北京:中国建筑工业出版社.2011.
    [153]陈忠汉,刘强,朱茂存,等.预应力叠合楼板抗震性能的试验研究[J].苏州科技学院学报:工程技术版,2005,18(03):1-5.
    [154]连星,叶献国,王德才,等.叠合板式剪力墙的抗震性能试验分析[J].合肥工业大学学报:自然科学版,2009,32(008):1219-1223.
    [155]叶献国,张丽军,王德才,等.预制叠合板式混凝土剪力墙水平承载力实验研究[J].合肥工业大学学报:自然科学版,2009,32(008):1215-1218.
    [156]连星,叶献国,常磊,等.叠合板式剪力墙地震破损指标计算模型分析[J].上海交通大学学报,2010,44(6):739-744.
    [157]连星,叶献国,张丽军,等.叠合板式剪力墙的有限元分析[J].合肥工业大学学报:自然科学版,2009,32(7):1065-1068.
    [158]沈小璞,周宏庚.竖向拼缝叠合板式混凝土剪力墙有限元分析[J].沈阳建筑大学学报:自然科学版,2010,26(5):905-912.
    [159]沈小璞,马巍,陈信堂,等.叠合混凝土墙板竖向拼缝连接抗震性能试验研究[J].合肥工业大学学报:自然科学版,2010,33(009):1366-1371.
    [160]汪日光,沈小璞,张伟林,等.叠合式墙板横、竖向连接传力性能的试验研究[J].工业建筑,2012,42(004):51-55.
    [161]Zhang H M, Lu X L, Duan Y F, et al. Experimental Study and Numerical Simulation of Partially Prefabricated Laminated Composite RC Walls[J]. Advances in Structural Engineering,2011,14(5):967-980.
    [162]Zhang H, Lu X. Numerical Simulation Research of the Laminated RC Shear Walls with Different Concrete Ages[J]. Information and Automation,2011:40-47.
    [163]魏威,叶燕华,王滋军,等.新型钢筋混凝土叠合剪力墙抗震性能试验研究[J].混凝土,2011(6):15-18.
    [164]王滋军,刘伟庆,卢吉松,等.钢筋混凝土无洞叠合剪力墙低周反复荷载试验[J].南京工业大学学报:自然科学版,2011,33(6):5-11.
    [165]吴方伯,郑伦存,曾垂军,等.PK预应力混凝土叠合楼盖体系探讨[J].建筑技术开发,2005,32(4):23-24.
    [166]周绪红,张微伟,吴方伯,等.预应力混凝土四边简支双向叠合板的设计方法[J].建筑科学与工程学报,2006,23(4):54-57.
    [167]钱浩,周鲲鹏.PK预应力混凝土叠合板的试验研究[J].中外建筑,2006,(3):96-97.
    [168]吴方伯,张微伟,唐昭青,等.PK预应力混凝土双向叠合楼盖的试验研究[J].建筑技术开发,2007,34(3):11-13.
    [169]吴方伯,黄海林,陈伟,等.预制预应力带肋底板-混凝土叠合板双向受力效应理论研究[J].工业建筑,2010,40(11):55-58.
    [170]吴方伯,黄海林,陈伟,等.预制带肋底板混凝土双向叠合板极限承载力[J].土木建筑与环境工程,2011,33(5):34-40.
    [171]吴方伯,黄海林,陈伟,等.预制带肋薄板混凝土叠合板件受力性能试验研究[J].土木建筑与环境工程,2011,33(4):7-12.
    [172]吴方伯,黄海林,陈伟,等.叠合板用预制预应力混凝土带肋薄板的刚度试验研究与计算方法[J].湖南大学学报(自然科学版),2011,38(4):1-7.
    [173]陈璐,吕忠珑,侯和涛,等.钢结构住宅预应力混凝土叠合板(PK板)现场抗弯性能研究[J].钢结构,2012,27(2):6-9.
    [174]曾垂军,吴方伯,刘锡军,等.新型叠合结构体系的设计与施工[J].建筑科学,2006,22(4):67-71.
    [175]周觐,贺海斌.PK预应力混凝土叠合板在工程中的应用[J].邵阳学院学报(自然科学版),2006,3(4):62-63.
    [176]李智,蒋世林.PK预应力混凝土叠合板在某工程中的应用[J].建筑技术,2012,43(10):929-932.
    [177]樊丽军,刘彦生.新型PK预应力混凝土叠合板在绿色施工中的应用[J].价值工程,2011,30(14):100-101.
    [178]周绪红,吴方伯,张敬书,等.甘11J16横孔连锁混凝土空心砌块填充墙[S].兰州:甘肃省工程建设标准管理办公室.2011.
    [179]周绪红,吴方伯,刘占科,等.新型装配整体式房屋结构体系[C].//2008年汶川地震建筑震害分析与重建研讨会论文集.2008:455.-462.
    [180]中国建筑科学研究院等.JGJ101-96建筑抗震试验方法规程[S].北京:中国建筑工业出版社.1996.
    [181]李忠献.工程结构试验理论与技术[M].天津:天津大学出版社,2004.
    [182]Celebl, M. Hysteretic behavior of reinforced concrete beams under the influence of shear and bending[J]. Proceding of the symposium on earthquake engineering,1974,5:375-380.
    [183]Gosain N K, Jirsa J O, Brown R H. Shear requirements for load reversals on RC members[J]. Journal of the Structural Division,1977,103(7):1461-1476.
    [184]Nmai C K, Darwin D. Cyclic behavior of lightly reinforced concrete beams[M]. University of Kansas,1984.
    [185]Hwang T H, Scribner C F. R/C member cyclic response during various loadings[J]. Journal of Structural Engineering,1984,110(3):477-489.
    [186]Ehsani M R, Wight J K. Confinement steel requirements for connections in ductile frames[J]. Journal of Structural Engineering,1990,116(3):751-767.
    [187]Canadian Standards Association (CSA). Design of Concrete Structures (A23.3-04)[S], Structure Design, Rexdale,2004.
    [188]Ritter W, Hennebique D B. Schweizerische Bauzeitung[J]. Zurich,1899,33(7):59-61.
    [189]Morsch E. Der Eisenbetonbau-seine Theorie und Anwendung (Reinforced concrete construction-Theory and application)[J]. Wittwer, Stuttgart,1920,1(Part 1), Part 2 1922.
    [190]Marti P. Basic Tools of Reinforced Concrete Design [J]. ACI Journal,1985,82(1):46-56.
    [191]Collins M P, Mitchell D. Rational Approach to Shear Design-The 1984 Canadian Code Provisions[C]//ACI Journal Proceedings. ACI,1986,83(6).
    [192]Schlaich J, Schafer K, Jennewein M. Toward a consistent design of structural concrete[J]. PCI journal,1987,32(3):74-150.
    [193]ACI Committee. Building Code Requirements for Structural Concrete and Commentary (ACI 318M-05):An ACI Standard[C]. American Concrete Institute,2005.
    [194]美国各州公路和运输工作者协会(AASHTO).美国公路桥梁设计规范荷载与抗力系数设计法[S].辛济平,万国朝,张文,等译.2北京:人民交通出版社,1998.
    [195]Eurcode 2. Design of Concete Structures, Part I:General Ruals and Ruals for Buildings (DD ENV 1992-Ⅰ-Ⅰ:1992) [S], Commission of the European Communities,1992.
    [196]中交公路规划设计院,等.JTG-D62-2004公路钢筋混凝土及预应力混凝土桥涵设计规范[S],北京:人民交通出版社.2004.
    [197]Hsu, T.T.C., and Mo, Y. L. Softening of concrete in low-rise shear walls [J]. ACI Journal, 1985, (6):883-889.
    [198]Hwang S J, Fang W H, Lee H J, et al. Analytical Model for Predicting Shear Strengthof Squat WallsfJ]. Journal of Structural Engineering,2001,127(1):43-50.
    [199]滕智明,朱金铨.混凝土结构及砌体结构(上册)[M].北京:中国建筑工业出版社,2003.
    [200]Su R K L, Chandler A M. Design criteria for unified strut and tie models[J]. Progress in Structural Engineering and Materials,2001,3(3):288-298.
    [201]Paulay T., Priestley M. J. N. Seismic Design of Reinforced Concrete and Masonry Buildings[M]. New York, Wiley,1992.
    [202]过镇海,时旭东.钢筋混凝土原理与分析[M].北京:清华大学出版社,1997.
    [203]Ramberg W, Osgood WR. Description of stress-strain curves by three parameters[R]. Tech. Note 902, National Advisory Committee for Aeronautics,1943.
    [204]Penizen J. Dynamic response of elasto-plastic frames[J]. Journal of Structural Division, ASCE,1962,88(ST7):1322-1340.
    [205]Clough R W and Johnston S B. Effect of stiffness degradation on earthquake ductility requirements[A]. Proceedings of Japan Earthquake Engineering Symposium, Tokyo, Japan, 227-232[C].1966.
    [206]Takeda T, Sozen M A and Nielson N N. Reinforced concrete response to simulated earthquakes[J]. Journal of Structural Division, ASCE,1970,96 (ST12):2557-2572.
    [207]Saiidi M. Hysteresis models for reinforced concrete[J]. Journal of Structural Division, ASCE,1982,108(ST5):1077-1087.
    [208]朱伯龙,张琨联.矩形及环形截面压弯构件恢复力特性的研究[J].同济大学学报,1981,9(2):1-10.
    [209]余天庆,钱济成.损伤理论及其应用[M].北京:国防工业出版社,1993.
    [210]罗欣,梁兴文,邓明科.高强混凝土剪力端地震损伤模型分析[J].地震工程与工程振动,2012,32(004):145-151.
    [211]Powell G H, Allahabadi R. Seismic damage prediction by deterministic methods:concepts and procedures[J]. Earthquake engineering & structural dynamics,1988,16(5):719-734.
    [212]Roufaiel M S L, Meyer C. Analytical modeling of hysteretic behavior of R/C frames[J]. Journal of Structural Engineering,1987,113(3):429-444.
    [213]Darwin D, Nmai C K. Energy dissipation in RC beams under cyclic load[J]. Journal of Structural Engineering,1986,112(8):1829-1846.
    [214]Gosain N K, Jirsa J O, Brown R H. Shear requirements for load reversals on RC members[J]. Journal of the Structural Division,1977,103(7):1461-1476.
    [215]Park Y J, Ang A H S. Mechanistic seismic damage model for reinforced concrete[J]. Journal of Structural Engineering,1985,111(4):722-739.
    [216]吕大刚,王光远.基于损伤性能的抗震结构最优设防水准的决策方法[J].土木工程学报,2001,34(1):44-49.
    [217]Park Y J, Reinhorn A M, Kunnath S K.IDARC:Inelastic damage analysis of reinforced concrete frame-shear-wall structures[J].1987.
    [218]赵西安.楼板变形对高层建筑结构内力与位移的影响极其计算[J].建筑结构,1982,6:1-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700