柴油机硅油减振器减振机理及匹配仿真技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
扭转振动是柴油机轴系运行时出现的一种振动形式,严重的扭转振动可能造成柴油机不能正常工作,甚至导致柴油机轴系的疲劳破坏。对于在重型运输和工程机械车辆上使用的重型车载柴油机,由于采用高增压、高速,机器的单位体积输出功率得到大幅度地提高,也加剧了轴系的扭转振动。在柴油机轴系上安装扭振减振器是减小扭转振动的重要方式,合理地设计与匹配扭振减振器对降低柴油机轴系扭转振动的振幅、减少扭转振动危害、降低振动噪声和提高车辆舒适性都有着非常重要的意义。
     硅油扭振减振器结构简单且减振效率高,相对于其他结构形式的减振器有着较大的优势,因此在柴油机轴系扭振减振方面的应用非常广泛。但是,目前硅油减振器匹配设计计算技术和方法并没有跟上现代柴油机技术发展的步伐,仍然沿用20世纪40年代B.I.C.E.R.A(英国内燃机协会)提出的传统理论和经验公式,设计匹配的减振器需要反复不断地通过台架实验测试来修正和改进设计才能达到预期的减振效果要求。
     现代柴油机的发展要求在尽量短的时间内设计开发承载能力足够高、工作稳定可靠的减振器。因此对硅油减振器匹配计算和设计方法进行深入细致的研究,提高匹配设计的准确性和可靠性具有十分重要的意义。本课题以高分子材料流变学、非牛顿流体力学、热力学、振动力学和柴油机动力学等理论为基础,在硅油流变特性实验研究之上,结合硅油减振器实际工作特点,进行减振机理分析和研究,建立基于非牛顿流体的柴油机硅油减振器的动态平衡匹配计算方法,形成较为准确和可靠的减振器匹配计算和优化设计方法。同时,利用现有的三维建模、多体动力学和有限元仿真计算软件,为工程实际应用提供基于多体动力学的柴油机曲轴系统和硅油减振器的扭转振动仿真计算的方法,作为产品设计验证的辅助手段,缩短产品开发的周期。论文的主要工作如下:
     1)以非牛顿流体力学、流变学、热力学、振动力学等为理论基础,借助高级扩展旋转式流变仪等仪器进行硅油的流变试验,建立了硅油的力学模型及其非线性本构方程。
     2)开展了硅油减振器的阻尼系数、粘性摩擦阻力矩、减振器的发热量和散热量计算方法的研究。
     3)通过分析硅油减振器工作过程中影响其工作性能的温度、转速、硅油粘度和振动幅值等参数的内在联系,研究模拟减振器热平衡建立过程的数值计算方法,提出了一种接近于减振器实际运行工况的动态平衡匹配计算方法,该方法能有效地提高匹配计算的准确性和效率。
     4)进行柴油机曲轴系统多体动力学的三维建模、边界和约束条件的设定,通过仿真计算得到了柴油机曲轴系统的瞬时转速信号,实现了对柴油机轴系扭转振动和减振器减振性能的分析。
     5)从硅油减振器的结构特点和设计要求出发,考虑系统动力性、经济性和可靠性等因素,建立了扭振减振器的多目标优化设计模型,采用遗传算法进行了产品的匹配计算和设计优化,实现了减振器系统主要参数的优化配置,使产品的综合性能达到最优。
     6)通过柴油机台架试验,进行了轴系的扭转振动和硅油减振器表面温度测试,验证了减振器动态匹配和仿真计算方法的正确性。
The torsional vibration of the diesel shaft sysytem inevitably exists when the diesel engine running, if this harmful vibration not suppressed, the machinery equipment is not working properly, even lead to the fatigue failure of the diesel engine shaft especially for the heavy-vehicle diesel engine used in the heavy transport and construction machinery vehicles, highly pressurized, high-speed characteristics, often the same volume of diesel engine's load compared the previous model has been increased several times.the more its own strengthen indicators is improved,the more the shafting torsional vibration is inevitably serious. Installing the torsional vibration damper is the main way to reduce the diesel engine shafting torsional vibration, the torsional vibration damper reasonably designed and matched,has a very important significance to reduce the diesel engine shafting torsional vibration amplitude, to avoid the torsional vibration hazards, to reduce the noise and improve the vehicle comfort.
     The silicone-oil dampers are simple-structure and high efficiency relative to the other structures of the shock absorber used in the diesel engine shafting torsional vibration-absorted aspect. But the slicone-oil dampers did not keep up with the pace on the development of the modern diesel engine technology, the matching design and calculation of the torsional dampers currently mainly follow the previous theoretical and empirical formula (B.I.C.E.R.A), it is lack of the reliable computing method to the damper matching design, to match the shock absorber with the original design method does often not have the desired damping effect.
     The development of the modern diesel engines, however, requires the carrying capacity of a high enough reliable shock absorber. Therefore, to do in-depth and meticulous research on the torsional dampers matching calculation and design methods has great valueble in the engineering application. This topic is intended to the rheology of the polymer materials, the non-Newtonian fluid mechanics, thermodynamics, vibration mechanics and diesel engine dynamics as the theoretical basis, the silicone-oil on top of the rheological properties of the experimental study, the actual work characteristics, the combined with the torsional dampers for the damping Mechanism analysis and the research, to establish the diesel engine dynamic equilibrium match of the damper,to form a more accurate and reliable matching calculation and optimization of the the design method based on the non-Newtonian fluid. Also taking advantage of the existing three-dimensional modeling by the multi-body dynamics and the finite element simulation software, to provide of the diesel crankshaft multibody dynamics systems and the torsional dampers torsional vibration simulation-based method for the practical engineering application, as an adjunct of the product design verification, to shorten the product development cycle. The main work of the paper is as follows:
     1) Based on the non-Newtonian fluid mechanics, rheology, thermodynamics, vibration mechanics, Accoding to the silicone-oil rheological test instrument with the advanced extension rheometer, to construct the silicone-oil fluid mechanics model and this constitutive equation.
     2) On the basis of the study of the mechanical properties of the silicone-oil damper combined with the diesel engine crankshaft torsional vibration principle, to construct the calculation method to the damping coefficient, the viscous friction moment, the heat production and heat dissipation about the damper.
     3) In the study on the basis of the silicone-oil damping mechanism, combined with the silicone-oil shock absorber works, through the analysis of the damper temperature to affect their work performance, speed rate, silicone-oil viscosity, and the vibration amplitude at the same time the parameters such as the intrinsic Contact the study simulated damper thermal balance established the process numerical methods, the establishment of a dynamic balance of operating conditions close to the actual damper matching calculation method to improve the accuracy and efficiency of/the matching calculation.
     4) To construct the three-dimensional model of a diesel engine crankshaft system and themulti-body dynamics model, then set the boundaries and constraints, do the simulation calculation, to get the instantaneous speed of the diesel engine crankshaft system for the spectral analysis, and the torsional vibration calculation analysis of the crankshaft system.
     5) From the silicone-oil damper structural features and design requirements, regardless of the dynamic performance, the economy and reliability factors, the establishment of a multi-objective optimization of the torsional vibration damper design models,to construct a multi-objective optimization model, using the genetic algorithms for the design optimization,to achive the optimization of the main parameters damper system configuration, in order to achieve the integrated optimal performance of its products.
     6) Through The diesel engine bench test, to get the shafting torsional vibration amplitude and the torsional dampers surface temperature, can verify the accuracy of the matching simulation method.
引文
[1]李渤仲,陈之炎,应启光.柴油机轴系扭转振动[M].国防工业出版社,1984.
    [2]李震,桂长林,孙军.柴油机曲轴轴系振动分析研究的现状讨论与展望[J].柴油机学报,2002,20(5):469-474.
    [3]郝志勇,曾子平,舒歌群.柴油机轴系扭振主动控制系统研究[J].机械工程学报,1994,(3):12-14.
    [4]Takahiro Yamauch. Experiment and computation analyses for torsional vibration of crankshaft system with viscous torsional damper on diesel engine [C]. Noise and Vibration Conferene& Exposition. Michigan:SAE,1999:342.
    [5]Bargis E, Garro A, VulloV. Crankshaft Design and E-valuation of Current Methods-Part 2: A Modern Design Method:Modal Analysis[C]. Conference on Reliability? Stress Analysis and Failure Prevention in Mechanical Design, ASME International,1980.
    [6]李惠珍,张德平.用有限元进行曲轴扭振计算[J].柴油机学报,1991,9(2):157-162.
    [7]Okamura H, Shinno A. Simple Modeling and Analysis for Crankshaft Three-Dimensional Vibrations, Part 1:Background and Application to Free Vibrations[J]. ASME Journal of Vibration and Acoustics,1995,117(1):70-7.
    [8]Nadolski W, Szolc T. Dynamic Investigation of the Crankshaft of Three Cylinder Single Bank Engines Using Torsional Elastic Waves[C]. Proceedingsof the 15thlnternational Conference on Dynamic of Machines.Editions of the Academy of Science of the GDR,1986.
    [9]郝志勇,舒歌群.柴油机轴系扭振相应的扭转波计算方法研究[J].柴油机学报,2000,18(1):29-32.
    [10]Holzer H. Die Berechnung der Drehschwingungen[M]. Berlin:Springer,1921.
    [11]陈之炎编.船舶推进轴系振动[M].上海:上海交通大学出版社,1987.
    [12]Sarsten A. A Computer Program for Damped Torsional Vibration Using a Complex Holzer Tabulation[J]. European Shipbuilding,1962, (6):138-157.
    [13]Hundal M. An Extension of the Holzer Method for Redundant Drive Trains[J]. Journal of Engineering for Industry,1974,97(2):697-698.
    [14]芮筱亭,炱来峰,陆毓琪等.多体系统传递矩阵法及其应用[M].北京:科学出版社,2008.
    [15]Pestel E C, Leckie F A. Matrix Method in Elastomechanics[M].New York:McGraw-Hill Book Company.1963.
    [16]S.Doughty,G.Vafaee.Transfer Matrix Eigensolutions for Damped Torsional System[J]. ASME Journal of Vibration, Acoustics, Stress, and Reliability in Design,1985,107:128-132.
    [17]Sankar S. On the Torsional Vibration of Branehed Systems Using Extended Transfer Matrix Method[J]Journal of Mechanical Design,1979,101(4):546-553.
    [18]Rubin S. On transmission matrices for vibration and their relation to admittance and impedance[J]. Journal of Engineering for Industry,1964,86:9-21.
    [19]Nagamatsu.A Vibration Analysis of Engine Parts used Reduced Impedance MethodsfJ]. Bulletin of JSME,C,148, No.433:1380-1388.
    [20]Lin Y K. Probabilistic Theory of Structure Dynamics [M]. New York:McGraw-Hill Book, 1967.
    [21]Targoff W P. The associated matrices of bending and coupled bending-torsion vibration[J]. Journal of Aeronautics Science,1947,14:579-582.
    [22]Mead D J. Vibration response and wave propagation in periodic structures[J]. Journal of Engineering Materials and Technology,1971,93:783-792.
    [23]Mercer C A, Seavey C.Prediction of natural frequencies normal modes of skin-stringer panel rows[J]. Journal of Sound and Vibration,1967,6:149-162.
    [24]张志华主编.动力装置振动数值计算[M].哈尔滨:哈尔滨工程大学出版社,2007.
    [25]赵蓦,郝志勇.柴油机曲轴系扭转振动的有限元模型研究[J].车辆与动力技术,2000,6(4):27-31.
    [26]周瑞平,杨建国,张升平.船舶推进轴系扭转振动应用软件开发研究[J].武汉理工大学学报,2003,(3):69-72.
    [27]B.I.C.E.R.A. Handbook on Torsional Vibration Problems[M]. Vol Ⅳ/Ⅴ Chapman all,1968-
    [28]Ker.Wilson, W.Practical Solution of Torsional Vibration Problems[M]. London England: Chapman & Hall Ltd,1971.
    [29]Klause Federn.往复活塞柴油机粘性扭振减振器尺寸的确定[J].MTZ.1982, (1):515-522.
    [30]岩本昭一.关于多缸柴油机粘性扭振减振器最佳减振系数的研究[J].日本船用机关学会志,1974,7(2):206-217.
    [31]B. NAGUSZEWSKI, J.L.CIRINGIONE.扭振减振器试验机的发展[J]. ASME PUBLICATION,1976 (9):62-68.
    [32]何渝生.重庆大学机械系振动科研组.柴油机硅油减振器的基本理论[J].汽车技术,1975,(6):24-27.
    [33]何渝生,沈鹤千.测量硅油减振器阻尼的共振法[J].重庆大学学报(自然科学版),1980,(1):43-47.
    [34]何渝生.柴油机硅油减振器试验台[J].柴油机工程,1980,(4):22-24.
    [35]杨彦富.柴油机扭转振动硅油减振器旋转式试验台[J].汽车研究和开发,1994(5):8-10.
    [36]杨彦富.柴油机曲轴扭振硅油减振器生产检验及性能测试[J].汽车工程,1987,(4):32-35.
    [37]翁文华.柴油机减振器用硅油的国产化[J].汽车工艺与材料,1995,(6):27-28.
    [38]翁文华.18"硅油减振器国产化[J].汽车工艺与材料,1995,(9):33-35.
    [39]李柯迈.车用柴油机曲轴扭振计算模型及台架试验模型的研究[J].柴油机学报,1983,1(2):47-52.
    [40]杨从洛,李映宋,伟官,赵慈超.6DF1-25型柴油机硅油减振器的开发[J].汽车工程,1984,(7):56-59.
    [41]刘志勇,戴湘利,牟宁斌.四缸柴油机曲轴减振器匹配的对比研究[J].柴油机工程,2005,26(3):64-67.
    [42]牟宁斌,卢进,王红剑.曲轴硅油减振器匹配计算[J].车用柴油机,2004,(5):43-45.
    [43]张国昌.柴油机硅油减振器的设计与匹配[J].车用柴油机,2005,(04):21-25.
    [44]羊树刚,方劲松,郑国世,高峻,周念.康明斯ISLe柴油机硅油曲轴扭振减振器开发.汽车科技,2009,(6):27-28.
    [45]马逢峻.基于瞬态动力学的EQ4H柴油机轴系扭振研究及减振器开发[D].上海交通大学,2007.
    [46]吴兴星,周瑞平.柴油机轴系扭振减振器设计计算及试验装置研究[D].武汉理工大学,2009.
    [47]杨礌.汽车柴油机曲轴扭转振动分析及控制[D].重庆大学,2005.
    [48]韩同群,姚胜华,吴胜军.基于EXCITE-designer的车用柴油机轴系扭振与减振分析[J].湖北工业学院学报,2005,19(4):5-8.
    [49]宋武强.车用汽油机曲轴扭转振动分析和不同减振器性能对比[J].柴油机与动力装置,2010,(1):21-24.
    [50]舒陶,任宏光,范秋颖.一种橡胶减振器的虚拟设计方法[J].弹箭与制导学报,2007,27(4):230-231.
    [51]郑国世,方劲松等.EQB210柴油机扭振减振器优化设计研究[J].柴油机,2008,(5):34-37.
    [52]张俊红,倪广建,郑勇,等.基于BP神经网络的柴油机轴系扭振减振器优化设计[J].柴油机学报,2008,26(1):83-86.
    [53]王红云.柴油机曲轴硅油减振器的优化设计[J]广东工业大学学报,2009,26(3):46-49.
    [54]赵骞,郝志勇.柴油机轴系扭振减振器有限元优化设计[J].农业机械学报,2000,31(5):91-94.
    [55]柴国英,黄树和,岳文忠,杨贵春,梁兴雨,舒歌群.基于灵敏度分析的曲轴扭振减振器优化设计[J].农业工程学报,2009,25(5):105-108.
    [56]张林仙.利用旋转粘度计测量非牛顿流体的流变特性[J].黄石高等专科学院学报,2003,19(2):5-8.
    [57]韩洪升,崔海清,赵仁宝.非牛顿流体流变特性的测量和回妇分析[J].大庆石油学院学报,1993,7(3):19-24.
    [58]祝连庆,董明利,丁裕栋.非牛顿流体流变学特性测试与建模[J].北京机械工业学院学报,1997,12(1):21-24.
    [59]陈刚,朱震刚,水嘉鹏.利用强迫振动扭摆方法测量液体粘滞系数的原理[J].物理学报,1999,8(3):421-423.
    [60]卢文祥,杜润生.工程测试与信息处理[M].华中理工大学出版社,1992.
    [61]李善祯.用AVL657数据分析系统测量柴油机曲轴扭转振动[J].柴油机工程,1994,(7):10-15.
    [62]郭力,李波.轴系扭转振动测量方法评述[J].磨床与磨削,2000,(8):23-27.
    [63]杜极生,陈之炎,静波.国产NZ-T型扭振分析记录仪及其应用实例[J].噪声与振动控制,1996(2):22-26.
    [64]李松和.柴油机曲轴轴系扭振数字化测试系统[M].浙江大学,2005.
    [65]Simpson D G, Lamb D G.A Laser Doppler System for the Measurement of Torsional Vibra-tion [J]. Nat Eng Lab, Scotland 1977.
    [66]桑波.激光多普勒扭转振动测试技术的研究[J].中国激光,2003,30(8):45-49.
    [67]葛维晶,王伟生.激光多普勒技术用于柴油机等旋转轴系扭振测量的研究[J]小型柴油机,1994,23(2):53-57.
    [68]耿瑞光,张洪田.柴油机轴系可控扭振模拟试验台的研制[J].柴油机工程,2010,31(3):41-43.
    [69]郝志勇,黎家玲,薛远,舒歌群,林大渊.柴油机轴系扭振模拟装置的研究及应用[J].柴油机工程,1991,(1):55-59.
    [70]吴其晔,巫静安.高分子材料流变学[M].高等教育出版社,2002.
    [71]王玉忠,郑长义.高聚物流变学导论[M].四川大学出版社,1993,7.
    [72]李兆敏,蔡国琰.非牛顿流体力学[M].科学出版社,1998,3.
    [73]H-tauregand G. herrmann. Applications of Viscous Couplings For Tractions Controlling Pass-engine Cars [J]. SAE 890524:11.
    [74]沈仲棠,刘鹤年著.非牛顿流体力学及其应用[M].高等教育出版社,1989,3.
    [75]周光泉,刘孝敏.粘弹性理论[M],1996,10.
    [76]Drozdov. A Mechanics'of VIS eoelastic Solids.John Wiely & SonSLid [M]. England:Chiehes-terhester,1998.
    [77]Shapery R A.A theory of nonlinear thermo-viseoelastieity based on irreversible thermo dyna-mics[J]. proC.SthU.5.Nut.CongreSS, Appl, MeCh, ASNE,1996.
    [78]Schapery RA. on the characterization of nonlinear viscoeolastic material[J]. Polyming Sci, 1969,9:12-15.
    [79]王正林,龚纯,何倩.精通MATLAB科学计算[M].电子工业出版社,2007,3.
    [80]王琪.内燃机轴系扭转振动.北京:大连理工大学出版社[M],1991,7.
    [81]Singiresu S.Rao.机械振动.北京:清华大学出版社,2009,8.
    [812]朱红钧,林元华,谢龙汉.FLUENT流体分析及仿真实用教程[M].人民邮电出版社,2010,4.
    [83]丁舜年主编.大型电机的发热与冷却[M].北京:科学出版社,1992.
    [84]汪萌生,周瑞平,等.柴油机硅油减振器实际工作过程的扭振仿真计算研究[J].内燃机,2012,5:11-15.
    [85]张义民.机械振动[M].清华大学出版社[M],2007,3.
    [86]Shoichiro Nakamura.科学计算引论-基于MATLAB的数值分析[M].电子工业出版社,2002,6.
    [87]洪嘉振.计算多体系统动力学,北京:高等教育出版社,1999,312-318.
    [88]郑凯,胡仁喜,陈鹿民,等.ADAMS机械设计高级应用实例.北京:机械工业出版社,2006,2.
    [89]戴洪光.基于ADAMS平台的柔性体仿真理论的若干研究[D].合肥工业大学,2008,5.
    [90]马维忍.基于虚拟样机技术的高速柴油机轴系振动机理研究[D].天津大学,2009,5.
    [91]程晓鸣,基于虚拟技术的曲轴系统多体动力学研究[D].天津大学,2005.
    [92]邢俊文.MSCADAMS/FLEX与AutoFlex培训教程.北京:科学技术出版社,2006,6.
    [93]J.L.Ciringione, etc. Apparatus for Torsional Vibration Damper.U.S.patent 3,054,284.
    [94]Carrato P J, Fu C C.Model Analysis Techniques for Torsiaonal Vibration of Diesel Crankshaft [J]. SAE Paper 861225,1986.
    [95]Pasricha M S.EfTects of Variable Inertia on the Damped Torsional Vibrations of Diesel Engine Systems [J]. Journal of Sound and Vibration,1976,46(3):341-344.
    [96]D.E.Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading.Massachusetts.1989.
    [97]王磊.船舶复杂推进轴系扭振机理及计算软件研究.2011,4.
    [98]刘楠楠,基于进化算法的多目标算法及其应用研究.南京航空航天大学[M],2010,1.
    [99]崔逊学.多目标进化算法及其应用[M].北京:国防工业出版社,2006.
    [100]Tadahiko Murata,Hisao Ishibuchi.MOGA:Multi-Objective Genetic Algorithms.In Proceedings ofthe 2nd IEEE International Conference on Evolutionary Computing, Jan.1995,2(1):289-294.
    [101]蒋勇.单目标和多目标全局优化算法设计[D].西安:西安电子科技大学,2008.
    [102]谢涛,陈火旺,康立山.多目标优化的演化算法.计算机学报[J],2003,26(8):997-1003.
    [103]公茂果,焦李成,杨咚咚,马文萍.进化多目标优化算法研究[J].软件学报,2009,20(2):271-289.
    [104]Schaffer J.D., Multi objective optimization with vector evaluated genetic algorithms. Proceedings of the 1st International Conference on Genetic Algorithms, Lawrence Erlbaum, 1985,93-100.
    [105]Coello C A, Sierra M R.A Coevolutionary Multi-objective Evolutionary Algorithm[A]. Proc of the 2003 Congress on Evolutionary Computation [C]. Australia:IEEE,2003:482-489.
    [106]雷英杰,张善文,李续武,等.MATLAB遗传算法工具箱及应用[M].西安电子科技大学出版社,西安,2005:45.
    [107]张义同,严宗达.变温粘弹性的一般理论[J].力学学报,1993,25(6):12-15.
    [108]龚海军.柴油机扭振分析及减振器匹配研究[D].吉林大学,2003.
    [109]Diagnostics, maintenance and regeneration of torsional vibration dampers for crankshafts of ship diesel engines [J]. London England:POLISH MARITIME RESEARCH 1(64) 2010 Vol 17:pp.62-68.
    [110]耿瑞光,张洪田.柴油机轴系可控扭振模拟试验台的研制[J].柴油机工程,2010,31(3):41-43.
    [111]郝志勇,黎家玲,薛远,舒歌群,林大渊.柴油机轴系扭振模拟装置的研究及应用[J].柴油机工程,1991,(1):55-59.
    [112]W Deng. Numerical algorithm for the time fractional Fokker-Planek equation[C]. J. Comp. Phys,2007,227:1517-1522.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700