基于圆环和双层金属网栅结构的光学窗电磁屏蔽方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光学窗是精密光电仪器实现对外光学探测的必要信息通道,其透明性也使微波和无线电波能穿透光学窗而严重降低其抗电磁干扰能力,这就要求光学窗必须在保持高透明性的同时具有优异的电磁屏蔽功能。金属网栅频率滤波技术是实现光学窗电磁屏蔽的有效手段,其典型结构是单层方格金属网栅。随着雷达探测技术和精密光电仪器探测水平的不断进步,光学窗电磁屏蔽的要求越来越严格,既要实现强电磁屏蔽效率,又要保持高透光率并尽可能不影响成像质量。然而单层方格金属网栅的透光能力和屏蔽能力互相制约,无法同时具备高透光率和强电磁屏蔽效率,且其高级次衍射能量分布集中,降低了成像质量。解决上述问题涉及一系列重要科学问题和关键技术问题,国内外至今尚未解决,成为该领域的前沿性课题。
     近年来,多种新颖形状的频率选择表面单元在多个波段应用,产生了优良的带通或带阻滤波特性;同时,具有异常光透射、负折射率、不依赖入射角的宽带或者窄带滤波等特性的多层周期性穿孔金属膜结构也获得了广泛关注。这些研究进展为金属网栅频率滤波技术指引了新的发展方向,例如,用具有新型网栅单元的双层或者多层网栅结构来改善传统单层方格金属网栅的光电性能。目前对于频率选择表面和多层周期性穿孔金属膜结构的研究多以带通或带阻等特性为主,研究的波长范围接近频率选择表面单元的特征尺寸或者穿孔的周期。然而金属网栅频率滤波技术本质上是频率上的高通滤波,即具有亚毫米周期的金属网栅允许波长远小于网栅周期的光波透过,而屏蔽波长远大于网栅周期的微波和无线电波。因此,探索新的研究方法和进行必要的实验来研究具有新型网栅单元的多层金属网栅在高频和低频波段的电磁传输机理和光电性能具有重要意义,然而目前国内外对此的研究报道较少。
     本博士学位论文通过研究方格金属网栅屏蔽能力与透光能力的矛盾及其杂散光集中分布的原因,提出了基于圆环和双层金属网栅结构的光学窗电磁屏蔽新方法,同时对方格金属网栅在倾斜状态下的透光特性和电磁屏蔽效率的精确分析方法展开研究。论文在上述各方面进行了深入的理论与实验研究,主要内容和结果如下:
     1.为解决传统方格金属网栅高级次衍射能量集中分布的问题,提出了一种基于圆环金属网栅结构的光学窗电磁屏蔽方法。通过采用连续金属圆环作为网栅结构,均化了网栅衍射强度分布系数,使高级次衍射能量分布均匀。同时,该结构减小了网栅单元的最大孔径尺度,提高了微波截止频率,使网栅屏蔽能力增强,并减小了网栅单元的覆盖金属面积,增大了孔隙比,使网栅透光能力提高。实验结果表明,圆环金属网栅的高级次衍射能量分布均匀,且与相同周期的方格金属网栅相比,在透光率均为97%时,其屏蔽效率提高2dB;
     2.为解决传统方格金属网栅屏蔽能力与透光能力的矛盾,提出了一种基于双层金属网栅高低频电磁耦合差异的光学窗电磁屏蔽方法。光学波段网栅周期远大于波长,双层网栅之间电磁耦合较弱,层距对透光性能影响甚微;而微波波段网栅周期小于波长,双层网栅之间存在强电磁耦合,屏蔽效率随层距的增加迅速增加,且其增加趋势在层距达到三倍网栅周期之后迅速变缓。因此,通过选择层距,可在保持网栅透光率不变时显著提高其屏蔽效率。实验结果表明,双层圆环金属网栅与单层方格金属网栅相比,透光率均为94%时,屏蔽效率提高了12dB,且其高级次衍射能量分布均匀;
     3.为分析金属网栅结构参数和倾斜角对网栅远场衍射斑形状和分布的影响,基于惠更斯-菲涅耳原理建立了倾斜金属网栅的夫琅和费衍射光强分布解析模型。分析表明,零级衍射中心位置与网栅结构参数和倾斜角均无关,网栅倾斜不改变零级衍射中心位置;衍射斑形状函数在网栅倾斜时发生拉伸和非对称,造成零级衍射斑形状、高级次衍射斑的位置和形状发生拉伸和非对称分布。实验结果表明,该模型可准确分析金属网栅倾斜时其远场衍射特性的变化;
     4.基于Kohin等效膜法、LZ等效电抗模型和Ulrich半实验方法,建立了高透光率金属网栅屏蔽效率分析的等效折射率模型,解析地表达了网栅等效折射率与其结构参数和边界介质折射率的关系,并用模型系数反映高透光率金属网栅的屏蔽特征。该模型结合薄膜理论可精确计算电磁波任意角度入射时高透光率金属网栅的屏蔽效率,分析衬底对屏蔽效率的影响。实验表明,该模型将网栅屏蔽效率的分析精度由传统模型的4dB提高到2dB。
     本文成功研制了光学窗,实验表明,其具有均匀杂散光分布,在透光率为94%时,18GHz的屏蔽效率优于35dB,该指标优于目前所见国内外相关报道的最好水平,解决了传统单层方格金属网栅电磁屏蔽效率与透光率的矛盾及其杂散光集中分布的问题。同时,本文提出的金属网栅倾斜于光轴时的光电特性精确分析方法,为曲面光学窗的高性能电磁屏蔽奠定了理论基础。
Optical windows are communication channels used for optical detection in precise optoelectronic instruments. Microwave and radio waves can pass through them and decrease their anti-electromagnetic interference capability. It is therefore of great significance to improve the shielding performance of an optical window while its good transmittance is maintained at the same time. Metallic mesh frequency filtering technique can be used to improve the electromagnetic shielding capability of an optical window with a typical single-layer square mesh structure. With the fast development of radar searching techniques and precise optoelectronic detection techniques, the electromagnetic shielding requirement for optical windows is getting more and more stringent, especially when strong electromagnetic shielding effectiveness, high transmissivity and low effect on imaging quality are required at the same time. However, a traditional single-layer square mesh exhibits an inherent conflict between good transmissivity and strong electromagnetic shielding. It degrades imaging quality for the concentration of high order diffraction energy. The solution of above mentioned problems involves a series of important scientific problems and key techniques, and this is why it becomes a cutting-edge subject in this field and is not solved so far.
     Many kinds of cells with novel shape have been used in recent years in frequency selective surfaces (FFSs) at several wavebands to produce excellent band-pass or band-stop filtering performance. Multi-layer periodic perforated metal films have attracted much attention from the research community for their extraordinary performances such as extraordinary optical transmission, negative index metamaterials, and wide or narrow band filtering with incident angle independence. These will cause new research trends for metallic mesh frequency filtering technique, for example, to improve optoelectronic performances of traditional single-layer square metallic meshes with double or multi-layer metallic mesh structures with new mesh cells. Most of the researches on FFSs and multi-layer periodic perforated metal films are focused on the band-pass or band-stop filtering performance at the wavelengths near the periodic scale of FFSs or perforated holes. However, the metallic mesh frequency filtering technique is essentially a high-pass frequency filtering technique. This means the mesh with submillimeter period allows the transmission of waves at a wavelength far less than the mesh period at optical frequency and the shielding of those waves at a wavelength much longer than the mesh period at microwave and radio frequencies. It is therefore of great significance to use new theoretical methods and necessary experiments to identify the electromagnetic transmitting mechanisms and optoelectronic performances at high and low frequencies for double or multi-layer metallic meshes with new mesh cells. However, to the best of our knowledge, not much work has been done on this particular aspect so far.
     By finding the reason for the inherent conflict between transmissivity and electromagnetic shielding and the cause for the concentration of high order diffraction energy of a square metallic mesh, electromagnetic shielding methods for optical windows based on ring and double-layer metallic meshes are proposed, and the methods for accurate analysis on the shielding effectiveness and the optical transmitting performance of a tilted square metallic mesh are studied as well. Theoretical and experimental studies were proceeded on above aspects in this doctoral thesis, and the main investigation work and achievements are described as follows:
     1. In order to solve the problem of concentration of high order diffraction energy for traditional square metallic meshes, an electromagnetic shielding method for optical windows based on ring metallic mesh is proposed. By taking contiguous metallic rings as the mesh structure, the uniform distribution of high order diffraction energy is obtained due to the homogenization of diffraction coefficients. At the same time, the cutoff frequency of microwave is increased because of the reduction of the maximum aperture of a mesh cell, and the porosity of the mesh is increased because of the reduction of the total metal area in the mesh cell, which improve the shielding effectiveness and the optical transmissivity respectively. Experimental results show that, the ring metallic mesh has uniform distribution of high order diffractions and obtains the shielding effectiveness improvement of 2dB comparing with the square mesh with the same period and at the same transmissivity of 97%.
     2. In order to overcome the inherent conflict between electromagnetic shielding effectiveness and optical transmissivity for traditional square metallic meshes, an electromagnetic shielding method for optical windows based on the electromagnetic coupling difference at high and low frequencies of double-layer metallic meshes is proposed. When the mesh period is far larger than the wavelengths at optical band, the electromagnetic coupling is attenuated and the transmissivity is little changed at different layer spacings. However, when the mesh period is far less than the wavelengths at microwave band, the electromagnetic shielding effectiveness increases quickly with the increasing layer spacings because of the strong electromagnetic coupling, while the increasing tendency is rapidly slowed down when the spacing reaches three times of the mesh period. Thus the conflict mentioned above can be overcome by determining a proper layer spacing. Experimental results show that, the double-layer ring metallic mesh improves the shielding effectiveness of 12dB and has uniform distribution of high order diffractions comparing with the single-layer square metallic mesh at the same transmissivity of 94%.
     3. In order to analyze the effects of mesh structural parameters and tilted angle on the shape and distribution of diffraction spots at far field, an optical intensity distribution model of Fraunhofer diffraction is established for a tilted square metallic mesh using Huygens-Fresnel diffraction theory. Analysis shows that, when a mesh is tilted, the location of zero order diffraction centre does not change because it is independent of mesh structural parameters and tilted angle. But the shape function of diffraction spots is asymmetrical and is stretched, which causes the stretching and asymmetrical distribution of the shape for zero order diffraction spot, and both the shape and location for high order diffraction spots. Experimental results show that, the model established can accurately analyze the change of diffraction characteristics in far field for a tilted square metallic mesh.
     4. A novel equivalent refractive index model of metallic mesh with high transparency is proposed to calculate the shielding effectiveness more accurately. Based on Ulrich’s empirical method, LZ’s equivalent reactance model and Kohin’s equivalent film method, the proposed model accurately establishes the relationship among mesh equivalent refractive index, structure parameters and dielectric boundary refractive indexes. And the coefficient of this model is adjusted to reflect the shielding characteristic of the metallic mesh with high transparency. Combining with the classical film theory, the model can be used easily to calculate the mesh shielding effectiveness at various incident angles and further analyze the influence of substrate on the shielding effectiveness. Experimental results show that, the obtained calculation accuracy of the model established is 2dB, more accurate than that of traditional models of 4dB.
     Based on the above study, corresponding optical windows were fabricated successfully. Experimental results show that, they exhibit the uniform distribution of stray light, and achieve the electromagnetic shielding effectiveness of more than 35dB at 18GHz at the transmissivity of 94%, which exceeds the best performances reported so far. It can be therefore concluded that the study contributes to the solution of the inherent conflict between high transmissivity and strong electromagnetic shielding effectiveness and the problem of concentration of high order diffraction energy for traditional single-layer square metallic meshes. And the proposed methods for accurate analysis on optoelectronic performances of tilted square metallic mesh provide a key theoretical basis for electromagnetic shielding of curved optical windows with high performance.
引文
1 N. Williams, V. K. Varadan, V. V. Varadan. Polymer-based Composites for RFI/EMI Applications. SPIE. 1990, 1307: 154~156
    2 P. Kirawanich, R. Gunda, N. S. Kranthi, et al. Methodology for Interference Analysis Using Electromagnetic Topology Techniques. Applied Physics Letters. 2004, 84(15): 2949~2951
    3 V. I. Litvinov, V. A. Manasson, L. S. Sadovnik. Conductive Coating with Infrared Pass Band. SPIE. 2000, 4094: 38~45
    4 B. W. Li, Y. Shen, Z. X Yue, et al. Enhanced Microwave Absorption in Nickel/Hexagonal-Ferrite/Polymer Composites. Applied Physics Letters. 2006, 89(13): 132504
    5吴玉韬,翁小龙,邓龙江.低温沉积ITO膜的透光率及电磁屏蔽特性的研究.真空科学与技术学报. 2006, 26(5): 372~376
    6姜勇,王刚.电磁屏蔽玻璃在电磁屏蔽方舱上的应用.安全与电磁兼容. 2005, (1): 37~39
    7王炜,龚健,杨怀京.电磁屏蔽与电磁屏蔽玻璃.中国建材科技. 2001, 10(4): 71~72
    8董波,高培伟,闫亚楠等.具有电磁屏蔽功能的新型建筑材料研究.广东建材. 2006, (11): 15~17
    9李秀荣,刘静.高频电磁屏蔽用ITO膜结构与性能分析.武汉工业大学学报. 2000, 22(6): 21~24
    10杜仕国,高欣宝.电磁屏蔽导电复合材料.兵器材料科学与工程. 1999, 22(6): 61~67
    11王锦成.电磁屏蔽材料的屏蔽原理及研究现状.化工新型材料. 2002, 30(7): 16~18
    12万刚,李荣德.电磁屏蔽材料的进展.安全与电磁兼容. 2003, (1): 40~42
    13 R. Hartmann. Airborne FLIR Optical Window Examples. SPIE. 1992, 1760: 86~96
    14 C. I. Bright. Broadband EMI Shielding for Electro-optical Systems. IEEE Symposium on Electromagnetic Compatibility. 1994: 340~342
    15黄印权.机载前视红外光学窗口.飞航导弹. 1996, (8): 60~63
    16郝桂友,刘光斌.导弹武器系统电磁环境效应研究.导弹与航天运载技术. 2003, (2): 33~36
    17王海青.电磁辐射环境研究.航空电子技术. 2001, 32(1): 29~34
    18 K. A. Osmer, M. I. Jones. Optical Characterization of Photolithographic Metal Grids. SPIE Tactical Infrared Systems. 1991, 1498: 138~146
    19黄继谦.电子战武器装备发展现状(上).电子世界. 1999, (8): 2~4
    20冯雨,卞树檀,李站良.反辐射导弹及其发展趋势.战术导弹技术. 2005, (4): 1~3
    21 C. H. Hargraves, J. M. Martin. IR Sensor and Window System Issues. Window and Dome Technologies and Materials III, SPIE. 1992, 1760: 329~337
    22孙连春.组合薄膜材料在导弹雷达隐身及抗电磁干扰中的应用.光机电信息, 2000, 17(11): 1~6
    23阮颖铮.雷达截面与隐身技术.国防工业出版社, 1998: 10~12
    24 J. C. Kirsch, W. R. Lindberg, D. C. Harris, et al. Tri-mode Seeker Dome Considerations. Window and Dome Technologies and Materials IX, Proceedings of SPIE. 2005, 5786: 33~40
    25冯晓国,卢俊,徐峰林等.同心扫描法制作凹球面等距网栅的误差分析.光学精密工程. 2006, 14(2): 251~255
    26蒙志君,王立峰,武哲.雷达舱隐身措施.飞航导弹. 2006, (9): 30~34
    27 S. S. Bayya, G. D. Chin, G. Villalobos, et al. VIS-IR Transmitting Windows. Window and Dome Technologies and Materials IX, Proceedings of SPIE. 2005, 5786: 262~271
    28顾月清,陶宝祺.隐身技术在飞机上的应用.物理. 1996, 25(11): 679 ~ 684
    29薛晓春,王雪华.隐身与反隐身技术的发展研究.现代防御技术. 2004, 32 (2): 60~65
    30卢俊,高劲松,孙连春.频率选择表面及其在隐身技术中的应用.光机电信息. 2003, (9): 1~4
    31 B. A. Munk. Frequency Selective Surfaces, Theory and Design. New York: Wiley Inter-science, 1999: 1~25
    32 M. K. K?rkk?inen, P. M. T. Ikonen. Finite-difference Time-domain Modeling of Frequency Selective Surfaces Using Impedance SheetConditions. IEEE Transactions on Antennas and Propagation. 2005, 53(9): 2928~2937
    33丛玉良,姜桂艳,王勋龙.双层圆环缝隙单元准直误差对频率选择特性的影响.吉林大学学报(工学版). 2006, 36(Sup.2): 119~121
    34何斌,丛玉良.装配误差衰减双屏“十”字环FSS传输特性研究.光学精密工程. 2006, 14(4): 704~708
    35高强,闫敦豹,袁乃昌,付云起.紧凑的频率选择性表面阵列的谐振特性研究.电子与信息学报. 2006, 28(8): 1513~1515
    36李绪平,刘昊,史小卫. Y分形单元多频段FSS设计研究.微波学报. 2006, 22(Sup.1): 100~103
    37 S. W. Lee. Scattering by Dielectric-loaded Screen. IEEE Trans. 1971, AP-19: 656~665
    38 M. E. MacDonald, A. Alexanian, R. A. York, et al. Spectral Transmittance of Lossy Printed Resonant-gird Terahertz Bandpass Filters. IEEE Transactions on Microwave and Techniques. 2000, 48(4): 712~718
    39 I. Puscasu, D. Spencer, G. D. Boreman. Refractive-index and Element Spacing Effects on the Spectral Behavior of Infrared Frequency Selective Surfaces. Appl. Opt. 2000, 39(10): 1570~1572
    40 R. P. Drupp, J. A. Bossard, D. H. Werner, et al. Multiband Planar Metallo-dielectric Photonic Crystals Using Frequency Selective Surface Techniques. IEEE Antennas and Propagation Society, AP-S International Symposium (Digest). 2004, 2: 1907~1910
    41 T. A. Cwik, S. Fernandez, A. Ksendzov, et al. Multi-band-width Frequency Selective Surfaces for Near Infrared Filtering: Design and Optimization. IEEE Antennas and Propagation Society, AP-S International Symposium (Digest). 1999, 3: 1726~1729
    42 T. A. Cwik, S. Femandez, A. Ksendzov, et al. Design of Multi Bandwidth Frequency Selective Surfaces for Near Infrared Filtering. Part of the SPIE Conference on Optical Analogies in Microwave/Millimeter-Wave. 1998, 3464: 183~193
    43万顺生,卫民.毫米波/红外频率选择表面的双工性研究.激光与红外. 2000, 30(5): 293~295
    44陈彬,方大纲,周壁华. FD-TD在分析FSS中的应用.微波学报. 1995,(2): 37~55
    45谢文娇,武哲. FSS基本缝隙单元频率特性的实验研究.飞机设计. 2003, (3): 51~54
    46 C. Yu, C. C. Lu. Analysis of Curved Frequency Selective Surfaces Using the Hybrid Volume-surface Integral Equation Approach. IEEE Antennas and Propagation Society, AP-S International Symposium. 2003, 2: 809~812
    47 C. C. Lu, W. C. Chew. Electromagnetic Scattering from Material Coated PEC Objects: A Hybid Volume and Surface Integral Equation Approach. IEEE Antennas and Propagation Society, AP-S International Symposium (Digest). Orlando, Florida. 1999, 4: 2562~2565
    48 C. C .Lu, W. C. Chew. A Coupled Surface-volume Integral Equation Approach for the Calculation of Electromagnetic Scattering from Composite Metallic and Material Targets. IEEE Trans.Antennas Propagat. 2000, 48 (12): 1866~1868
    49 C. C. Lu, C. Yu. Analysis of Microstrip Structures of Finite Ground Plane Using the Hybrid Volume-surface Integral Equation Approach. The 2002 IEEE Antennas and Propagation Sociery International Symposium. 2002: 162~165
    50 C. C. Lu, C. Yu. Simulation of Radiation and Scattering by Large Microstrip Patch Arrays on curved Substrate by a Fast Algorithm. 2002 International Conference on Microwave and Millimeter Wave Technology Proceedings. 2002: 401~405
    51 C. C. Lu, C. Yu. Computation of Input Impedance of Printed Antennas with Finite Size and Arbitrarily Shaped Dielectric Substrate and Ground Plane. IEEE Transactions on Antennas and Propagation. 2004, 52(2): 615~619
    52 A. Caroglanian, K. J. Webb. Study of Curved and Planar Frequency Selective Surfaces with Nonplanar Illumination. IEEE Transactions on Antennas and Propagation. 1991, 39(2): 211~217
    53 A. Caroglanian, K. J. Webb. Curved and Planar Frequency Selective Surfaces with Arbitrary Illumination. IEEE. 1989, CH28642: 1060~1063
    54 Y. R. Samii, A. N. Tulintseff. Diffraction Analysis of Frequency Selective Reflector Antennas. IEEE Transactions on Antennas and Propagation. 1993, 41(4): 476~487
    55 A. N. Tulintseff, Y. Rahmat Samii. Scattering Analysis of FSS Reflectors Using Huygen’s Principle. Antennas and Propagation Society International Symposium.1992, (2):1173~1176
    56 B. Philips, E. A. Parker, and R. J. Langley. Ray Tracing Analysis of the Transmission Performance of Curved FSS. IEE Proc. Microw. Antennas Propag. 1995,142(3): 193~200
    57 B. Philips, E. A. Parker, and R. J. Langley.Influence of a Curved FSS on the Radiation Patterns of an Enclosed Source. IEE Antennas and Propagation, Conference Publication. 1995, 407: 524~527
    58 S. B. Savia, E. A. Parker, and B. Philips. Finite Planar and Curved Ring Element Frequency-selective Surfaces. IEE Proceedings on Microwaves, Antennas and Propagation. 1999, 146(6): 401~406
    59 M. W. Steeds, S. L. Broschat, and J. B. Schneider. A Comparison of Two Conformal Methods for FDTD Modeling. IEEE Transactions on Electromagnetic Compatibility. 1996, 38(2): 181~187
    60 W. H. Yu, R. Mittra. A Conformal FDTD Software Package Modeling Antennas and Microstrip Circuit Components. IEEE Antennas and Propagation Magazine. 2000, 42(5): 28~39
    61 N. Kaneda, B. Houshmand, and T. Itoh. FDTD Analysis of Dielectric Resonators with Curved Surfaces. IEEE Transactions on Microwave Theory and Techniques. 1997, 45(9): 1645~1649
    62吕明云,祝明,王焕青等.复杂曲面FSS加工系统研究.航空学报. 2005, 26(4): 524~527
    63祝明,王焕青,王之烁等.复杂曲面频率选择表面机器人数字化加工系统关键技术.航空制造技术. 2005, (1): 61~67
    64高劲松,孙连春,郑宣明等.红外透明导电金属网栅薄膜.光学技术. 2001, 27(6): 558~559
    65车英,董连和,王也.红外增透膜与远红外低通滤波器.兵工学报. 2003, 24(1): 62~64
    66 M. Kohin, S. J. Wein, J. D. Traylor, et al. Analysis and Design of Transparent Conductive Coatings and Filters. Optical Engineering. 1993, 32(5): 911~925
    67 A. A. Erchak, D. J. Ripin, K. A. Mclntoch, et al. Metallo-dielectric PhotonicCrystals for Infrared Applications. Lasers and Electro-optics (CLEO 2000). 2000: 124~125
    68纪世华.军用光电设备红外窗口技术及发展.光机电信息. 1996, 13(11): 26~30
    69 L. B. Whitbourn, R. C. Compton. Equivalent-circuit for Metal Grid Reflectors at a Dielectric Boundary. Applied Optics. 1985, 24(2): 217~220
    70 P. E. Ciddor, L. B. Whitbourn. Equivalent Thin Film of a Periodic Metal Grid. Applied Optics. 1989, 28(6): 1228~1230
    71 H. M. Pickett, J. Farhoomand, A. E. Chiou. Performance of Metal Meshes as a Function of Incidence Angle. Appl. Opt. 1984, 23(23): 4228~4232
    72 R. Sauleau, P. Coquet, J. P. Deniel, et al. Analysis of Millimeter Wave Fabry-Perot Cavities Using the FDTD Technique. IEEE Microwave and Guided Wave Leters. 1999, 9(5): 189~191
    73 R. Sauleau, Ph. Coquet, D. Thouroude, et al. Beam Focusing Using 60 GHz Fabry-Perot Resonators with Uniform and Non-uniform Metal Grids. Electronics Leters. 2003, 39(4): 341~342
    74 R. Sauleau, Ph. Coquet, Diniel Thouroude, et al. Radiation Characteristics and Performance of Millimeter-wave Horn-fed Gaussian Beam Antennas. IEEE Transactions on Antennas and Propagation. 2003, 51(3): 378~387
    75 M. C. Wu, C. P. Chiu, S. J. Chung. Development of a Novel 38.5-GHz Planar Cassegrain Antenna. IEEE Proceedings of APMC, Taipei. 2001: 1366~1369
    76 T. Matsui, H. Yuzawa, N. Hirose, et al. Frequency Shift in Millimeter Wave Gaussian Beam Antenna Using Two Dimensional Metal Grid Mirror. Antennas and Propagation Society International Symposium, IEEE. 1997, 4: 2384~2387
    77 J. Bae, J. C. Chiao, D. B. Ruteledge, et al. Metal Mesh Couplers Using Evanescent Waves at Millimeter and Submillimeter Wavelengths. Microwave Symposium Digest. IEEE MTT-S International. 1995, 2: 597~600
    78 J. Bae, J. C. Chiao, K. Mizuno, et al. Metal Mesh Couplers Using Optical Tunneling Effect at Millimeter and Submillimeter wavelength. Microwave Symposium Digest. IEEE MTT-S International. 1994, 2: 787~790
    79 R. Dickie. Multilayer Mesh Filter for Quasi-optical Beamsplitting Applications. High Frequency Postgraduate Student Colloquium. IEEE. 2002, 0-7803-7618-8
    80 J. Wang, D. C. Liu, J. F. Zou, et al. The Calculating and Analysis of Shielding Effectiveness of Metal Meshes in Transient Electromagnetic Interference. Asia-Pacific Conference on Environmental Electromagnetics. 2003, 4(7): 379~385
    81 D. C. Liu, S. Q. Deng. The Study of Metal Meshes on Electromagnetic Interference Shielding Effectiveness. Asia-Pacific Conference on Environmental Electromagnetics, CEEM 2000 Proceedings. 2000,326~332
    82 R. C. Hansen, W. T. Pawlewicz. Effective Conductivity and Microwave Reflectivity of Thin Metallic Films. IEEE Transactions on Microwave Theory and Techniques. 1982, 30(11): 2064~2066
    83 C. A. Klein. Microwave Shielding Effectiveness of EC-Coated Dielectric Slabs. IEEE Transactions on Microwave Theory and Techniques. 1990, 38(3): 321~324
    84 P. R. Franchi, R. J. Mailloux. Theoretical and Experimental Study of Metal Grid Angular Filters for Sidelobe Suppression. IEEE Transactions on Antennas and Propagation. 1983, 31(3): 904~909
    85 K. D. M?ller, K. R. Farmer, D. V. P. Ivanov, et al. Thin and Thick Cross Shaped Metal Grids. Infrared Physics & Technology. 1999, 40: 475~485
    86 K. D. M?ller, O. Sternberg, H. Grebel, et al. Near-field Effects in Multi-layer Inductive Metal Meshes. Appl. Opt. 2002, 41(10): 1942~1948
    87 K. D. M?ller, O. Sternberg, H. Grebel, et al. Inductive Cross-shaped Metal Meshes and Dielectrics. Appl. Opt. 2002, 41(19): 3919~3926
    88 O. Sternberg, K. D. M?ller, H. Grebel, et al. Inductive Cross Shaped Metal Meshes on Silicon Substrate. Infrared Physics & Technology. 2003, 44: 17~25
    89 M. R. Schubert, M. S. Durschlag, T. A. Detemple, et al. Diffraction Limited CW Optically Pumped Lasers. IEEE Journal of Quantum Electronics. 1977, QE-13(6): 455~459
    90 A. Dipace, A. Doria, G. P. Gallerano, et al. Compact Free-electron Laser Resonators Utilizing Electron-transparent Mirrors. IEEE Journal ofQuantum Electronics. 1991, 27(12): 2629~2635
    91 T. Cwik, G. Klimeck. Genetically Engineered Microelectronic Infrared Filters. Proceedings of the First NASA/DoD Workshop on Evolvable Hardware. 1999: 242~246
    92 A. Niculescu, T. Petrescu. High Frequency Filters with Semiconductor Heterostructures. International Semiconductor Conference. 2001, (1): 141 ~144
    93李玉民,李瑾.红外光学材料及整流罩技术的新发展.红外与激光技术. 1995, 24(5): 1~6
    94 R. Ulrich. Far-infrared Properties of Metallic Mesh and Its Complementary Structure. Infrared Physics. 1967, (7): 37~55
    95 S. W. Lee, G. Zarrillo, and C. L. Law. Simple Formulas for Transmission through Periodic Metal Grids or Plates. IEEE Transactions on Antennas and Propagation. 1982, 30(5): 904~909
    96 A. Alexanian, N. J. Kolias, R. C. Compton, et al. Three-dimensional FDTD Analysis of Quasi Optical Arrays Using Floquet Boundary Conditions and Berenger’s PML. IEEE Microwave and Guide Wave Letters. 1996, 6(3): 138~140
    97 J. S. Ren, X. D. Wang, R. J. Hwu, et al. FDTD Simulation for Quasi-optical Active Circuit Arrays. International Conference on Microwave and Millimeter Wave Technology Proceedings. ICMMT '98. 1998: 961~964
    98 R. Sauleau, P. Coquet. Input Impedance of Electromagnetic Bandgap Resonator Antennas. Microwave and Optical Technology Letters. 2004, 41(5): 369~375
    99 R. Sauleau, G. L. Ray, P. Coquet. Parametric Study and Synthesis of 60-GHz Fabry-Perot Resonators. Microwave and Optical Technology Letters. 2002, 34(4): 247~252
    100 R. Sauleau, D. Thouroude, P. Coquet, et al. Theoretical Reflection Coefficient of Metal Grid Reflectors at a Dielectric Interface. International Journal of Infrared and Millimeter Waves. 1999, 20(2): 325~339
    101 R. Sauleau, P. Coquet, J. P. Daniel. Validity and Accuracy of Equivalent Circuit Models of Passive Inductive Meshes, Definition of a Novel Model for 2D Grids. International Journal of Infrared and Millimeter Waves. 2002,23(3): 475~498
    102 R. Sauleau, N. Falola. Ultra-wideband Wave Reactancs of Capacitive Grids. International Journal of Infrared and Millimeter Waves. 2004, 25(1): 1401 ~1421
    103 R. Sauleau, P. Coquet, D. Thouroude, et al. Numerical Calibration in FDTD to Compute Complex Reflection Coefficient of Periodic Structures. Eelectronics Letters. 1998, 34(24): 2289~2290
    104李凤友,卢振武,谢永军等.激光直写方法制作透明导电金属网栅.光子学报. 2002, 31(10): 1270~1270
    105冯晓国,方梁,孙连春.金属网栅结构参数设计与制作.光学精密工程. 2005, 13(1): 59~64
    106梁凤超,胡君,续志军.激光直写凹球面网栅的电控实现.光学精密工程. 2006, 14(5): 792~796
    107 H. Hosono, H. Ohta, M. Orita, et al. Frontier of Transparent Conductive Oxide Thin Films. Vacuum. 2002, 66: 419~425
    108 J. D. Perkins, J. A. delCueto, J. L. Alleman, et al. Discovery and Optimization of In-Zn-Sn-O Based Transparent Conductors by Combinatorial and Pulsed Laser Deposition Approaches. Conference Record of the Twenty Ninth IEEE Photovoltaic Specialists Conference. 2002: 1126~1129
    109 D. J. Lawrence, J. G. Stenger. Fabrication of Electrochromic Devices in an Undergraduate Laboratory. IEEE Proceedings of the Fourteenth University/Government/Industry Microelectronics Symposium, Biennial. 2001: 86~90
    110 C. Mias, C. Tsakonas, N. Prountzos, et al. Optically Transparent Microstrip Antennas. IEE Colloquium on Antennas for Automotives. 2000, 8: 1~6
    111 C. G. Granqvist, A. Azens, A. Hjelm, et al. Recent Advances in Electrochromics for Smart Windows Applications. Solar Energy. 1998, 63(4): 199~216
    112 G. Macrelli, E. Poli, H. Demiryont, et al. Optical Measurements and Modeling of an All Solid State Inorganic Thin Film Electrochromic System. Journal of Non-Crystalline Solids. 1997, 218: 296~301
    113 M. Klingler, W. F. Chu, and W. Weppner. Three-Layer ElectrochromicSystem. Solar Energy Materials and Solar Cells. 1995, 39: 247~255
    114沈玫,纪建超.飞机座舱透明件的隐身技术.材料工程. 1996, (1): 10~12
    115 M. J. Bloemer, M. Scalora, and J. P. Dowling. Laminated Photonic Band Structures with High Conductivity and High Transparency. IEEE MTT-S International Microwave Symposium Digest. 1999, 3: 893~ 896
    116 M. J. Bloemer, M. Scalora. Transmissive Properties of Ag/MgF2 Photonic Band Gaps. Applied Physics Letters. 1998, 72(14): 1676~1678
    117 M. Scalora, M. J. Bloemer, A. S. Pethel, et al. Transparent, Metallo-Dielectric, One-dimensional, Photonic Band-gap Structures. Journal of Applied Physics. 1998, 83(5): 2377~2383
    118曹召良,卢振武,李凤友等.二维抗反射亚波长周期结构光栅的设计分析.光学精密工程. 2006, 14(5): 792~796
    119陈思乡,易新建,曾延安等.亚波长浮雕结构的红外抗反射研究.红外与毫米波学报. 2000, 19(6): 471~474
    120 J. N. Mait, D. W. Prather, and M. S. Mirotznik. Binary Subwavelength Diffractive-lens Design. Optics Letters. 1998, 23(17): 1343 ~1345
    121 J. N. Mait, D. W. Prather, and M. S. Mirotznik. Design of Binary Subwavelength Diffractive Lenses by Use of Zeroth-order Effective-medium Theory. J. Opt. Soc. Am. A. 1999, 15(5): 1157~1167
    122 J. N. Mait, A. Scherer, O. Dial, et al. Diffractive Lens Fabricated with Binary Features Less Than 60nm. Optics Letters. 2000, 25(6): 1343~1345
    123 R. E. Fischer, L. R. Siegel, R. J. Korniski, et al. New Developments in Optical Correction for Non-Spherical Windows and Domes. SPIE. 1994, 2286: 471~479
    124李世涛,乔学亮,陈建国.透明导电薄膜的研究现状及应用.激光与光电子学进展. 2003, 40(7): 53~59
    125 E. Savrun, H. Delaguila. Electrically Conductive Tungsten Silicide Coatings for EMI/RFI Shielding of Optically Transparent Windows. Journal of Materials Science. 1998, 33: 2893~2897
    126 M. Qiu, S. L. He. FDTD Algorithm for Computing the Off-plane Band Structure in a Two-Dimensional Photonic Crystal with Dielectric or Metallic Inclusions. Physics Letters A. 2001, 278: 348~354
    127 S. S. Xiao, S. L. He. FDTD Method for Computing the Off-plane BandStructure in a Two-dimensional Photonic Crystal Consisting of Nearly Free-electron Metals. Physica B. 2002, 324: 403~408
    128 J. M. Hall. Army Applications for Multi-Spectral Windows. SPIE. 1997, 3060: 330~334
    129 R. A. Shelby, D. R. Smith, S. Schultz. Experimental Verification of a Negative Index of Refraction. Science. 2001, 292: 77~79
    130 S. Zhang, W. J. Fan, K. J. Malloy, et al. Demonstration of Metal-dielectric Negative-index Metamaterials with Improved Performance at Optical Frequencies. J. Opt. Soc. Am. B. 2006, 23(3): 434~438
    131 T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, et al. Extraordinary Optical Transmission through Sub-wavelength Hole Arrays. Nature, 1998, 391: 667 ~669
    132 Y. Ye, J. Zhang. Enhanced Light Transmission through Cascaded Metal Films Perforated with Periodic Hole Arrays. Optics Letters. 2005, 30(12): 1521~1523
    133 H. B. Chan, Z. Marcet, K. Woo, Optical Transmission through Double Layer Metallic Subwavelength Slit Arrays. Optics Letters. 2006, 31(4): 516~518
    134 A. Kao, K. A. McIntosh, O. B. McMahon, et al. Calculated and Measured Transmittance of Metallodielectric Photonic Crystals Incorporating Flat Metal Elements. Applied Physics Letters. 1998, 73(2): 145~147
    135赵姚同,周稀朗.微波技术与天线.东南大学出版社, 2003: 187~189
    136高建平,张芝贤.电波传播(电磁理论基础·微波技术·天线基础).西北工业大学出版社, 2002: 210~215
    137 M. Born, E. wolf. Principles of Optics. 7th Edition. Cambridge Uinversity Press, 1999: 64~70
    138 C. C. Chen. Transmission through a Conducting Screen Perforated Periodically with Apertures. IEEE Transactions on Microwave Theory and Techniques. 1970, MTT-18(9): 627~632
    139 C. C. Chen. Diffraction of Electromagnetic Waves by a Conducting Screen Perforated Periodically with Holes. IEEE Transactions on Microwave Theory and Techniques. 1971, MTT-19(5): 475~481
    140 C. C. Chen. Transmission of Microwave through Perforated Flat Plates ofFinite Thickness. IEEE Transactions on Microwave Theory and Techniques. 1973, 21(1): 1~6
    141 R. Sauleau, P. Coquet, J. P. Deniel, et al. Study of Fabry-Perot Cavities with Metal Mesh Mirrors Using Equivalent Circuit Models. Comparison with Experimental Results in the 60 GHz Band. International Journal of Infrared and Millimeter Waves. 1998, 19(12): 1693~1710
    142梁铨延.物理光学.第二版.机械工业出版社, 1987: 25~270
    143李晓彤.几何光学和光学设计.浙江大学出版社, 1996: 234~238
    144庄松林,钱振邦.光学传递函数.机械工业出版社, 1981: 264~283
    145 K. Yutaka, T. Masaharu, and A. Minoru. Electromagnetic Cutoff by Metallic Lines on the Glass. Electronics and Communications in Japan, Part 1. 2002, 85(7): 45~52
    146 E. A. Parker, C. Antonopoulos, and N. E. Simpson. Microwave Band FSS in Optically Transparent Conducting Layers: Performance of Ring Element Arrays. Micro. Opt. Tech. Lett. 1997, 16(2): 61~63
    147 K. E. Paul, C. Zhu, J. C. Love, et al. Fabrication of Mid-infrared Frequency-selective Surfaces by Soft Lithography. Appl. Opt. 2001, 40(25): 4557~4561
    148 N. Misran, R. Cahill, and V. F. Fusco. Design Optimization of Ring Elements for Broadband Reflectarray Antennas. IEE Proceedings on Antennas and Propagation. 2003, 150(6): 440~444
    149 B. I. Wu, E. Yang, J. A. Kong, et al. Analysis of Photonic Crystal Filters by the Finite-difference Time-domain Technique. Micro. Opt. Tech. Lett. 2000, 27(2): 81~87
    150 D. S. Lockyer, J. C. Vardaxoglou, and R. A. Simpkin. Complementary Frequency Selective Surfaces. IEE Proceedings on Antennas and Propagation. 2000, 147(6): 501~507
    151 H. A. Smith, M. Rebbert, and O. Sternberg. Designer Infrared Filters Using Stacked Metal Lattices. Applied Physics Letters. 2003, 82(21): 3605~3607
    152 H. Wen, B. Hou, Y. Leng. Resonance-induced Wave Penetration through Electromagnetic Opaque Object. Optics Express. 2005, 13(18): 7005~ 7010
    153 J. S. McCalmont, M. M. Sigalas, G. Tuttle, et al. A Layer-by-layer Metallic Photonic Band-gap Structure. Applied Physics Letters. 1996, 68(19):2759~2761
    154 S. Gupta, G. Tuttle, M. Sigalas, et al. Infrared Filters Using Metallic Photonic Band Gap Structures on Flexible Substrates. Applied Physics Letters. 1997, 71(17): 2412~2414
    155 S. Govindaswamy, J. East, F. Terry, et al. Dual-frequency-selective Surfaces for Near-infrared Bandpass Filters. Micro. Opt. Tech. Lett. 2004, 43(2): 95~98
    156 H. Y. Sang, Z. Y. Li, and B. Y. Gu. Photonic States Deep into the Waveguide Cutoff Frequency of Metallic Mesh Photonic Crystal Filters. Journal of Applied Physics. 2005, 97(3): 033102
    157金国藩,严瑛白,邬敏贤.二元光学.国防工业出版社, 1998: 20~22
    158游明俊.傅立叶光学.兵器工业出版社, 2001: 100~101
    159 K. S. Yee. Numerical Solution of Initial Boundary Value Problems Involving Maxwell Equations in Isotropic Media. IEEE Tran. Antennas Propagat. 1966, AP-14(3): 302~307
    160葛德彪,闫玉波.电磁波时域有限差分方法.西安电子科技大学出版社, 2001: 1~150
    161 J. P. Berenger. A Perfectly Matched Layer for the Absorption of Electromagnetic Waves. J. Comput. Phys. 1996, 127(2): 185~200
    162 R. Sauleau, P. Coquet, D. Thouroude, et al. FDTD Analysis and Experiment of Fabry-Perot Cavities at 60 GHz. IEICE Trans. Electron. 1999, E82-C(7): 1139~1147
    163 H. Xu, S. M. Anlage, L. Hu, et al. Microwave Shielding of Transparent and Conducting Single-walled Carbon Nanotube Films. Applied Physics Letters. 2007, 90(18): 183119

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700