粗集料表面微观构造分形性质探讨与沥青路面抗滑性能关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文全面分析了国内外沥青路面抗滑性能研究概况,对影响路面抗滑性能的各种主、客观因素进行了归纳分析,提出在影响路面抗滑性能的众多因素中,粗集料的表面微观构造纹理是影响路面抗滑性能的关键影响因素之一,并给出了采用分形理论的基本方法进行粗集料表面微观纹理分维数测量、采集、计算分析的成套方法。
     研制了一种粗集料微观纹理图象的测量、采集和分析计算的成套软、硬件测量分析系统,运用非接触式的激光三角成像测量原理,结合直流脉冲电机触发激光信号并记录横向位移的方法,由激光器发出的激光束在被测集料表面形成一均匀散射斑,散射斑反射点成像于激光器接受像面,得到物像的位移比例关系。采集软件采用通用的ActiveX控件和硬件系统之间进行通讯、控制和数据传输,结合本测量系统设备的基本原理和参数指标,提出了激光器、粗集料表面特征及测量环境等影响因素的误差水平,分别进行了改进优化,并对主要指标进行了标定和效验,对抗外界干扰能力及测量的重复性也进行了验证,最后在极端测量条件下对光滑的玻璃表面进行了实测分析,结果均表明测量系统数据稳定,误差均控制在可接受范围内,并对该系统的各类测量误差进行了全面的分析,认为该测量采集系统精度高、可靠、实用。经过实际测试应用,编制了具体的测试设备配置要求和可行的操作规程,可用于实际公路的检测。通过测量得到表面微观纹理图像后,引入分形理论进行粗集料表面微观纹理图象的分维数计算分析,采用盒子计数法和MATLAB平台编程对纹理图形进行分维数计算,并且分别采用纹理图象计算和采用图象所对应的曲线坐标数据进行计算两种方式进行分维数计算,通过对比分析,采用微观纹理图象计算分维数的方法计算结果敏感性好,不同类型石料计算结果差异明显,利于研究分析。同时,采用标准KOCH分形图象对该程序进行了标定和效验,结果也和理论计算值一致。
     选取了路面工程常用的具有一定代表性的花岗岩、玄武岩、闪长岩、辉绿岩等粗集料进行实测计算,为了后续进一步对比研究,选取了其中的花岗岩和玄武岩两类石料进行跟踪测量,同时为了研究同一类型石料不同产地之间的差异情况,选取了两个地区的辉绿岩进行了对比。所选取的粗集料表面纹理分维值从大到小依次为:玄武岩,闪长岩,花岗岩和辉绿岩,两个不同产地的辉绿岩的维数也存在一定差异,因此在选材的时候,对同一类石料也应该进行详细对比,找出差异。
     通过对两条高速公路沥青路面抗滑表层采用的花岗岩和玄武岩的跟踪实测,初步掌握了其石料表面纹理衰减情况,微观纹理分维数D值均出现约8%的递减。另一方面,也进行了路面横向力系数SFC值的跟踪实测,横向力系数SFC值衰减达到约21%-24%左右,两者衰减幅度存在差异,但衰减趋势一致,因此可以说明粗集料表面纹理的磨损趋向光滑,导致路面的抗滑摩擦力下降。另一方面,分形维数值衰减幅度约占路面抗滑横向力系数衰减幅度的1/3,这也说明粗集料微观纹理是影响路面抗滑性能的重要因素。
     本文研制的粗集料表面微观纹理测量系统分辨率高,抗干扰能力强,通过研究,提出了沥青路面抗滑表层粗集料设计选材时的分维数控制指标,给出了粗集料表面微观纹理分维数D值的测量方法和基本要求,并初步提出了路面材料抗滑性能设计过程中,粗集料表面微观纹理分形维数D值在交工和竣工检测时的要求范围,可按照推荐的D值范围进行选材,由于不同地区的材料差异,应结合就地取材、优差材料合理结合使用的原则,将D值较大的材料用于抗滑表层,较小的可用于中下层。该指标的提出在本研究领域是一个尝试和突破。
The thesis comprehensively analysis the asphalt pavement skid resistance around domestic and international profile, and the influence of pavement skid resistance of a variety of subjective and objective factors were summarized and analyzed, made of coarse aggregate surface texture is a surface micro-structure sliding performance one of key influence factors, using the basic method of fractal surface fractal dimension of micro-texture analysis.
     Developed a coarse aggregate micro-texture image measurement, collection and analysis of computing complete sets of hardware and software measurement and analysis system, using non-contact measurement principle of laser triangulation imaging, combined with DC motor Chufa pulsed laser signal and record the lateral displacement of the methods issued by the laser beam on the measured aggregate to form a uniform surface scattering spot, scattering imaging in laser spot reflection point to accept the image plane, are things like the ratio between the displacement. Acquisition software is a common ActiveX controls and hardware systems for communications, control and data transmission, and various types of measurement error of the system conducted a comprehensive analysis, that the acquisition system of high precision, reliable and practical. Combined with the measurement system equipment, basic principles and parameters of indicators proposed laser, coarse aggregate surface characteristics and the measurement error of the environment, are analyzed in the level, respectively of the improved optimization, and the main indexes of the calibration and checksum against outside interference capability and measurement repeatability are also verified, the final measurement in extreme conditions on the smooth glass surface were measured The results show that the data measuring system stability, errors are controlled within an acceptable range. The introduction of fractal theory to the surface of coarse aggregate micro-texture image analysis of the fractal dimension calculated using the box counting method and the MATLAB programming platform on the texture fractal graphics computation, and the texture images were used to calculate and use of images corresponding to curve coordinate data to calculate the fractal dimension in two ways calculated by comparing the analysis, using micro-texture image method of calculating fractal dimension calculated sensitivity is good, the results between different types of stone obvious benefit analysis. At the same time, using standard KOCH fractal image to calibrate the process and efficacy, results consistent with the theoretically calculated data.
     Selected a road project has a common representation of granite, basalt, diorite, diabase, etc. were measured coarse aggregate basis, for further follow-up comparative study of selected one of two types of granite and basalt stone for tracking, Meanwhile, in order of the same type of stone the difference between different areas, we selected two regions were compared diabase. The selected surface texture of coarse aggregate fractal dimension decreasing order: basalt, diorite, granite and diabase, diabase two different dimensions of origin there are some differences, we in Selection When, on the same type of stone should be compared in detail to find out the difference.
     With trace measured on two Asphalt Pavement sliding surface using of the granite and basalt with which the attenuation of its stone surface texture and micro texture fractal dimension D values were about 8% of the decline occurred. On the other hand, have also been Sideway force coefficient SFC value of the tracking measurement, the lateral force coefficient of attenuation SFC value of about 21% -24% of differences between the decay rate, but the attenuation trend line, so you can explain the coarse aggregate tend to smooth the surface texture of the wear and tear, leading to friction against sliding down the road. On the other hand, fractal dimension about attenuation coefficient of road friction lateral force attenuation of 1 / 3, which also shows micro-texture of coarse aggregate impact of pavement skid resistance is an important factor.
     This surface texture measurement system developed high resolution, anti-interference ability, according to the system gives the sliding surface of asphalt pavement of coarse aggregate material selection of the fractal dimension control targets, given the surface micro-texture of coarse aggregate fractal dimension Measurement of D values and the basic requirements, and proposed pavement skid resistance material design process, the coarse aggregate micro-texture surface fractal dimension D value in the initial request and the completion detection range of the indicators proposed in the study area is a try and breakthroughs.
引文
1刘清泉,沥青路面抗滑表层的修筑,中国公路学报,1994年9月第18卷第3期:8-13
    2刘清泉,路面抗滑对策,北京:人民交通出版社,1995
    3 ASTM D3398-2000. Test Method for the Index of Aggregate Particle Shape and Texture. Annual Book of ASTM (American Society for Testing and Materials) Standards, 2000
    4 Permanent International Association of Road Congresses(PIARC),The 18th World Road Congresses Report, http://publications.piarc.org/en/technical-reports/.
    5张肖宁,王绍怀,等,沥青混合料组成设计的CAVF法,公路,2001.12(12):17-21
    6谭忆秋,张肖宁,等,用体积法设计SMA混合料的配合比,哈尔滨建筑大学学报,1999.6(3):105-110
    7沙庆林,SAC和其它粗集料断级配的矿料级配设计方法,公路,2005.1(1):143-150
    8沙庆林,沥青和沥青混合料现状,国外公路,1999.4:1-6
    9张肖宁,郭祖辛,等,按体积法设计沥青混合料,哈尔滨建筑大学学报,1995.4(2):28-36
    10吴剑锋,王文,激光三角法测量误差分析与精度提高研究,机电工程2003年第20卷第5期:89-91
    11 Weisstein, Eric W.,Minkowski-Bouligand Dimension,www.MathWorld.com
    12 Benoit B Mandelbrot, Fractal Character of Surfaces of Metals, Nature, 1984,19:212-218
    13丁保华,文洪杰,仲维斌等.Mo/β'-Sialon梯度功能材料的显微结构及分形计算.现代技术陶瓷,1996,4:22-28
    14 ASTM D3398-2000. Test Method for the Index of Aggregate Particle Shape and Texture. Annual Book of ASTM (American Society for Testing and Materials) Standards, 2000.
    15 Chetana B.Rao. Development of 3-D Image Analysis Techniques to Determine Shape and Size Properties of Coarse Aggregate. Doctor Paper of University of Illinois, 2001:52-54, 111-113, 149-151
    16 A.K.H. Kwan, C.F. Mora, H.C. Chan. Particle Shape Analysis of Coarse Aggregate Using Digital Image Processing. Cement and Concrete Research,1 999, (29):1403–1410
    17 Thomas Fletcher, Chandan Chandan, Eyad Masad, Krishna Sivakumar. Aggregate Imaging System (AIMS) for Characterizing the Shape of Fine and Coarse Aggregates. Transportation Research Board (TRB), Washington, 2003:2-31
    18 C. Chandan, K. Sivakumar, Eyad Masad, Thomas Fletcher. Application of Imaging Techniques to Geometry Analysis of Aggregate Particles. Journal of Computing in Civil Engineering, 2004, (18)1:77-81
    19 Linbing Wang, Xingran Wang, Louay Mohammad, Chris Abadie. Unified Method to Quantify Aggregate Shape Angularity and Texture Using Fourier Analysis. Journal ofMaterials in Civil Engineering, 2005, 17(5):498-502
    20 Ramitha Wettimuny, Dayakar Penumadu, M.ASCE. Application of Fourier Analysis to Digital Imaging for Particle Shape Analysis, 2004, (18)1:3-7
    21 Stephane Buczkowski, Patrice Hildgen, Louis Cartilier. Measurement of Fractal Dimension by Box-Counting: A Critical Analysis of Data Scatter. Physica A, 1998, (252):23-27
    22谢和平,薛秀谦.分形应用中的数学基础与方法.北京:科学出版社,1997
    23张济忠.分形.北京:清华大学出版社,1995
    24穆在勤,龙期威,康雁.测量断口分维的周长─最大直径方法.材料科学进展,1996, 6:12-15
    25褚武扬,材料科学中的分形,北京:化学工业出版社,2004
    26李启楷,张跃,褚武扬,分形曲线与分维测量,中国体视学与图象分析,1998,9:11-13
    27 Mohsen A.Issa, Mahmoud A. Issa, Md.S.Islam, A.Chudnovsky. Fractal Dimension-a Measure of Fracture Roughness and Toughness of Concrete. Engineering Fracture Mechanics, 2003, (70):125-137
    28 C.J.Tay, S.H.Wang, C.Quan, H.M.Shang. In Situ Surface Roughness Measurement Using a Laser Scattering Method.Optics Communications, 2003, (218):1-4
    29林道云,基于Matlab的分维算法研究,煤炭技术,2009,1:21-23
    30孙博文,葛江华,等,分形插值函数及其应用,哈尔滨电工学院学报,1996.12(4):540-543
    31黄宝涛,田伟平,沥青路面抗滑性能定量评价的分形方法,中国公路学报,2008,7,12-17
    32赵战利,张争奇,胡长顺,集料级配对沥青路面抗滑性能的影响,长安大学学报(自然科学版),2005.25(1):6-9
    33赵济海,王哲人,关朝雳.路面不平度的测量分析与应用.北京理工大学出版社, 2000:109-120
    34葛世荣.粗糙表面的分形特征与分形表达研究.摩擦学学报, 1997, 17(1):77-79
    35 H.R. Le, M.P.F.Sutcliffe. Analysis of Surface Roughness of Cold-Rolled Aluminum Foil. Wear, 2000, (244):75-76
    36徐玉春,解则晓等,被测表面特征对激光测头特性的影响,天津大学学报,2001,11,第34卷,796:799
    37解则晓,张宏君等,影响激光三角测头测量精度的因素及其补偿措施,现代计量测试,1999,1:23-26
    38周利民,胡德洲等,激光扫描三角法测量精度因素的分析与研究,计量学报,1998,4,第19卷:130-135
    39 Y.Alayli, S.Top?u, D.Wang, R.Dib, L.Chassagne. Applications of a High Accuracy Optical Fiber Displacement Sensor to Vibrometry and Profilometry. Sensors and Actuators A, 2004, (116):86-88
    40 Cho Jui Tay, Chenggen Quan. A Parametric Study on Surface Roughness Evaluation ofSemi-Conductor Wafers by Laser Scattering. International Journal for Light and Electron Optics, 2003, 114(1):1-4
    41 C.J.Tay, S.H.Wang, C.Quan, H.M.Shang. In Situ Surface Roughness Measurement Using a Laser Scattering Method.Optics Communications, 2003, (218):1-5
    42 U.Persson. Measurement of Surface Roughness Using Infrared Scattering. Measurement, 1996, 18(2):110-114
    43沙定国,实用误差理论与数据处理,北京:北京理工大学出版社,1993
    44庄保华,王少清,高精度激光三角法位移测量被测表面倾斜影响研究,计量技术,1996,2:2-5
    45赵育良,微丝直径激光测量系统的改进及提高精度的研究,光学技术,2005,1,第31卷:125-129
    46梁凤超,续志军,基于PSD的微位移传感器,传感器与微系统,2007年第26卷第3期:59-61
    47吴剑锋,王文,陈子辰,激光三角法测量误差分析与精度提高研究,机电工程,2003年第20卷第5期:89-92
    48钱晓凡,吕晓旭等,提高激光三角法测量精度的新方法,激光杂志,2000年第21卷第3期:54-56
    49 Yiping Wu. Aggregate Toughness/Abrasion Resistance and Durability/ Soundness Tests Related to Asphalt Concrete Performance in Pavement. National Center for Asphalt Technology (NCAT) Report, 1998, (4):1-4
    50 Prithvi S.Kandhal. Aggregate Tests for Hot Mix Asphalt: State of the Practice, National Center for Asphalt Technology (NCAT) Report, 1997, (6):1-10
    51周开学,李书光.误差与数据处理理论.山东:石油大学出版社,2002
    52王广林,李云峰一种有效的粗大误差判别方法.计测技术,2005,06:19-23
    53杨茂兴.小样本容里测量数据中粗差的剔除.计里与测试技术,2005,6:22-25
    54原安娟,王吉有,几种软件在物理实验数据处理中的应用比较.大学物理实验,2007,3:16-18
    55王炳雪,史忠科等,时间序列曲线盒维数的一种快速算法,系统工程,2000年7月第18卷第4期:68-72
    56周瑶,万方良等,基于Mapinfo+Arcview+Excel的线体分形方法,广西科学院学报,2008,24(1):7-10
    57闫沛文,童创明,基于BMIA\CAG快速算法的粗糙面散射特性计算,上海航天,2008年第2期:19-21
    58舒宁,苏俊英,高光谱影像光谱响应曲线分维计算,遥感应用,2009,1:23-26
    59琚正挺,宣天鹏,分形计算方法及在材料表界面中的应用,稀有金属快报,2006年25卷第3期:1-5
    60陈开端,粗骨料表面分维的研究,福建建材,2009,1:12-14
    61刘明芹,张晓光,一种计算图像分形维数的有效方法,西安科技大学学报,2009年5月第29卷第3期:369-371
    62李增华,成秋明,云南个旧期北山七段玄武岩中磁黄铁矿结构变化分形特征,地球科学—中国地质大学学报,2009年3月第34卷第2期:275-280
    63徐利民,吴瑛,一种改进的时-空二维超分辨分维估计方法,现代电子技术,2003年第7期:56-59
    64 E.Charkaluk, M.Bigerelle, A. Iost. Fractals and fracture. Engineering Fracture Mechanics, 1998,(61):119-13
    65 Mohsen A.Issa, Mahmoud A. Issa, Md.S.Islam, A.Chudnovsky. Fractal Dimension-a Measure of Fracture Roughness and Toughness of Concrete. Engineering Fracture Mechanics, 2003, (70):125-137
    66 Michael Costa. Fractal Description of Rough Surfaces for Haptic Display. Doctor Paper of Stanford University, 2000:90-94
    67 Stephane Buczkowski, Patrice Hildgen, Louis Cartilier. Measurement of Fractal Dimension by Box-Counting: A Critical Analysis of Data Scatter. Physica A, 1998, (252):23-27
    68闫沛文,童创明,SMFSIA/CAG快速计算二维分形粗糙面的电磁散射特性,系统工程与电子技术,2009年9月第31卷第9期:2117-2121
    69李启楷,张跃等,一维分形曲线与分维测量,中国体视学与图像分析,1998年9月第3卷第3期:182-188
    70邹新月,吕先进,时间序列关联维数计算方法及其实证分析,系统工程,2002年7月第20卷第4期:77-80
    71杨文强,时间序列关联维的计算方法及程序,物探化探计算技术, 1996年11月第18卷第4期:339-342
    72 Maxence Bigerelle, Alain Iost. Statistical Artefacts in the Determination of the Fractal Dimension by the Slit Island Method. Engineering Fracture Mechanics, 2004,(71):1082-1083
    73 Ramitha Wettimuny, Dayakar Penumadu, M.ASCE. Application of Fourier Analysis to Digital Imaging for Particle Shape Analysis, 2004, (18)1:3-7
    74 Prithvi S.Kandhal, John B.Motter, Maqbool A.Khatri. Evaluation of Particle Shape and Texture Manufactured Versus Natural Sands. National Center for Asphalt Technology (NCAT) Report, 1991, (3):1-10
    75 A.K.H. Kwan, C.F. Mora, H.C. Chan. Particle Shape Analysis of Coarse Aggregate Using Digital Image Processing. Cement and Concrete Research,1 999, (29):1403–1410
    76周新聪,萧汉梁等,磨损表面轮廓曲线分形维数的计算方法,武汉理工大学学报(交通科学与工程版),2001年12月第25卷第4期:419-422
    77黄继成,黄彭,沥青混合料集料分维数值和矿料间隙率的关系,同济大学学报(自然科学版),2007年11月第35卷第11期:1481-1486
    78谢淑云,成秋明,矿物微观结构的多重分形,地球科学—中国地质大学学报,2009年3月第34卷第2期:263-268
    79许慧斌,梁伟文,激光分形烧结快速成形装置的研制,机电工程,1999年第6期:7-10
    80汪慰军,吴昭同,基于分形的表面形貌特征描述与评定参数的研究,计量学报,1998年4月第19卷第2期:146-151
    81王桥,吴纪桃,基于地学图形数据的地表分维计算方法研究,中国图象图形学报,1997年4月第2卷第4期:220-224
    82林道云,胡小芳,基于Matlab的断面分维求算方法研究,煤炭技术,2009年12月第28卷第12期:148-151
    83刘小君,表面形貌的分形特征研究,合肥工业大学学报(自然科学版),2000年4月第23卷第2期:236-238
    84杜跃鹏,原新生,Mtlab在分形几何中的应用,平顶山师专学报,2001年11月第16卷第4期:27-30
    85周后云,Matlab软件在分形几何上的应用,湖南工业职业技术学院学报,2008年8月第8卷第4期:148-150
    86朱智伟,莫家庆,Koch曲线的分形维数及计算机模拟,西江大学学报,2000年第2期:26-32
    87 A.Kuhnle, G.Meyer, S.W,Hla, K.-H.Rieder. Understanding atom movement during lateral manipulation with the STM tip using a simple simulation method. Surface Science.499(2002)15-23
    88 Dietzsch M,PapenfuβK, HartmannT.The Motif method-a suitable description for functional, Manufactural and Metrological Requirements.Int.J.Mach.Tools Manufact.,1998,38(5-6):625-632
    89 N.K.Myshkin,A.Ya.Grigoriev,S.A.Chizhik,K.Y.Choi,M.I.Petrokovets.Surface roughness and texture analysis in microscale.Wear,2003,254:1001–1009
    90 B.Chicoa,L.Martinezb,F.J.Perezb.Nitrogen ion implantation on stainless steel:AFM study of surface modification. Applied Surface Science 243(2005):409–414
    91 Laetitia Soukiassian, Andrew J. Mayne a,Marilena Carbone b,G_erald Dujardin.Atomic wire fabrication by STM induced hydrogen desorption. Surface Science 528(2003):121–126
    92游俊富,王虎等.扫描探针显微镜在粗糙度、纳米尺寸、表面形貌观测方面的应用.Modern Scientific Instruments.2003(2):9-12
    93 N.K.Myshkin,A.Y.Grigoriev etc.Surface roughness and texture analysis in microscale. Wear. 2003(254):1001-1009
    94管志勇,路卫卫,建筑物地基沉降曲线的分形特征分析,岩土力学,2008年5月第29卷第5期:1415-1419
    95马德刚,张书廷,污泥干燥速度曲线的分形维数分析,天津大学学报,2007年10月第40卷第10期:1119-1205
    96王安良,小波变换方法评价曲线的分形特征,机械工程学报,2002年5月第38卷第5期:80-86
    97罗旭,程承旗,基于三维激光扫描成像系统的树木干曲线的分形特征,水土保持研究,2007年10月第14卷第5期:372-377
    98邓冠铁,关于平面曲线的分形维数,数学研究与评论,1996年2月第16卷第1期:153-154
    99袁长良,表面微观形貌的分形特征与模拟,中国机械工程,1997年第8卷第5期:78-83
    100黄宝涛,田伟平等,沥青路面抗滑性能定量评价的分形方法,中国公路学报,2008年7月第21卷第4期:12-18
    101公路沥青路面设计规范(1997版),北京:交通出版社,1997
    102公路沥青路面设计规范(2007版),北京:交通出版社,2007
    103严家伋.道路建筑材料(第三版).人民交通出版社, 1996
    104沈金安.沥青及沥青混合料路用性能.人民交通出版社, 2001
    105沙庆林.高速公路沥青路面早期破坏现象及预防.人民交通出版社, 2001
    106吕伟民.沥青混合料设计原理与方法.同济大学出版社, 2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700