干旱区人工杨树林群落同荒漠灌木群落蒸腾耗水对比研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文为了比较分析干旱区人工林建设前后优势树种蒸腾耗水的变化,于2009年8月至2010年10月,利用热扩散技术(Prober12TDP)和热量平衡技术(Flow4)分别对克拉玛依人工林俄罗斯杨、新疆杨和人工林外围荒漠灌木梭梭、柽柳的树干液流进行了观测,同时还观测了太阳辐射、光合有效辐射、空气温度、空气湿度、土壤温度、土壤湿度、风速等环境因子,比较分析了人工林乔木和荒漠灌木液流变化特征,液流同环境因子的关系,在植被调查的基础上对乔木林、灌木林林分蒸腾耗水进行推算。研究结果表明:
     (1)人工乔木和荒漠灌丛日液流通量均呈现单峰值变化,峰值时出现小幅波动,并随径级的增大波动幅度增大;人工乔木液流通量日动态曲线平滑,荒漠灌木液流通量日动态曲线曲折。
     (2)太阳辐射、光合有效辐射、风速、空气湿度对人工乔木和荒漠灌木液流起都到主要影响作用。影响梭梭和柽柳液流的主导影响因子为光合有效辐射,其次为风速;影响俄罗斯杨和新疆杨液流主导因子为空气温度,其次为光合有效辐射。多个环境因子、单个主导环境因子均可以用来拟合液流通量,多个环境因子的拟合效果优于主导环境因子,但主导环境因子的拟合方程较为简单,使用方便。
     (3)在降雨天气下的人工乔木和荒漠灌丛日液流通量均比晴天有所降低,白天降雨时液流通量降低,降低的幅度较小;晚上有降雨时刻液流通量增大,增大的幅度较大。在夜晚降雨时乔木在降雨前后出现液流通量增大的现象,其它情况均减小;在夜晚降水前和白天降水后的当天晚上荒漠灌木会出现液流增大的现象,其它情况均减小。在雨天,柽柳液流较梭梭液流变化剧烈。
     (4)人工林乔木和荒漠灌木液流速率同胸径或枝直径的关系可以用不同的函数进行拟合。俄罗斯杨胸径同液流速率的关系可用对数函数来拟合,新疆杨的可用一元线性函数来拟合;梭梭枝液流速率同枝直径可以使用指数函数进行拟合,柽柳的可用幂函数拟合。
     (5)当胸径小于14.46cm时,俄罗斯杨的蒸腾耗水能力大于新疆杨,反之则蒸腾耗水能力小于新疆杨。克拉玛依碳减排基地杨树以胸径小于10cm的树木为主,就目前林木生长状况,新疆杨较俄罗斯杨更为节水。
     (6)通过胸径-边材面积可作为转化纯量来推算人工林林分蒸腾耗水量。经计算克拉玛依人工碳汇林日蒸腾耗水量为30.84t/hm~2d。枝基径-冠幅做为转换纯量,可以推算荒漠灌木林分蒸腾耗水量。梭梭液流速率同枝直径可用指数函数进行拟合,丛蒸腾耗水量同冠幅可用幂函数进行拟合;经计算克拉玛依造林碳汇基地蒸腾耗水量的背景值为1.62t/hm2d。人工杨树林是荒漠梭梭林蒸腾耗水的19.04倍。基地每天蒸腾耗水为92451.54t/d,比造林前增大了84433.72t/d,水成本为2760.49元/d(按0.03元/m3计算)。从生长季内由蒸腾耗水所造成的总花费为42.24万元。
     (7)同种种植模式下,不同种植方式下的林分蒸腾耗水量差异较大。单沟单植模式的4.5×2的种植方式下俄罗斯杨林分的蒸腾耗水最高,蒸腾耗水量为49.65t/hm2d。单沟双植模式为4.5×0.75×0.5,蒸腾耗水量为60.86t/hm2d。八米一带的模式为8×2×2,蒸腾耗水量为8.39t/hm2d。同一种植密度下,单沟双植蒸腾耗水量最大,其次为单沟单植,八米一带最小,蒸腾耗水量依次为:48.06 t/hm2d,34.36 t/hm2d,24.88 t/hm2d。
     本文的结论可为生态学的干旱区生态承载力,土壤-植物-大气连续体研究提供基础数据,可为区域生态管理提供参考。
For contrasting and analysis the transpiration water consumption between plantation commynity and desert shrub community in Arid Region, Flow4-DL and Prober12 were used to measure P.alba,P.xrusskii, Haloxylon ammodendron,Tamarix elongate sap-flow dynamics and the envirement factors in Karamay Cabe forest and the outer margin during August, 30 , 2009– October, 30, 2010.The change characters of plantation tree and desert shrub sap flow and the method to caculate tree and shrub stands transpiration water consumption were contrasted and analysised. The cheif results were show as followed:
     (1). The sap flow of plantation tree and desert shrub change as a single-peak curve and came in being small-scope fluctuation at peak time. The scope of fluctuation at peak time bacame bigger with DBH or diameter of branch increased. The dyanamix curve of plantation sap flow was smoother than desert shrub’s.
     (2).Solar radiation,PAR,wind speed,Air humidity were the main factor of plantation and desert shrub sap flow. The firstly domination factor of Haloxylon ammodendron,Tamarix elongate sap-flow was PAR and Wind speed second. The first and second domination factor of P.alba, P.xrusskii were respectivly Air humidity and PAR. Same main factors and a dominating factor can be used to fit the sap flow. The fittings result of the former was better than the later,but the later’s fitting equetion was easy and efficient,so we select the domination factor to fit sap flow.
     (3). The sap flow of plantation and desert shrub would decreased in rainy day than in dry day. When the rain occurred during a day ,the sap flow would decreased and the range was small; when during a night, the sap flow would increased than dry night and the range was great. The plantation’s sap flow would increased only when it was raining and one or two hours before and after the rain and decrease in whole rainy day. The desert shrub’sap flow would increased before raining in night and the flowing night of the rainy day. The change of Tamarix elongate’sap flow in rainy day was great than The change of Haloxylon ammodendron’s.
     (4). The sap velocity and DBH / diameter of branch were significantly correlated and the relation between them could be use different functions to fit and have been determind. The relation between P.xrusskii sap velocity and DBH could fit with logarithmic function, P.alba was line function; The relation between Haloxylon ammodendron’s sap velocity and diameter of branch could fit with exponential function, and Tamarix elongate’s power function.
     (5). The fitting equation which fitted the relations of sap velocity and DBH / diameter of branch can compare the ability of different plant’transpiration water consumption. The ability of P.xrusskiil’s transpiration water consumpution was higher than P.alba’s , the drought resistant ability was lower than P.alba’s and conversely P.xrusskii’s transpirtion water consumption ability was lower and drought resistant ability was higher than P.alba’s. Haloxylon ammodendron’s transpiration water consumption abilty was lower than P.xrusskiil’s and the drought resistant ability was higher when diameter of branch during 1cm - 3cm. P.alba’s water-saving was bigger than P.xrusskiil’s as a whole,becouse there were mainly plant whose DBH wre less 10cm.
     (6). It was advisable to use diameter and sapwood area as convert scalar to calculate plantation stands transpiration water consumption. There was a power regression equtation between P.xrusskiil and P.alba’s sapwood area and DBH. The poplar plantation’transpiration water consumption was 30.84t/hm2d by This equtation and fitting equation which fitted the relations of sap velocity and DBH. The diameter of branch and crown of shurb could be used as convert scalar to caculate the desert shurb stands transpiration water consumption. There was a exponential regression equtation between Haloxylon ammodendron’s transpiration water consumption and crown. The transpiration water consumption is 19.04 times as much as Haloxylon ammodendron’s. The stands’transpiration water consumption of Karamy cabe forest was 1.62t/hm2d before the base builting up and 92451.54t/d now, recreased by 84433.72t/d. The cost of water was 2760.49yuan/d. It would taken 422.4 thousand Yuan in whole growing season becouse of the transpirantion water consumption.
     (7). The stands transpiration water consumption in poplar plantation varies with planting model,planting way and planting density, so there are the highest water use efficency in the same mageagement patten. The highest water use efficiency of P.alba’s stands planting by the maneagement of single-channel and single-planting is 4.5m×2m with the water consumption 49.65t/hm2d. Then it is 4.5m×0.75m×0.5m in the maneagement patton of single-channel and double-planting with the water consumption 60.86t/hm2d, 8m×2m×2m in zoon planting with internal 8 maters with water consumption 8.39t/hm2d. In the same planting idensity ,the water consumption of single-channel and double-planting is highest,followed by single-channel and double-planting’s, and that of zoon planting with internal 8 maters is lowest, and 48.06 t/hm2d,34.36 t/hm2d,24.88 t/hm2d respectively.
引文
[1].刘浩峰,刘玉燕,吴小冬,兰瑞.开拓创新超前谋划提前布局碳减排战略[J].干旱环境监测, 2010,24(2):103-107.
    [2].毕欣欣,李玉娥,高清竹,万运帆,秦晓波.减少发展中国家毁林及森林退化排放(Redd)的各方观点及对策建议[J].气候变化研究进展, 2010,1):65-69.
    [3].张宜生,黄安民,叶克林.低碳经济视角下木材工业的发展展望[J].木材工业, 2010,2:17-20.
    [4].姜砺砺.当今二氧化碳减排措施的综合分析与比较[J].能源研究与信息, 2010,1:15-20.
    [5].吴进琼,梁机.从文献计量分析看我国梭梭的研究现状[J].农业图书情报学刊, 2007,19(1):152-154.
    [6].陈敏,陈亚宁,李卫红.塔里木河中游地区柽柳对地下水埋深的生理响应[J].西北植物学报, 2008,28(7):1415-1421.
    [7].张雷,孙鹏森,刘世荣.树干液流对环境变化响应研究进展[J].生态学报, 2009,29(10):5600-5610.
    [8].郭孟霞,毕华兴,刘鑫,李俊,郭超颖,林靓靓.树木蒸腾耗水研究进展[J].中国水土保持科学, 2006,4(4):114-120.
    [9].Granier A, Huc R,ST Barigah. Transpiration of natural rain forest and its dependence on climatic factors[J].Agric For Meteorol, 1996,78: 19-29.
    [10].Granier A, Loustau D,N Breda. A generic model of forest canopy conductance dependent on climate, soil water availability and leaf area index[J].Annals of Forest Science, 2000,57:755-765.
    [11].刘奉觉,Edw W. R. N.杨树树干液流时空动态研究[J].林业科学研究, 1993,6(4):368-372.
    [12].李海涛,陈灵芝.应用热脉冲技术对棘皮桦和五角枫树干液流的研究[J].北京林业大学学报, 1998,20(1):1-6.
    [13].孙鹏森,马履一.油松树干液流的时空变异性研究[J].北京林业大学学报, 2000,22(5):1-6.
    [14].高岩,张汝民,等.应用热脉冲技术对小美旱杨树干液流的研究[J].西北植物学报, 2001,21(4):644-649.
    [15].马履一,王华田,林平.北京地区几个造林树种耗水性比较研究[J].北京林业大学学报, 2003,25(2):1-7.
    [16].熊伟,王彦辉,于澎涛,刘海龙,徐丽宏,时忠杰,莫菲.华北落叶松树干液流的个体差异和林分蒸腾估计的尺度上推[J].林业科学, 2008,44(1):34-40.
    [17].常学向,赵文智.荒漠绿洲农田防护树种二白杨生长季节树干液流的变化[J].生态学报, 2004,24(7):1436-1441.
    [18].司建华,冯起,张小由.热脉冲技术在确定胡杨幼树干液流中的应用[J].冰川冻土, 2004,26(4):503-508.
    [19].张小由,龚家栋,周茂先,司建华.应用热脉冲技术对胡杨和柽柳树干液流的研究[J].冰川冻土, 2003,25(5):585-590.
    [20].张小由,康尔泗,司建华,周茂先.胡杨蒸腾耗水的单木测定与林分转换研究[J].林业科学, 2006,42(7):28-32.
    [21].赵明,李爱德,王耀琳,张德魁,贾宝全.沙生植物的蒸腾耗水与气象因素的关系研究[J].干旱区资源与环境, 2003,17(6):131-137.
    [22].张小由,龚家栋.利用热脉冲技术对梭梭液流的研究[J].西北植物学报, 2004,24(13):2250-2254.
    [23].赵从举,康慕谊,徐广才,雷加强.非灌溉条件下不同年龄梭梭蒸腾耗水比较[J].干旱区研究, 2006,23(2):295-301.
    [24].解婷婷,张希明,梁少民,单立山,杨小林,花永辉.不同灌溉量对塔克拉玛干沙漠腹地梭梭水分生理特性的影响[J].应用生态学报, 2008,19(4):711-716.
    [25].常学向,赵文智,张智慧.荒漠区固沙植物梭梭(Haloxylon ammodendron)耗水特征[J].生态学报, 2007,27(5):1826-1837.
    [26].屈艳萍,康绍忠,夏桂敏,李王成.甘肃石羊河流域人工种植长穗柽柳树干液流量变化规律研究[J].西北植物学报, 2005,25(11):2259-2265.
    [27].周茅先,肖洪浪.,张小由,龚家栋.额济纳绿洲柽柳群落蒸散特征的初步分析[J].中国沙漠, 2004,24(4):479-483.
    [28].常学向,赵文智.黑河中游沙枣树干液流的动态变化及其与林木个体生长的关系[J].中国沙漠, 2004,24(4):473-478.
    [29].马建新,陈亚宁,李卫红,黄湘.荒漠防护林典型树种液流特征及其对环境因子的响应[J].生态学报, 2010,3:579-586.
    [30].张小由,康尔泗,张智慧,周茂先,司建华.沙枣树干液流的动态研究[J].中国沙漠, 2006,26(1):146-151.
    [31].冯愿楠,朱清科,毕华兴.晋西黄土区沙棘与冰草蒸腾耗水规律研究[J].水土保持研究, 2008,15(2):180-183.
    [32].刘广全,李文华,王鸿哲,马松涛,燕爱玲.沙棘苗木蒸腾耗水对土壤水分含量的响应[J].国际沙棘研究与开发, 2004,2(4):21-26.
    [33].杨新民.黄土高原灌木林地水分环境特性研究[J].干旱区研究, 2001,18(1):8-13.
    [34].于红博,杨劼,臧春鑫,徐延达.皇甫川流域中国沙棘树干液流日变化及其相关因子[J].生态学杂志, 2008,27(7):1071-1076.
    [35].张友焱,周泽福,党宏忠,李卫.利用tdp茎流计研究沙地樟子松的树干液流[J].水土保持研究, 2006,13(4):78-80.
    [36].夏桂敏,康绍忠,李王成,王锋,屈艳萍.甘肃石羊河流域干旱荒漠区柠条树干液流的日季变化[J].生态学报, 2006,26(4):1186-1193.
    [37].司建华,冯起,张小由,常宗强,席海洋,张凯.极端干旱区荒漠河岸林胡杨生长季树干液流变化[J].中国沙漠, 2007,27(3):442-447.
    [38].周孝明,陈亚宁,李卫红,何斌,郝兴明.塔里木河下游胡杨树干液流特征研究[J].中国沙漠, 2008,28(4):673-678.
    [39].夏永秋,邵明安.黄土高原半干旱区柠条(Caragana korsh inskii)树干液流动态及其影响因子[J].生态学报, 2008,28(4):1376-1382.
    [40].张劲松,孟平,等.植物蒸散耗水量计算方法综述[J].世界林业研究, 2001,14(2):23-28.
    [41].司建华,冯起,张小由,张艳武,苏永红.植物蒸散耗水量测定方法研究进展[J].水科学进展, 2005,16(3):450-459.
    [42].包俊江,刘芳.植物群落蒸散耗水量研究进展[J].内蒙古环境保护, 2005,17(1):58-60.
    [43].魏天兴,朱金兆.林分蒸散耗水量测定方法述评[J].北京林业大学学报, 1999,21(3):85-91.
    [44].陈杰,齐亚东.对应用氚水法测定林木蒸腾量的评价[J].东北林业大学学报, 1990,18(3):105-113.
    [45].满荣洲,董世仁等.华北油松人工林蒸腾的研究[J].北京林业大学学报, 1986,8(2):1-7.
    [46].苏建平,康博文:.我国树木蒸腾耗水研究进展[J].水土保持研究, 2004,11(2):177-179.
    [47].孙鹏森,马履一,水源保护树种耗水特性研究与应用[M]. 2002,中国环境科学出版社:北京.
    [48].巨关升,吴晓春.稳态气孔计与其它3种方法蒸腾测值的比较研究[J].林业科学研究, 2000,13(4):360-365.
    [49].刘奉觉,Edw W. R. N.树木蒸腾耗水测算技术的比较研究[J].林业科学, 1997,33(2):117-126.
    [50].李小磊,张光灿,周泽福,刘霞,陈新军,张淑勇.黄土丘陵区不同土壤水分下核桃叶片水分利用效率的光响应[J].中国水土保持科学, 2005,3(1):43-47.
    [51].王华田.林木耗水性研究述评[J].世界林业研究, 2003,16(2):23-27.
    [52].李国泰. 8种园林树种光合作用特征与水分利用效率比较[J].林业科学研究, 2002,15(3):291-296.
    [53].Baker J M,Van Bavel CHM. Measurement of mass flow of water in the stems of herbaceous plants[J].Plant Cell Environ, 1987,10:777-782.
    [54].Green S R,Clothier B E. Water use of kiwifruit vines and apple trees by heat pulse technique[J].J Exp Bot, 1988,39(198):115-123.
    [55].Hatton T J, Moore,Reece P H. Estinmating stand transpiration in a Eucalyptus populnea woodland with the heat pulse method : Measurement errors and sampling strategies[J].Tree Physiol, 1995,15:219-227.
    [56].Koster B, Schulze ED, Kelliher F M,al. Et. Transpiration and canopy conductance in a pristine broad-leaved forest of Nothofagus : An analysis of sap flow and eddy correlation measurements[J].Oecologia, 1992,91:350-359.
    [57].Steinberg S, Van Bavel CHM,Mc Farland MJ. A gauge to measure mass flow rate of sap in stems and trunks of woody plants[J].J Am Soc Hort Sci, 1989,114:466-472.
    [58].Grimes VL, Morrison J IL,Simmonds L P. Including the heat storage term in sap flow measurements with the stem heat balance method[J].Agric For Meteorol, 1995,74:1-25.
    [59].Weibei F P,Boersma K. An improved stem heat balance method using analog heat control[J].Agric For Meteorol, 1995,75:191-208.
    [60].Wiltshire JJJ, Wright CJJ, Coll JJ,al. Et. Effects of heat balance stem flow gauges and associated silicone compound on ash trees[J].Agric For Meteorol, 1995,73:135-142.
    [61].罗中岭.热量法茎流测定技术的发展及应用[J].中国农业气象, 1997,18(3):52-56.
    [62].Marshall D C. Measurement of sap flow in conifers by heat transport[J].Plant Physiol, 1958,33(385-396.
    [63].Swanson R H,Whitfield D W A. A numerical analysis of heat pulse velocity theory and practice[J].J Exp Bot, 1981,32:221-239.
    [64].刘奉觉,郑世揩,巨关升,等.研究树干液流时空动态研究[J].林业科学研究, 1993,6(4):368-372.
    [65].刘发民.利用校准的热脉冲方法测定松树树干液流[J].甘肃农业大学学报, 1996,31(2):167-170.
    [66].白云岗,宋郁东,周宏飞,柴仲平.应用热脉冲技术对胡杨树干液流变化规律的研究[J].干旱区地理, 2005,28(3):373-376.
    [67].孙慧珍,周晓峰,康绍忠.应用热技术研究树干液流进展[J].应用生态学报, 2004,15(6):1074-1078.
    [68].Carl J,Bernacchi. Temperature Response of mesophyll conductance. Implication for the determination of Rubisco Enzyme Kinetics and for Limitations to photosynthesis in Vivo[J].Plant Physiology, 2002,130:1992-1998.
    [69].马长明,管伟,叶兵,袁玉欣,王金凤,李淑梅.利用热扩散式边材液流探针(Tdp)对山杨树干液流的研究[J].河北农业大学学报, 2005,28(1):39-43.
    [70].王华田,马履一.利用热扩式边材液流探针(Tdp)测定树木整株蒸腾耗水量的研究[J].植物生态学报, 2002,26(6):661-667.
    [71].Ansley RJ, Dugas WA, Heuer ML,al. et. Stem flow and porometer measurements of transpiration from honey mesquitr[J].J Exp Bot, 1994,45:847-856.
    [72].Dugas WA, Wallace J S, Allen SJ,al. Et. Heat balance ,porometer ,and deuterium estimates of transpiration from potted trees[J].Agric For Meteorol, 1993,64:47-62.
    [73].Kelliher F M, Kostner B M, Hollinger D Y,al. Et. Transpiration ,xylem sap flow ,and tree transpiration in a New Zealand broad-leaved forest[J].Agric For Meteorol, 1992,62:53-73.
    [74].Schulze ED, Cermak J, Matyssek R,al. Et. Canopy transpiration and water fluxes in the xylem of the trunk of Larix and Picea trees -A comparison of xylem flow , porometer and cuvette measurements[J].Oecologia(Berlin), 1985,66:475-483.
    [75].Granier A, Bobay V, Gash J HC,al. Et. Vapour flux density and transpiration rate comparisons in a stand of maritime pine ( Pinus pinaster Ani.) in Les Landed forest[J].Agric For Meteorol, 1990,51(3-4):309-319.
    [76].Koster B, Biron P, Siegwolf R,al. Et. Estimates of water wapour flux and canopy conductance of scots pine at the tree level utilizing different xylem sap flow method[J].Theor Appl Climatol, 1996,53:105-113.
    [77].Saugier B, Granier A,Pontailler J Y. Transpiration of a boreal pine forest measured by branch bag, sap flow and micrometeorological methods[J].Tree Physiology, 1997,17:511-519.
    [78].Decker J P,Skau CM. Simultaneous studies of transpiration rate and sap velocity in trees[J].Plant Physiol, 1963,213-215.
    [79].Dye PJ, Olbrich B W,Calder IR. A comparison of the heat pulse method and deuterium tracing method for measuring transpiration from eucalyptus grandis tree[J].J Exp Bot, 1992,43(343):343-337.
    [80].王华,赵平,蔡锡安,王权,马玲,饶兴权,曾小平.马占相思夜间树干液流的分配及其对整树蒸腾估算的影响[J].植物生态学报, 2007,31(5):777-786.
    [81].Arndt CH. The movement of sap in Coffea arabica[J].A mer J Bot, 1929,16:179-190.
    [82].Granier A,Loustau D. Measuring and modeling the transpiration of a maritime pine canopy from sap-flow data[J].Agric For Meteorol, 1994,71(1-2):61-81.
    [83].Lassoie J P, David RM,Leo J F. Transpiration studies in Douglas fir using the heat pulse technique[J].For Sci, 1977,23(3):377-390.
    [84].Miller David R, Vavrina CR,Christensen TW. Measurement of sap flow and transpiration in ring-porous oaks using a heat pulse velocity technique[J].For Sci, 1980,26(3):485-494.
    [85].Soledad Jimenez, Nadezhda Nadezhdina, Jan Cermak,al. Et. Radial variation in sap flow infive Laurel forest tree species in Tenerife,Canary Islands[J].Tree Physiol, 2000,20:1149-1156.
    [86].Stan D W,Anthony W K. Radial variation in sap velocity as a function of stem diameter and sapwood thickness in yellow poplar trees[J].Tree Physiol, 2000,20:511-518.
    [87].Arneth A, FM Kelliher, Bauer G,al. Et. Environmental regulation of xylem sap flow and total conductance of Larix gmelinii tress in eastern Siberia[J].Tree Physiol, 1996,16:247-255.
    [88].Koster B, Schulze ED, Kelliher F M,al. Et. Transpiration and canopy conductance in a pristine broad-leaved forest of Nothofagus: An analysis of sap flow and eddy correlation measurements[J].Oecologia, 1992,91:350-359.
    [89].Martin TA, Brown KJ, Cermak J R,al. Et. Crown conductance and tree and stand transpiration in a second-growth Abies amabilis forest[J].Can J For Res, 1997,27(6):797-808.
    [90].Jarvis P G,McNaughton KG. Stomatal control of transpiration : scaling up from leaf to region[J].Adv Ecol Res, 1986,15:1-49.
    [91].Hinckley TM, Brooks J R, Cermak J,al. et. Water flux on a hybrid poplar stand[J].Tree Physiol, 1994,14:1005-1018.
    [92].Meinzer FC, Coldstein G, Jachson P,al. et. Enviromental and physiological regulation of transpiration in tropical forest gap species : The influence of boundary layer and hydraulic properties[J].Oecologia, 1995,101:514-522.
    [93].Corchard H, Breda N,Granier A. Whole tree hydraulic conductance and water loss regulation in Quercus during drought : Evidence for stomatal control of embolism?[J].Ann Sci For, 1996,53:197-206.
    [94].Aston MJ,Lawlor D W. The relationship between transpiration, root water uptake ,and leaf water potential[J].J Exp Bot, 1979,30:169-181.
    [95].Kuppers M. Carbon relations and competition between woody species in a central European hedgerowⅡ. Stomatal responses ,water use ,and hydraulic conductivity in the root/ leaf pathway[J].Oecologia, 1984,64:344-354.
    [96].Loustau D, Berbigier P, Roumagnac P,al. et. Transpiration of a 64- year old maritime pine stand in PortugalⅠ. Seasonal course of water flux through maritime pine[J].Oecologia, 1996,107:33-42.
    [97].Waring R H, Whitehead D,Jarvis P G. The contribution of stored water to transpiration in Scots pine[J].Plant Cell Environ, 1979,2:309-317.
    [98].Sakuratani T, Brent EC,Steven RG. Measurement of sap flow in the roots, trunk and shootsof an apple tree using heat pulse and heat balance methods[J].J Agric Meteorol, 1997,53(2):141-145.
    [99].Koster B, Schulze ED, Kelliher F M,al. Et. Transpiration and canopy consuctance in a pristine borad-leaved forest of Nothofagus : An analysis of sap flow and eddy correlation measurements[J].Oecologia, 1992,91:350-359.
    [100].Teskey RO ,DW Sheriff. Water use by Pinus radiata trees in a plantation [J].Tree Physiol, 1996,16:273-279.
    [101].Vertessy R A, Benyon R G, O' Sullivan S K,al. Et. Relationships between stem diameter ,sapwood area ,leaf area ,and transpiration in a young mountain ash forest[J].Tree Physiol, 1995,15:559-567.
    [102].Lu P, Biron P, Breda N,al. Et. Water relations of adult Norway spruce (Picea abies L.) under drought in the Vosges mountains : Water potential ,stomatal conductance and transpiration[J].Ann Sci For, 1995,52:117-129.
    [103].Thorburn P J, Hatton T J,Walker GR. Combining measurements of transpiration and stable isotopes of water to determine ground water discharge from forests[J].J Hydrol, 1993,50:563-587.
    [104].Devitt D A, Sala A, Mace K A,al. Et. The effect of applied water on the water use of saltcedar in a desert ripatian environment[J].J Hydrol, 1997,192(1/4):223-246.
    [105].Morikawa Y, Hattori S,Kiyono Y. Transpiration of a 31-yeat-old Chamaecyparis obtusa Endl. stand before and after thinning[J].Tree Physiol, 1986,2(1/3):105-114.
    [106].Breda N, Cochard H, Dreyer E,al. Et. Water transfer in a mature oak stand ( Quercus petraea ) :Seasonal evolution and effects of a severe drought[J].Can J For Res, 1992,23:1136-1143.
    [107].Cienciala E, Kucera J, Lindroth A,al. Et. Canopy transpiration from a boreal forest in Sweden during a dry year[J].Agric For Meteorol, 1997,86(3-4):157-167.
    [108].David T S, Ferreira M I, David J S,al. Et. Transpiration from a mature Eucalyptus globulus plantation in Portugal during a sping-summer period of progressively higher water deficit[J].Oecologia, 1997,110(2):153-159.
    [109].Loustau D, Granier A,Hadj Moussa F E I. Seasonal variations of sap flow in a maritime pine stand[J].Ann Sci For, 1990,21:599-618.
    [110].O' Grady A P, Eamus D,Hutley B. Transpiration increases during the dry season : Patterns of tree water use in eucalypt open Northern Australia[J].Tree Physiol, 1999,19:591-597.
    [111].Cochard H, Rodolphe M, Patrick G,al. Et. Temperature effects on hydraulic conductance and water relations of Quercus robur L.[J].J Exp Bot, 2000,51(348):1255-1259.
    [112].Granier A,Claustres J P. Water relations of a Norway spruce ( Picea abies ) tree growing in natural condition : Variation within the tree[J].Acta Oecol, 1989,10(3):295-310.
    [113].martin TA. Winter season tree sap flow and stand transpiration in an intensively-managed loblolly and slash pine plantation[J].J Sustainable For, 2000,10(1/2):155-163.
    [114].Hatton T J,Vertessy R A. Transpiration of plantation Pinus radiata estimated by the heat pulse method and the bowen ratio[J].Hydrol Proc, 1990,4:289-298.
    [115].Cermak J,Nadezhda N. Sapwood as the scaling parameter defining according to xylem water content or radial pattern of sap flow ?[J].Ann Sci For, 1998,55:509-521.
    [116].岳广阳,赵哈林,张铜会,赵学勇,赵玮,牛丽,刘新平.小叶锦鸡儿灌丛群落蒸腾耗水量估算方法[J].植物生态学报, 2009,33(3):508-515.
    [117].楚光明,潘存德,晋瑜,王梅,何江成,蒙敏.克拉玛依农业综合开发区外围荒漠植被主要植物种的生态位分析[J].新疆农业科学, 2005,42(1):9-13.
    [118].马李一,孙鹏森,等.油松、刺槐单木与林分水平耗水量的尺度转换[J].北京林业大学学报, 2001,23(4):1-5.
    [119].岳广阳,张铜会,刘新平,移小勇.热技术方法测算树木茎流的发展及应用[J].林业科学, 2006,42(8):102-108.
    [120].司建华,冯起,张小由,常宗强,席海洋.热脉冲技术测定树干液流研究进展[J].冰川冻土, 2007,29(3):475-481.
    [121].Smith DM,SJ Allen. Measurement of sap flow in plant stems[J].Journal of the American Society for Horticultural Science, 1996,117:351-356.
    [122].Fisher R A, Williams M,A Oladacosta. The response of an Eastern Amazonian rain forest to drought stress: results and modelling analyses from a throughfall exclusin experiment[J].Global Change Biology, 2007,13:2361-2378.
    [123].白云岗,张江辉,王新友,李冰,潘洪彬.塔里木盆地胡杨单木与林分耗水量的尺度转换研究[J].中国水利, 2008,5):24-25.
    [124].孙龙,王传宽,杨国亭,张全智,周晓峰.应用热扩散技术对红松人工林树干液流通量的研究[J].林业科学, 2007,43(11):8-14.
    [125].王华田,邢黎峰,马履一,孙鹏森.栓皮栎水源林林木耗水尺度扩展方法研究[J].林业科学, 2004,40(6):170-175.
    [126].Barbour M, Hunt J E,Walcroft A S. Components of ecosystem evaporation in a temperate coniferous rainforest , with canopy transpiration scaled using sapwood density[J].New Phtologist, 2005,165:549-558.
    [127].Chabot R, Bouartf S, Zimmer D Chaumont C,S Moueau. Evaluation of the sap flow determined with a heat balance method to measure the transpiration of a surgarcanecanopy[J].Agricultural Water Management, 2005,75:10-24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700