轨道结构随机振动和Ⅲ型轨枕可靠性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于车辆、轨道耦合系统的思路,建立了满足高速铁路轨道结构动力分析要求的车辆—轨道空间耦合系统振动分析模型。采用该模型,将轨道不平顺视为平稳的各态历经过程,对轨道结构的随机振动规律进行了研究。更进一步,将轨道结构作为随机参数结构,把扣件刚度和道床刚度视为服从正态分布的随机变量,应用Monte Carlo随机有限元方法,对轨道结构的随机振动规律进行了研究。应用可靠度理论,对Ⅲ型混凝土轨枕应用于高速铁路的可靠性进行了研究。本文的主要研究内容和成果如下:
     1、基于车辆—轨道耦合系统的思路,建立了满足高速铁路轨道结构随机振动分析要求的车辆—轨道空间耦合系统振动分析模型。该模型为半车空间、耦合、定点模型。模型中轨道结构的钢轨采用连续弹性点支承Euler梁单元。轨枕采用刚体单元,道床在纵向和横向离散为道床块单元。模型边界采用了连续弹性支承半无限长梁单元。采用Hertz非线性轮轨接触关系实现车辆系统与轨道系统的耦合。
     2、首次提出了人工轨道短波不平顺的概念,并采用随机波长和随机波深构造了轨道随机不平顺人工短波样本。将人工短波样本与德国高速低干扰随机不平顺样本相结合,给出了高速铁路的轨道随机不平顺样本,为研究高速铁路轨道结构的随机振动规律提供良好的基础。
     3、仿真计算了轮轨系统受轨道随机不平顺激励时,轨道结构的随机振动响应,并对计算结果进行了统计分析。
     结果表明,车速从160km/h到350km/h时,轨道结构各部件的随机振动响应中,钢轨、轨枕、道床加速度、枕上压力的概率分布均服从正态分布。车辆、轨道结构各部件的随机振动响应随着行车速度的提高,振动加速度、轮轨垂向接触力、枕上压力、路基面应力等均呈现明显增大的趋势,其中以加速度的变化最为明显,轮轨力、枕上压力、路基面应力次之,位移变化相对较小
     当行车速度从250km/h增加到350km/h时,车辆、轨道结构的振动响应有一个比较明显的变化,响应出现很大的增加,钢轨加速度由158g增加到581g,轮轨力由280kN增加到350kN,枕上压力由92kN增加到109kN。尤以振动加速度的变化最为明显,其中钢轨和轮对的振动加速度成倍增加,可见速度效应非常突出。
     4、对轨道结构各个振动参数进行了详细分析,由于轨道结构的扣件刚度和道床刚度的变化范围较大,而其他参数的变化相对较小,并且轨道结构的振动对刚度的变化比较敏感。因此,将扣件刚度和道床刚度作为服从正态分布的随机变量,并给出了这两个随机参数的模拟样本。
     5、将扣件刚度和道床刚度作为服从正态分布的随机变量得到的随机参数样本,与轨道随机不平顺样本一起,作为车辆—轨道耦合振动系统的广义激励,对轮轨系统的随机振动进行了仿真计算,并对计算结果进行了统计分析。
     (1)结果表明,轨枕加速度、道床加速度、轮轨力、枕上压力及路基面应力的极大值的分布范围均较大,钢轨加速度极大值分布范围最大,这说明钢轨加速度极大值的变化非常大。
     (2)轮轨系统随机振动响应中,钢轨、轨枕、道床加速度、轮轨力、枕上压力的极大值的概率分布在检验水平为0.05时,经χ2检验,均服从极值Ⅰ型分布。
     (3)车辆、轨道结构的随机振动响应随着行车速度的提高,呈明显增大趋势,尤其在高速情况下,增幅巨大。这说明高速铁路动力响应非常大,应引起足够重视。
     (4)轨道结构的扣件刚度和道床刚度对轮轨系统的随机振动响应影响很大,因此优化高速铁路轨道结构参数,尤其是扣件刚度和道床刚度,并保持其在较小范围内变化显得非常重要。
     (5)通过对轮轨力计算结果的研究,提出了我国各速度等级铁路设计轮载的动力系数建议值。160、200、250、300、350km/h的动力系数建议值分别为2.4、2.8、3.0、3.5、3.7。
     6、分析并提出了Ⅲ型混凝土轨枕的4种失效模式,分别为轨下截面和枕中截面在疲劳弯矩作用下的开裂失效、混凝土受压区压溃破坏失效。分别对各种失效模式对应的抗力和作用效应的影响因素进行了分析。
     7、根据Ⅲ型混凝土轨枕的实际工作状态,提出了符合Ⅲ型混凝土轨枕支承分析的计算图式。该图式设轨枕在受均布反力集度q1的基础上,以轨下截面为对称中心,附加作用一倒梯形反力集度,倒梯形集度高为(q2-q1),上底宽为(2,1+l2),下底宽为l2。基于该图式,计算了Ⅲ型混凝土轨枕的作用效应。
     8、提出了由轨枕静载抗裂试验荷载求取轨枕截面抗力,即疲劳承载弯矩和受压区混凝土边缘疲劳压应力的计算方法。
     9、给出了作用效应和抗力的分布,其中作用效应的分布服从极值Ⅰ型,抗力的概率分布服从对数正态分布。同时给出了各分布的统计特征参数及其分布函数。
     10、应用JC法,对Ⅲ型混凝土轨枕的可靠指标进行了计算。当不考虑抗力折减及作用效应发展系数时,Ⅲ型轨枕的可靠指标为3.583,失效概率为0.00017,即0.017%。当考虑抗力折减及作用效应发展系数时,Ⅲ型轨枕的可靠指标为2.909,失效概率为0.00181,即0.18%。对Ⅲ型轨枕而言,该失效概率是可以接受的。
     11、由Ⅲ型混凝土轨枕可靠度初步研究结果表明,Ⅲ型混凝土轨枕可以应用于高速铁路。
Based on the thought of interaction between vehicle and track, the spatial coupled vehicle/track vibration model was built for high speed railway track, and applied in the track irregularity, which was treated as a stationary ergodicity process. The random vibration laws of railway track were investgated. Further more, the random vibration laws were studied by using Monte Carlo random FEM (finite element method) under the condition that the track parameters of fastener stiffness and ballast stiffness are treated as random parameters obeying normal distribution. The reliability of reinforced sleeperⅢwhich will be used in high-speed railway in China was investgated.
     Main contribution and achievement in this thesis are listed below:
     1. The model of spatial coupled vehicle/track system was established for high speed railway. In the model, track irregularity movement was used instead of train movement, rail was modeled as Euler beam element, sleeper and ballast was modeled as gird body element, the boundary was modeled as half-infinite beam element, and Hertz nonlinear contact was applied between wheel and rail.
     2. The new concept of artificial short wave of track irregularity was put forward, and a sample of artificial short wave was built. In combined of the sample of short wave and the sample of low disturbance track irregularity of high speed railway in German, a simulated sample of random track irregularity was established to study the vibration laws of track in high speed railway.
     3. The vibration of vehicle/track system was calculated under the excitations of random track irregularity, and the results were statistically analyzed. The effect of train speed on vibration was very large.
     The results showed that probability distribution of the acceleration of rail, sleeper and ballast, and the force on sleeper obeyed normal distribution. As train speed increases from 160km/h to 350km/h, the vibration responses of vehicle and track (which involve acceleration, contact force between wheel/rail, the force on sleeper, the stress on subgrade, and the displacement of rail, sleeper and ballast) were all increased but in a relatively different manner. The values of acceleration increase were the highest. The values of contact force between wheel/rail, force on sleeper and stress on subgrade were relatively low. The values of displacement increase were the lowest.
     When train speed increases from 250km/h to 350km/h, the value of vibration responses had a recognized increase, acceleration of rail increses from 158g to 581g, contact force of wheel/rail increases from 280kN to 350kN, and press force on sleepers increases from 92kN to 109kN,. The increase in value of acceleration was the highest, the value of acceleration of wheelset and rail may be doubled or even more.
     4. Samples of fastener and ballast stiffnesses were established, because the variation range of fastener and ballast stiffnesses are wide and fastener and ballast stiffnesses are very sensitive, and the fastener and ballast stiffnesses were treat as random parameters that obey normal distribution through out this work.
     5. A sample of random parameter of fastener and ballast stiffnesses and a sample of low disturbance track irregularity of high-speed railway in German were combined as excitation, the random vibration was investigated by simulation calculation, and the results were statistically analyzed.
     (1) The range of extreme values of rail acceleration, sleeper acceleration, ballast acceleration, wheel/rail force, force on sleeper and stress on subgrade were very wide, but the range of extreme values of rail acceleration were the widest.
     (2) Probability distribution of the extreme values of vehicle/track vibration responses obeyed extreme value I distribution checked byχ2 condition in the signifycance level of 0.05.
     (3) When the train speed increases, the random vibration responses will increase same as the trend in point 3 above, but the values in comparing with it were much higher. It means that the dynamic responses of high speed railway are very significant, and more attention should be payed to it.
     (4) The parameters of high speed railway track structure (especially fastener and ballast stiffnesses) had much more impact to random vibration responses of vehicle/track system, so they should be optimized and remained in a narrow range.
     (5) The dynamic coefficients of design wheel load in all speed classes in China by studying the calculation results of wheel/rail forces were put forward. When train speed are 160,200,250,300,350km/h, the adviced coefficients of design wheel load in China are 2.4, 2.8,3.0,3.5,3.7.
     6. Four failure modes of concrete sleeperⅢwere established and influence factors of resistance and loading effects of them were analyzed, including concrete cracking and crush failures (because of fatigue bending moment in sleeper section) under rail and in the middle of sleeper section.
     7. Based on the real work conditions of concrete sleeperⅢ, a model of sleeper support was build and used to analyze the Concrete sleeperⅢ. In this model, there is a uniform distributed reaction force q1, as well as a pair of revised trapezoidal distributed reaction force which are symmetrical about the sleeper section under the rail, their height are (q2-g1), and their top and bottom edge width are (2l1+l2) and l2 correspondingly. Using the modle, the loading effects of concrete sleeperⅢwere solved.
     8. The calculation method to solve sleeper section resistance used static cracking test load, which was established to calculate the fatigue bending moment and the fatigue compressive stress on the edge of compressive concrete.
     9. The distributions of loading effects, and resistance were given, also the statistical parameters and distribution functions were given. The distribution of loading effects obeyed extreme value I distribution, but the distribution of resistance obeyed lognormal distribution.
     10. Failure probability and reliability index were calculated by JC method. The reliability index and failure probability in case of the resistance reduction and loading effects development factors, were neglected, were 3.583 and 0.017% respectively, but in case they were considered the results were 2.909 and 0.18% respectively. For the concrete sleeperⅢ, both of the failures probability are acceptable.
     11. The above research results showed that the concrete sleeperⅢcan be used in high speed railway in China.
引文
[1]何华武.快速发展的中国高速铁路.西南交通大学110周年学术报告,2006
    [2]中华人民共和国铁道部.中长期铁路网规划,2004
    [3]赵国堂.高速铁路无碴轨道[M].中国铁道出版社,2006
    [4]童大埙.铁路轨道[M].中国铁道出版社,1983
    [5]郝瀛.铁道工程[M].中国铁道出版社,2000
    [6]谷爱军,李斌,李向国等.铁路轨道[M].中国铁道出版社,2004
    [7]铁木辛柯等著.工程中的振动问题[M].胡人礼译.人民铁道出版社,1979
    [8]沙湖年慈.铁道线路[M].1959
    [9]Lyon D. The calculation of track forces due to dipped rail joints, wheel-flats and rail welds[J]. The Second ORE Colloquium on technical Computer Programs, May 1972
    [10]Lyon D. The effect of vehicle and track parameters upon the loads at a dipped, rail joints [J]. B. R. B. Research and development Division Technical Memorandum, TMT36,June,1974
    [11]Jenkins H H, et al. The effect of track and vehicle parameters on wheel/rail vertical dynamic forces [J]. Railway Engineering Journal,1974,3(1):2-16
    [12]Harvey R F. Results of Calculation of dynamic forces at a dipped rail joint for standard and proposed semi-supported joints[J]. B. R. B. Research and Development Division Technical Memorandum TMTS48, Marth 1975
    [13]Harvey R F and Loundes V P. Approximate formula for Calculating wheel/rail forces and rail displacements at rail welds and for wheel-flats [J]. B. R. B. Research and Development Division Technical Memorandum TMT82, August 1977
    [14]Ein neues Verfahren zur Ermittlung der vertikalen Kraftwirlangen zwischen Rad und Shiene,ETR,1977, No.1-2.
    [15]Frederick C O,Newton S G. The relationship between traffic and track damage-The effect of vertical loads[R]. Research and Development Division Railway Technical centre, Derby, Aug.,1977
    [16]Sato Y. Abnormal wheel load of test train[J]. Permanent Way. Tokyo,1973,14:1-8
    [17]佐藤吉彦.轨道高周波振动理论分析[R].铁道技术报告.No.1013,1976
    [18]佐藤吉彦,须永阳一,安藤蕂敏.轨道力学(3)[J].铁道线路第31卷,第2号
    [19]佐藤吉彦.轨道力学(4)[J].铁道线路第31卷,第2号
    [20]Lane G S. Track deterioration at discrete vertical irregularities-description of a computer model[J]. British Railways Board Research and Development Division Track Group Technical Note, TN TS 33, November,1978
    [21]Kurzweil L. Dynamic Track Compliance. DOT Transportation System Center[R], Report No.GSP-067, May,1972
    [22]Yosio Moriton. On the vibration of a bar supported by uniformly spaced springs [J]. Railway Technical Research Institute, Vol21, No.3, Sept.1980
    [23]Elkins J A. A method for predicting the dynamic response of a pantograph running at constant speed under a finite length of overhead equipment [J]. British Railways Board Research and Development Division Track Group Technical Note, TN DA 36, February,1976
    [24]Ahlbeck D R, et al. The development of analytical models for railroad track dynamics [J]. Railroad Track Mechanics & Technology, Pergamon Press,1978:197-220
    [25]Newton S G Clark R A. An investigation into the dynamic effects on the track of wheel flats on railway vehicles. Journal of Mechanical Engineering Science,1979, 21(4):65-76
    [26]Clark R A, Dean P A, Elkins J A, Newton S G. An investigation into the dynamic effects of railway vehicles running on corrugated rails [J]. Journal of Mechanical Engineering Science,1982,24(2)
    [27]Grassie S L, Gregory R W, Johnson K L. The behaviour of railway wheelsets and track at high frequencies of excitation [J]. J. Mech. Engng. Sci.,1982,24:103-111
    [28]Grassie S L, Gregory R W, Johnson K L. The harmonic response of railway track to vertical, lateral, longitudinal point forces [J]. Report No. CVEDLC-Mech/TRI 8,1980, University Engineering Department, Cambridge
    [29]Grassie S L, Gregory R W, Johnson K L. The dynamic response of railway track to high frequency vertical excitation [J]. J. Mech. Engng.Sci., Vol.24, No.2,1982
    [30]姚明初.预应力混凝土受弯构件正截面在变幅重复荷载下的疲劳可靠度设计模式[C].中国土木工程学会桥梁及结构工程学会第七届学术会议论文集《工程结构可靠性》,北京,1987
    [31]张志刚.中部横裂后J-2型预应力混凝土枕的有限元分析[D].北方交通大学硕士学位论文,1987
    [32]张佑汉,姚明初.部分预应力混凝土铁路桥梁按疲劳可靠性设计[C].中国土木工程学会桥梁及结构工程学会第七届学术会议论文集《工程结构可靠性》,北京,1987
    [33]Cai Z & Raymond G P. Theoretical model for dynamic wheel/rail and track interaction [C]. Proceedings of 10th Interact ional Wheelset Congress, Sydney, Australia, September.1992,127-131
    [34]Nielsen J C O. Train/track interaction:Coupling of moving and stationary dynamic systems[D]. Ph. D. Dissertation, Chalmers University of Technology, Gotebory, Sweden,1993
    [35]Diana G, Cheli F, Bruni S, Collina A. Interaction between railroad superstructure and railway Vehicles [J]. Vehicle System Dynamics,1994,23(Suppl.):75-86
    [36]Fermer M, Nielsen J C O. Wheel/rail contact forces for flexible versus solid wheels due to tread irregularities [J]. Vehicle System Dynamics,1994,23(Suppl.):142-157
    [37]Ripke D, Knothe K. Simulation of high frequency vehicle-track interactions [J]. Vehicle System Dynamics,1995,24(Suppl.):72-85
    [38]Oscarsson J, Dahlberg T. Dynamic train/track/ballast interaction-computer models and full-scale experiments [J]. Vehicle System Dynamics,1998,28(Suppl.):73-84
    [39]Frohling R D. Low frequency dynamic vehicle-track interaction:modelling and simulation [J]. Vehicle System Dynamics,1998,28(Suppl.):30-46
    [40]Auersch L. Vehicle-track interaction and soil dynamics [J]. Vehicle System Dynamics, 1998,28(Suppl.):553-558
    [41]Popp K, Kruse H, Kaiser I. Vehicle-track dynamics in the mid-frequency range [J]. Vehicle System Dynamics,1999,31(5-6):423-464
    [42]Andersson C, Oscarsson J, Nielsen J. Dynamic train/track interaction including state-dependent track properties and flexible vehicle components [J]. Vehicle System Dynamics,1999,33(Suppl.):47-58
    [43]Drozdziel J, Sowinski B, Groll W. The effect of railway vehicle-track system geometric deviation on its dynamics in the turnout zone [J]. Vehicle System Dynamics,1999, 33(Suppl.):641-652
    [44]Gurule S, Wilson N. Simulation of wheel/rail interaction in turnouts and special track work [J]. Vehicle System Dynamics,1999,33(Suppl.):143-154
    [45]Oscarsson J. Dynamic train-track-ballast interaction with unevenly distributed track properties [C].17th IAVSD Symposium on Dynamics of Vehicles on Roads and Tracks,Lyngby,Denmark,2001
    [46]Dietz S, Hippmann G, Schupp G. Interaction of vehicle and flexible tracks by Co-simulation of multibody vehicle system and finite element track models [C].17th IAVSD Symposium on Dynamics of Vehicles on Roads and Tracks,Lyngby,Denmark,2001
    [47]Szole T, Piotrowske J, Nagorski Z. Simulation of vehicle-track interaction in the Medium frequency range with application to analysis of mechanical and thermal loading in contact [C].17th IAVSD Symposium on Dynamics of Vehicles on Roads and Tracks, Lyngby, Denmark,2001
    [48]吴章江,王浦强,李湘敏等.车辆通过轨道低扣接头的垂向轮轨作用力计算[J].铁道机车车辆,1982,(1):24~30
    [49]李定清.轮轨垂向相互动力作用及其动力响应[J].铁道学报,1987,9(1):1~8
    [50]许实儒,徐维杰,仲延禧.钢轨接头处轮轨冲击力的模拟分析[J].铁道学报,工务工程专辑,1989
    [51]李成辉.轨道结构竖向动态分析[D].成都:西南交通大学硕士学位论文,1988
    [52]翟婉明.车辆—轨道垂向系统的统一模型及其耦合动力学原理[J].铁道学报,1992,14(3):10~21
    [53]Zhai W M, Sun Xiang. A Detailed Model for Investigating Vertical Interaction between Railway Vehicle and Track[J]. Vehicle System Dynamics,1994,23(Supplement): 603~615
    [54]翟婉明,严隽耄,孙翔.大型货车对线路的动力影响研究[J].西南交通大学学报,1993,(5):37-41
    [55]翟婉明.高速铁路轮轨系统的最优动力设计原则[J].中国铁道科学,1994,15(2):16~21
    [56]翟婉明.高速铁路轮轨冲击振动的特征及其控制原理[J].铁道学报,1995,17(3):28~33
    [57]翟婉明,孙翔.低动力作用轮轨系统垂向动力参数研究与设计[J].铁道学报,1993,15(3):1~10
    [58]翟婉明.铁道车辆在刚性及弹性轨道模型上振动模拟分析[J].铁道车辆,1994,(1):15~20
    [59]李成辉.轨道结构振动理论及其应用研究[D].成都:西南交通大学博士学位论文,1996
    [60]Zhai W M, Cai C B, Guo S Z. Coupling Model of Vertical and Lateral Vehicle/Track Interaction[J]. Vehicle System Dynamics,1996,26(1):61-79
    [61]刘学毅.钢轨波形磨耗成因研究[D].成都:西南交通大学博士学位论文,1996
    [62]Zhai W, Cai Z. Dynamic Interaction Between a Lumped Mass Vehicle and a Discretely Supported Continues Rail Track[J]. Computers(Structures),1997,63(5):987-997
    [63]Zhai Wanming. Wheel/Rail Dynamic Interaction on Turnouts[C]. Proceedings of 12 International Wheelset Congress, Qingdao, September 1998, pp.447-451
    [64]Zhai W. M, True H. Vehicle-track Dynamics on a Ramp and on the Bridge:Simulation and Measurements[J]. Vehicle System Dynamics,1999,33(Supplement):604-615
    [65]Zhai W. M, Cai C B, Wang Q C,Lu Z W and Wu X S. Dynamic Effect of Vehicles on Tracks in the Case of Raising Train Speed[J]. Journal of Rail and Rapid Transit,2001, 215(F2):125-135
    [66]翟婉明.铁路轮轨冲击振动模拟与试验[J].计算力学学报,1999,16(1):93~99
    [67]翟婉明,任尊松.提速列车与道岔的垂向相互作用研究[J].铁道学报,1998,20(3):33~38
    [68]王平.道岔区轮轨系统动力学的研究[D].成都:西南交通大学博士学位论文,1997
    [69]梁波,蔡英,朱东生.车—路垂向耦合系统的动力分析[J].铁道学报,2000,22(5):65~71
    [70]Liang B, Zhu D, Cai Y. Dynamic analysis of the vehicle-subgrade model of a vertical coupled system [J]. Journal of Sound and Vibration,2001,245(1):79-92
    [71]苏谦,蔡英.高速铁路路基结构空间时变系统耦合动力分析[J].西南交通大学学报,2001,
    [72]王其昌,蔡成标,罗强,蔡英.高速铁路路桥过渡段轨道折角限值分析[J].铁道学报,1998,20(3):109~113
    [73]罗强,蔡英,翟婉明.高速铁路路桥过渡段的动力学性能分析[J].工程力学,1999, 16(5):65~70
    [74]罗强,蔡英.高速铁路路桥过渡段变形限值与合理长度研究[J].铁道标准设计,1999,16(5):2-4
    [75]蔡成标,翟婉明,赵铁军,王志朋.列车通过路桥过渡段时的动力作用研究[J].交通运输工程学报,2001,1(1):17~19
    [76]刘学毅,王平,万复光.轮轨空间耦合振动分析模型及其应用[J].铁道学报,1998,20(3):102~108
    [77]翟婉明,蔡成标,王开云.轨道刚度对列车走行性能的影响[J].铁道学报,2000,22(6):80~83
    [78]冯青松,雷晓燕,练松良.不平顺条件下高速铁路轨道振动的解析研究[J].振动工程学报,2008,21(6):559-564
    [79]蔡成标,翟婉明,王其昌.高速列车与高架桥上无碴轨道相互作用研究[J].铁道工程学报,2000,3:29~32
    [80]张格明.中高速条件下车线桥动力分析模型与轨道不平顺影响[D].铁道科学研究院博士学位论文,2001
    [81]李小珍.高速铁路列车—桥梁系统耦合振动理论及应用研究[D].西南交通大学博士学位论文,2000
    [82]Lombaert G, Degrande G, Kogut J, et al. The experimental validation of a numerical model for the prediction of railway induced vibrations [J]. Journal of Sound and Vibration,2006,297:512-535.
    [83]陈果.车辆—轨道耦合系统随机振动分析[D].西南交通大学博士学位论文,2000
    [84]翟婉明.车辆—轨道耦合动力学研究的新进展[J].中国铁道科学,2002,23(2):1-14
    [85]Gardiner C W. Handbook of stochastic method.2nd ed.[C]. Spring-Verlay,1985
    [86]胡津亚,曾三元.现代随机振动[M].北京:中国铁道出版社,1989
    [87]徐昭鑫.随机振动[M].北京:高等教育出版社,1990
    [88]方同.工程随机振动[M].北京:国防出版社,1995
    [89]庄表中,陈乃立,高瞻.非线性随机振动理论及其应用[M].杭州:浙江大学出版社,1986
    [90]朱位秋.随机振动[M].北京:科学出版社,1992
    [91]Kunert A. Efficient numerical solution of multi-dimensional Fokker-Plank equations Associated with chaotic and nonlinear random vibrations[J]. ASME 1991 Vib. Conf: DE Vol.37:57-60
    [92]Remington P J. Wheel/rail noise-part IV:rolling noise [J]. Journal of Sound and Vibration,1976,43(3)
    [93]Bender E K, Remington P J. The influence of rails on train noise [J]. Journal of Sound and Vibration,1974,3
    [94]Munjal M L, Heckl M. Some mechanisms of excitation of a railway wheel [J]. Journal of Sound and Vibration,1982,81 (4)
    [95]Munjal M L, Heckl M. Vibration of a periodic rail-sleeper system excited by an oscillating stationary transverse force [J]. Journal of Sound and Vibration,1982,81(4)
    [96]翟婉明.车辆—轨道耦合动力学.第2版.[M].北京:中国铁道出版社,2002
    [97]武清玺.结构可靠性分析及随机有限元法[M].北京:机械工业出版社,2005
    [98]Freudenthal A M. The safety of structure. Transation, ASCE, V122,1947
    [99]赵国藩,曹居易,张宽权.工程结构可靠度[M].北京:水利水电出版社,1984
    [100]Alfredo H-S Ang,Wilson H Tang. Probability concepts in engineering planning and design [M]. John Wiley & Sons, Volume Ⅰ,1975, Volume Ⅱ,1984
    [100]Alfredo H-S Ang, Wilson H Tang. Probobility analysis of redundant ductile structural[J]. Transation, ASCE, V122,1947
    [101]工程结构可靠度设计统一标准(GB 50135—1992)[S].北京:中国计划出版社,1992
    [102]港口工程结构可靠度设计统一标准(GB 50158—1992)[S].北京:中国计划出版社,1992
    [103]水利水电工程结构可靠度设计统一标准(GB 50199—1994)[S].北京:中国计划出版社,1994
    [104]铁路工程结构可靠度设计统一标准(GB 50216—1994)[S].北京:中国计划出版社,1994
    [105]公路工程结构可靠度设计统一标准(GB 50283—1999)[S].北京:中国计划出版社,1999
    [106]建筑结构可靠度设计统一标准(GB 50135-2001)[S].北京:中国计划出版社,2001
    [107]张建仁,刘扬,许福友等.结构可靠度及其在桥梁工程中的应用[M].北京:人民交通出版社,2003
    [108]李清富,高健磊,乐金朝等.工程结构可靠性原理[M].北京:黄河水利出版社,1999
    [109]上海铁道学院主编.铁路轨道和路基[M].北京:人民铁道出版社,1979
    [110]姚明初等.重载铁路混凝土枕疲劳可靠性的估计[C].铁道学会重载会议征文,1991
    [111]姚明初等.关于铁路工程结构安全度问题的两项建议[R].铁道科学研究院铁道建筑研究所,1980
    [112]殷张和.预应力混凝土轨枕荷载弯矩及可靠性的研究[D].铁道科学研究院硕士学位论文,1982
    [113]谢国立.混凝土在等幅和不等幅反复荷载下疲劳特性的研究[D].铁道科学研究院硕士学位论文,1983
    [114]尹蔚苏.预应力混凝土枕截面承载能力计算方法的研究[D].铁道科学研究院硕士学位论文,1984
    [115]安湘英.基于可靠性理论的预应力混凝土枕和宽枕的优化设计[D].铁道科学研究院硕士学位论文,1984
    [116]王澜等.混凝土轨枕荷载弯矩谱的研究[R].铁道科学研究院研究报告,1986
    [117]吴弋慧.预应力混凝土轨枕截面疲劳可靠度研究[D].铁道科学研究院博士学位 论文,1992
    [118]曾树谷,马炜.铁路钢轨的疲劳损伤和寿命估算.铁道科学研究院论文集,No.4,1979
    [119]颜秉善.钢轨伤损及换轨周期的预测[J].铁道学报,Vol.10,No.2
    [120]颜秉善,程育仁.钢轨疲劳寿命动态可靠度估算[J].北方交通大学学报,No.4,1983
    [121]曾树谷.铁路轨道结构的可靠性设计方法[R].铁道科学研究院研究报告,1980
    [122]曾树谷.重载轨道结构的破坏和设计[J].铁道学报,Vol.5,No.3,1983
    [123]练松良,杨文忠,刘扬.不同类型轨枕轨道结构动力性能试验研究[J],铁道学报,2010,32(2):131-136
    [124]关于我国Ⅰ、Ⅱ、Ⅲ型混凝土轨枕使用建议[R].铁道部科学研究院铁道建筑研究所,北京,2005
    [125]翟婉明.轮轨动力分析模型研究[J].铁道学报,1994,16(1):64~71
    [126]Bettess P. More on infinite element [J]. Int. J. Numer. Mech. Engng., 1980,15:1613-1626
    [127]Zienkiewicz O C,Emson C,Bettess P. Anovel boundary infinite element [J]. Int. J. Numer. Mech. Engng.,1983,17:393-404
    [128]Harrisson H B. General Computer Analysis of beamson Elastic Foundation [C]. Proceeding of Inst. Of Civil Engineers,1973,55(2):605-618
    [129]Ching S Chang, et al. GEOTRACK model for railroad track performance [J]. J. of Geo. Engrg. Div. ASCE,1980,106(11):1201-1218
    [130]左藤裕[日]著.轨道力学[M].卢肇英译.北京:中国铁道出版社,1981
    [131]王澜.轨道结构随机振动理论及其在轨道结构减振中的应用[D].铁道科学研究院博士学位论文,北京,1988
    [132]饶寿期编.有限元法和边界元法基础[M].北京:北京航空航天大学出版社,1990
    [133]潘昌实主编.隧道力学数值方法[M].北京:中国铁道出版社,1995
    [134]Bathe K J,Willson E L. Numerical methods in finite element analysis[M]. Prentice-hall, 1976
    [135]Newmark N M. A method of computation for structural dynamics [J]. J. Engi. Mech. Div., ASCE, V85(2),1959
    [136]Park K C. An improved stiffly stable method for direct integration of nonlinear structural dynamic equations [J]. J. Appl. Mech., Jun,1975
    [137]陈道兴.轮轨非平稳随机振动理论及其在钢轨螺栓孔疲劳裂损研究中的应用——兼论轨道结构可靠度设计[D].铁道科学研究院博士学位论文,北京,1991
    [138]雷晓燕.轨道力学与工程新方法[M].北京:中国铁道出版社,2002
    [139]卢组文.客运专线铁路轨道[M].北京:中国铁道出版社,2005
    [140]王福天.车辆系统动力学[M].北京:中国铁道出版社,1994
    [141]罗林.轨道随机干扰函数[J].中国铁道科学,1982,13(1):74~110
    [142]Garg V. K,Dukkipati R V. Dynamics of railway Vehicle system[M]. Academic Press, Canada,1984
    [143]德国联邦铁路城间特快列车ICE技术任务书[S].铁道部科学技术司,西南交通大学,1993
    [144]Kerry A D主编(美).轨道力学及轨道工程(论文集)[C].中国铁道出版社,1983
    [145]Shouichi, Hanshimoto, Yoshihiko, Sato. Power spectrum analysis of track irregularities on narrow gauge lines[J].Quaarterly Report.1985,26(4):122-125
    [146]左藤吉彦著,徐勇译.新轨道力学[M].北京:中国铁道出版社,2001
    [147]Prud'homme, A La voi. Rev. Gen [J]. Chemins de Fer 89,1970,(1):56-67
    [148]Von Fritz Frederich, Aachen:Die Gleislage-Aus fahrzeugtechnischer sicht [J]. ZEV-Glass,1984,108(12):355-362
    [149]长沙铁道学院随机振动研究室.关于机车车辆/轨道系统随机激励函数的研究[J].长沙铁道学院学报,1985,(2):1~36
    [150]铁道部科学研究院铁道建筑研究所.我国干线轨道不平顺功率谱的研究[R].TY-1215,北京:铁道部科学研究院,1999
    [151]Ontes R K,Enochson L. Digital time series analysis[M].John Willy & Sons, Inc., New York,1972
    [152]星谷胜[日]著.随机振动分析[M].常宝琦译.北京:地震出版社,1977
    [153]陈果,翟婉明.铁路轨道不平顺随机过程的数值模拟[J].西南交通大学学报,1999(2)
    [154]铁道部.铁路线路修理规则[S].北京:中国铁道出版社,2006
    [155]陈塑寰.随机参数结构的振动理论[M].北京:吉林科学出版社,1992
    [156]西南交通大学.轨道结构刚度合理值及其合理匹配的研究D子题:轨道刚度对轨道和列车动力性能影响的仿真分析[R].西南交通大学,2001
    [157]徐钟济.蒙特卡罗方法[M].上海:上海科学技术出版社,1985
    [158]Bennett R M, A H-S Ang. Investigation of Methods for structural system reliability [M].University of Illinois at Urbana-Champaign, September,1983
    [159]Hak-Fong Ma, A H-S Ang. Reliability analysis of redundant ductile structural systems [M].University of Illinois at Urbana-Champaign, August,1981
    [160]Eisenman J. Railroad track structure for high-speed lines [J]. Railroad Track Mechanics and Technology,1983,1978:39-61
    [161]胡宁俭.结构可靠性理论基础[M].成都:西南交通大学出版社,2003
    [162]范俊杰.现代铁路轨道[M].第二版.北京:中国铁道出版社,2004
    [163]关于我国Ⅰ、Ⅱ、Ⅲ型混凝土轨枕使用建议[R].铁道部科学研究院铁道建筑研究所.北京,2004
    [164]姚明初主编.混凝土轨枕设计和制造[M].北京:人民铁道出版社,1979
    [165]上海铁道学院主编.铁路轨道和路基(上册)[M].北京:人民铁道出版社,1979
    [166]预应力混凝土枕设计方法[R].北京:铁道部科学研究院铁道建筑研究所,1994
    [167]TK—Ⅲ型枕设计研究报告[R].北京:铁道部科学研究院铁道建筑研究所,1994
    [168]铁道部科学研究院铁道建筑研究所.TK—Ⅲ型枕技术条件(暂行)[R].北京,1994
    [169]铁道部科学研究院铁道专业设计院.新Ⅱ型预应力混凝土枕研制报告[R].北京,2001
    [170]林之珉,王继军.TK—Ⅲ型枕设计问题[R].铁道部科学研究院铁道建筑研究所.北京,1994
    [171]铁道部行业标准Q/CDT508-J02 · 1-2003. I型、Ⅱ型、Ⅲ型预应力混凝土枕技术条件[S].北京:2001
    [172]吴世伟.结构可靠度分析[M].北京:人民交通出版社,1990
    [173]Sato Y. High frequency track vibration and characteristics of various track [J]. Permanent Way, June,1977
    [174]董玉熙.预应力混凝土枕中间截面荷载弯矩及可靠性的研究[D].铁道部科学研究院硕士学位论文,1981
    [175]苏谦.高速铁路路基空间时变耦合系统动力分析模型及其应用研究[D].成都,西南交通大学博士学位论文,2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700