H13钢表面制备钴基合金覆层的组织性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,模具技术已经成为衡量一个国家产品制造水平的重要标志,而模具寿命是直接影响产品质量、加工效率和成本的重要因素之一。热疲劳是热作模具主要失效形式,据统计,热作模具中由于热疲劳导致失效的占失效总量的60~70%。因此通过模具表面技术提高热作模具的寿命具有重大的国民经济意义。
     本文通过激光熔覆和真空熔结两种技术在H13钢表面制备了钴基合金覆层,利用光学显微镜、扫描电镜(附带EDS)、XRD和显微硬度计等试验设备分析了覆层的组织结构、硬度等性能。研究了两种技术制备的覆层的界面结合情况及热疲劳等性能。
     试验结果表明,激光熔覆钴基合金覆层在组织结构上分为熔覆区、结合区和热影响区。激光熔覆层组织随扫描速度增大、激光功率减小而变得细小,根据试验分析得出了较佳的工艺组合。多道搭接熔覆层由于基体材料温度升高,凝固时界面结合区温度梯度减小,不形成激冷层,界面处没有平面晶区。真空熔结钴基合金覆层组织致密,与激光熔覆层相比组织粗大,在界面处发生较高元素扩散,形成扩散结合界面。激光熔覆层组成相主要为γ-Co、Cr_(23)C_6及Ni_(2.9)Cr_(0.7)Fe_(0.36)等相;真空熔结层主要由Co、Cr_7C_3和Ni_(2.9)Cr_(0.7)Fe_(0.36)等相组成。
     激光熔覆层细小的组织使其具有较高的表面硬度,硬度随着激光扫描速度的增大及激光功率的减小而增大,表层由于合金元素的烧损,硬度值较次表层稍有下降,真空熔结层硬度较低。多道搭接熔覆时硬度比单道熔覆硬度低。
     热疲劳失效是热作模具的主要失效形式,试验结果表明,激光熔覆钴基合金覆层出现宏观热疲劳裂纹时承受的热循环次数最多,裂纹宽度最小为14um,热疲劳性能最好,而未经表面处理H13钢裂纹最宽,热疲劳性能最差。由于钴基合金具有高的热稳定性能,热循环前后表面硬度下降幅度较小。真空熔结层在热循环后,围绕块状共晶化合物产生较多的微裂纹,并最终剥落形成凹坑。
At present,mould technology has been become an important symbol to measure the level of a country's product manufacturing.Mould life is not only the important factor that affecting product quality,machining efficiency and cost,but also an important guide to measure the level of manufacturing.Thermal fatigue is a leading failure of hot working die steels.According to statistics,60~70%die failure are caused by thermal fatigue of hot working die.So there have great national economic significance to raising the service life of hot work die by surface strengthening technology.
     Co-based alloy coatings are prepared on H13 steel by laser cladding and vacuum fusion sintering technology.Microstructure,Microhardness of the coatings have been tested using optical microscope,scanning electron microscope(SEM,including EDS microanalysis),X-ray diffraction instrument(XRD)and microhardness tester.The interracial bonding and thermal fatigue properties of coatings were studied.
     The experiment results showed that the microstructure of single track laser cladding Co-based alloy coating include the cladding,combined and heat-affected area.When increasing the laser scanning speed or decreasing the laser power the microstructure of laser cladding coating become finer.With the experiment,the optimal laser cladding parameters have been obtained.In multi-track laser cladding coating there have no planar crystal in interface,because the temperature of substrate raised leading to the temperature gradient in interface decrease,so it can't form chilled layer.The vacuum fusion sintering coating has compact structure and coarse microstructure.In interface,there happen the element diffusion;by diffusion reaction a good diffuse combination interface was formed.The results showed that there are primary phasesγ-Co,Cr_(23)C_6 and Ni_(2.9)Cr_(0.7)Fe_(0.36)in the laser cladding coating.Co, Cr_7C_3 and Ni_(2.9)Cr_(0.7)Fe_(0.36)phases are shown in vacuum fusion sintering coating.
     The laser lading coating has higher surface microhardness than vacuum fusion sintering coating.When increasing the laser scanning speed or decreasing the laser power the microhardness of laser cladding coating increased.Because of the burning of alloy elements in surface,the microhardness in surface is a little lower than subsurface.The microhardness of multi-track laser cladding coating is lower than single track laser cladding coating.
     Thermal fatigue is a leading failure of hot working die steels.The experiment results showed that laser cladding coating has the most excellent thermal fatigue property.The laser cladding coating suffers the most thermal cycling times before appear macroscopic thermal fatigue crack,and the crack width is the least,the crack width is 14um.H13 steal without surface treatment has the poorest thermal fatigue property.The Co-based alloy coating has high thermal stability,so the descend range of microhardness is small after thermal cycling.But the descend range of H13 steel is large.After thermal cycling,microcracks will generate encircle the massive eutectic compound of vacuum fusion sintering coating,spalling and become pit lastly.
引文
[1]马忠臣,李强,杨秀琳.现代模具工业发展述评.机械工程师,2006,(3):23-24
    [2]屈伟平.我国模具制造业发展现状、存在的问题及对策.模具技术,2006,(5):59-63
    [3]王佞,李春花.浅谈模具工业现状及发展趋势.大众科学(科学研究与实践),2008,(5):29
    [4]熊剑.国外热处理技术.北京:冶金工业出版社,1990
    [5]刘以宽.热作模具的选材及H13钢的应用.上海金属,1986,(6):13-18
    [6]张培耘,戴勇,华希俊,等.国内模具工业技术现状与发展趋势.机械设计与制造工程,2000,29(6):1-2
    [7]易幼平,钟掘,曾苏民.超高壳体锻件模具强度的有限元分析.锻压技术,2000,(3):58-60
    [8]王伟达.CAD/CAM/CAE应用模具的设计与制造.机电一体化,1999,1:34-38
    [9]吴丽萍,施发中,许鹤峰.有关模具先进制造技术集成的探讨.锻压技术,2000,6:54-56
    [10]徐耀坤.模具表面强化处理新技术.锻压技术,2000,1:58-60
    [11]曲庆文,柴山,李基恒.凸轮传动的失效及摩擦学分析.山东理工大学学报,2003,17(4):18-21
    [12]曲庆文,党军建,郭秀萍,等.模具寿命与摩擦学设计.山东理工大学学报,2004,18(1):34-37
    [13]B.Klarenfjord,L.A.Norstrom.热作模具钢进展.许路萍.第五届环太平洋国际模具钢会议论文集.上海:上海交通大学出版社,1998,3-9
    [14]H.Schweiger,H.Lengeretal.A new generation of toughest hot-work tool steels for highest requirements.F.Jeglitsh,R.Ebner.Proc.5th ICT:Tool Steel in the Next Century.Austria:University of Leoben Press,1999.285-295
    [15]钱苗根.现代表面技术.北京:机械工业出版社,2002.1
    [16]邹济林.表面强化技术在模具型腔的应用.模具工业,2001,5:44-47
    [17]张春华,张松,张宁,等.H13钢表面激光熔覆NiFeBSi-Si3N4合金的组织及腐蚀性能.金属热处理,2006,31(9):49-51
    [18]叶良武,张群莉,姚建华,等.热锻模表面宽带激光熔覆超细碳化钨试验研究.应用激光,2007,27(3):164-168
    [19]赵海鸥,李春华.激光熔覆工艺特性及裂纹敏感性研究.金属热处理.2001,1:18-21
    [20]Gandin Ch A,Guillemot G,Appolaire B,et al.Boundary layer correlation for dendrite tip growth with fluid flow.Materials Science and Engineering,2003,(342):44-50
    [21]Pizurova N,Komurka J,Svoboda M.Structure and phase composition of cobalt rich coating prepared by laser cladding on low carbon steel.Materials Science and Technology,1993,9(2):172-175
    [22]马杰,韩立民.真空热处理原理与工艺.北京:机械工业出版社,1988.74-93
    [23]黄新波,贾建援,林化春,等.钴基合金-碳化钨复合涂层耐磨抗蚀性能研究.材料工程,2004,(8):36-38
    [24]Zhou xiao-ping,Hua lin.Microstructures and properties of coating from cemented carbide by vacuum powder sintering,INt.Journal of Refractory Metals and Hard Materials,2004,22:247-250
    [25]丁红兵.真空熔结稀土镍基合金复合导卫辊材料的研究应用:[工程硕士学位论文].重庆:重庆大学,2006
    [26]关振中.激光加工工艺手册.北京:中国计量出版社,1997.248
    [27]商建峰.Ti-6Al-4V合金表面激光熔覆WC-12Co/NiCrAlY复合涂层组织性能研究:[硕士学位论文].陕西:西北工业大学,2004
    [28]姜伟,胡芳友,黄旭仁.工艺参数对激光熔覆层微观形貌的影响.表面技术,2007,36(4):57-58
    [29]Song Wulin,Echigoya J,Beidi Z,et al.Effect of Co on the cracking susceptibility and the microstructure of Fe-Cr-Ni laser-clad layer.Surface and Coatings Technology,2001,(138):292-293
    [30]张光均,许佳宁,王慧萍,等.45钢表面激光熔覆镍基纳米WC/Co镀层显微组织研究.机械制造,2006,44(1):59-62
    [31]Wu Xinwei,Zeng Xiaoyan,Zhu Beidi,et al.Cracking tendency of laser cladding Ni-based WC composite coatings.Chinese Journal of Lasers,1997,24(6):570-575
    [32]宋武林,朱蓓蒂,甘翠华.激光熔覆层结晶方向对覆层裂纹方向和开裂敏感性的影响.中国激光,1995,22(4):309-312
    [33]刘喜明,关振中.送粉式激光熔覆获得最佳熔覆层的必要条件及其影响因素.中国激光,1999,26(5):470
    [34]徐庆鸿,郭伟,田锡唐.激光扫描速度对激光熔覆宏观质量的影响规律.航天工艺,1997,(4):1-4
    [35]王家金.激光加工技术.北京:中国计量出版社,1992.253-254
    [36]熊征,曾晓雁.在GH4133锻造高温合金叶片上激光熔覆Stellite X-40合金的工艺研究.热加工工艺,2006,35(23):62-64
    [37]杨胜群,孟庆武,耿林,等.钛合金表面激光熔覆涂层的耐磨性能.激光技术,2007,31(5):473-475
    [38]Steiff R.The effete of laser surface treatment of high-temperature oxidation and corrosion.Resistance of Material and Coating,10~(th)ICMC,1992:1315
    [39]赵洪运,刘喜明,连建设.辊锻模具表面送粉激光熔覆WC陶瓷层的高温组织与性能.焊接学报,2002:23(5),12-14
    [40]孙宗强.激光加工技术在汽车工业中的应用.新技术新工艺,1993,36:8
    [41]Amende W.Surface treatment by means of laser beams.Industrial and mechanical engineering.Manufacturing Processes and Materials Handling,1992,10:213
    [42]刘长生.激光熔覆技术在DA540-41压缩机转子上的应用.流体机械,2007,35(9):52-54
    [43]顾冬冬,沈以赴.铜基金属粉末直接激光烧结工艺及成形件显微组织研究.中国机械工程,2006,17(20):2171-2175
    [44]刘录录,孙荣禄.激光熔覆技术及工业应用研究进展.热加工工艺,2007,36(11):58-61
    [45]黄瑞芬,罗建民,王春琴.激光熔覆技术的应用及其发展.兵器材料科学与工程,2005,28(4):57-58
    [46]Hidouci A,Pelletier J M.Microstructure and mechanical properties of MnSi_2coatings produced by laser processing.Materials Science & Engineering,1998,252(1):17-26
    [47]Wu Yunjian,Patchett B M,Bicknell C.Interfacial microstructure of weld overlay of corrosion resistant alloys.Scripts Metallurgica et Materialia,1994,30(9):1133-1138
    [48]Kovalenko,Volodymyr S,Lutay,et al.Gas-powder laser cladding with electro-magnetic agitation.Proceedings of LIA.Laser Inst of America,1997,83(2):21-26
    [49]Kurz W,Fisher J.Fundamentals of Solidification.Aedermannsdors,Switzerland:Transactions Technical Publications,1989:67
    [50]张文鉞.焊接冶金学.北京:机械工业出版社,1997.166-167
    [51]李明喜.钴基合金及其纳米复合材料激光熔覆涂层研究:[博士学位论文].江苏:东南大学,2004
    [52]戚正风.金属热处理原理.北京:机械工业出版社,1987.38
    [53]梁宏钦.微量元素对新型铸造高Cr热作模具钢热疲劳性能的影响:[硕士学位论文].吉林:吉林大学,2004
    [54]郑治沙,王中光.疲劳裂纹前端的位错结构.金属学报,1995,31(3):24
    [55]刘禹门.铁素体珠光体钢的疲劳位错结构.机械工程学报,1983,19(2):1-8
    [56]曾庆祥,何国求,陈成澍.一种高强度的钢低周疲劳特性及其微观机理的研究.西南交通大学学报,1999,34(2):190-195
    [57]Thielen P N,Fine M E.Cyclic stress strain relations and strain controlled fatigue of 4140steels.Acta Metal,1976,(24):1-10
    [58]Mataya M C,Fournelle R A.Fatigue behavior of NiAl precipation hardening medium carbon steel.Metal.Trans.,1978,(7):917-225
    [59]Akama M,Matsugama S.Plastic deformation behavior of rail under cyclic impact blows.ISIJ international,1989,(29):947-953
    [60]何世禹,李瑛,刘剑虹.5CrMnMo钢的冷热疲劳裂纹的研究.金属学报,1990,4(26):527-529
    [61]刘剑虹,何世禹,姚枚.3Cr2W8V钢冷热疲劳裂纹长大方式的原位观察.金属学报,1992,12(28):292-295
    [62]Subramanya Sarma V,Padmanabhan K.A.Guetha,et al.Low cycle fatigue behavior of low carbon microalloyed steel:microstructural evolution and life assessment.Materials Science and Technology,1999,15:260-264
    [63]V.B.Dutta,S.Suresh R.O.Ritchie.Fatigue crack propagation in dual phase steels:effect of ferrite-martensite microstructures on crack path morphology.Metall.Trans.,1984,15(6):1193-1207
    [64]Li Zhonghua,Han Jianguo.Low cycle fatigue investigations and numerical on dual phase steel with different microstructures.Fatigue Engine Mater.Struct.,1990,13(2):229-240
    [65]杨雪梅.碳化物对热变形中铬半钢的热疲劳性能的影响.特殊钢,2001,22(1):22-24
    [66]平修二.热应力与热疲劳.北京:国防工业出版社.1984.136-146

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700