杆与板的磁弹性屈曲分岔和混沌分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代高新科技的发展,杆、板和壳等结构元件处于电磁场环境中的情况已是屡见不鲜,这种电磁场与力学场相互耦合的一个基本特征就是非线性特性。这种非线性特性表现出来的力学行为比较复杂,直接影响系统运行的安全性以及可靠性。由此引起了人们广泛的研究兴趣。
     以往,对磁弹性屈曲问题的研究主要集中在软铁磁性薄板屈曲理论模型的建立及修正;以Tokamak核聚变反应堆环向磁场载流线圈为代表的对载流线圈及载流杆件的稳定性研究。对于工程中经常遇到的在强磁场作用下的载电流薄板等结构元件的屈曲研究还比较少见,对于电磁场环境下的载电流非铁磁性薄板等结构元件的屈曲分岔和混沌运动的研究尚未见诸文献。
     本文正是以此为出发点,采用理论分析、数值计算,开展了对电磁场作用下的杆、板的屈曲、分岔及混沌运动的研究工作。研究内容概括为以下几个部分。
     (1)将载流构件磁弹性屈曲问题由线圈、杆件拓展到载流薄板。首先根据载电流薄板的磁弹性非线性运动方程,物理几何方程,洛仑兹力的表达式,电动力学方程,得出了载电流薄板在电磁场与机械荷载共同作用下的磁弹性动力屈曲方程。然后,应用Galerkin原理将方程整理为标准的马丢方程,求解屈曲问题就变为求解马丢方程,即按照系数λ和η的本征值关系得出了磁弹性失稳临界状态的判据。最后,通过具体算例,得出了载流薄板在四边简支、三边简支一边自由、对边简支对边固定、四边固定四种边界条件下的磁弹性动力屈曲方程以及失稳临界状态时相关参量之间的关系曲线,并对其变化规律进行了分析讨论。
     (2)应用Lagrange描述法,从非线性动力学的视角讨论了电磁场中受压细长杆的分岔特性。分别就电磁场中受压细长杆的静力学模型、线性动力学模型和非线性动力学模型讨论了其分岔特性。得到了电磁场与机械载荷共同作用下,产生屈曲分岔的条件、分岔点和分岔类型;并以两端铰支的铝质梁和非铁磁钢梁为例,采用Matlab计算程序,得到了受压细长杆在静力学模型、线性动力学模型及非线性动力学模型下,产生分岔的临界载荷值、临界磁场强度值及杆长之间的关系曲线和变化规律。
     (3)在横向磁场作用下,考虑机械场与磁场的相互耦合作用,并同时考虑洛仑兹力及洛仑兹力矩,得到载流薄板的几何非线性磁弹性动力平衡方程。通过讨论平衡态的稳定性,得到了电磁场与机械载荷共同作用下的四边简支、四边固定载流矩形薄板的静力屈曲分岔条件、分岔点和分岔类型。应用L-S约化方法,得到了相同边界条件下薄板的动力屈曲分岔条件。并采用具体算例,计算得到了发生分岔的临界载荷值,以及临界载荷与电流密度、磁场强度及板的几何尺寸之间的关系曲线和变化规律。
     (4)根据薄板大挠度弯曲的物理及几何方程,考虑洛伦兹力及洛伦兹力矩的影响,建立了在横向磁场和机械载荷共同作用下的几何非线性四边简支和四边固定载流矩形非铁磁性薄板的运动方程,利用Melnikov函数法,从理论上给出了这一磁弹性动力系统在不同情况时,可能发生Smale马蹄意义下混沌的临界条件。
     (5)针对横向电磁场中非铁磁简支条形板,应用Galerkin原理得到条形板的几何非线性及物理非线性动力方程,利用Melnikov函数法对其单模态位移模式下的混沌运动进行了理论分析,得到了可能发生混沌的临界条件。利用平均法求得条形板在双模态下的分岔点,并讨论了分岔点的稳定性情况。从理论上讨论了利用单、双模态位移模式模拟非线性行为的差异。
     综上所述,电磁场、机械场等多个物理场共同耦合作用下的结构元件中蕴涵了相当丰富、复杂的动力学行为。因此,无论是通过理论研究还是实验研究,都具有理论和实际应用价值。同时,所得结果也可供相关电磁结构的可靠性设计时参考。
It is very common that the rods, plates and shells work in an electromagnetic environment as structural components with the development of modern advanced technology. One of the basic characters when an electromagnetic field and a mechanical field coupled is nonlinear. The mechanical behavior due to the nonlinear feature is very complex. It will affect the safety and reliability of systems significantly. So it attracted lots of researching interesting.
     The study of the magneto-elastic buckling problem was focus on the following two aspects previously: Finding the theoretical model of the buckling problem of soft ferromagnetic thin plate and its amendment; The stability study about the current-carrying coil and rods in the magnetic field of Tokamak fusion reactor as examples. However, it is on less of researching on the buckling of current-carrying components, like thin current-carrying plates, working in a strong magnetic field. It is almost no references for buckling Bifurcation and Chaos about current-carrying components working in electromagnetic filed.
     Considering the situation talking above, this paper showed some studying work using theoretical analysis and numerical computation about buckling, bifurcation and chaotic motion of current-carrying rods and thin plates. Research summarized in the following parts.
     (1)The analysis of the magnetic-elasticity buckling problem has been extended from coils and rods to non-ferromagnetic thin current-carrying plate here. Based on the non-linear magnetic-elasticity equations of motion, physical equations, geometric equations, expressions of Lorenz forces and electro-dynamic equations, the magnetic-elasticity dynamic buckling equation of a current plate under the action of a mechanical load in a magnetic field is derived. Then the buckling equation is changed into a standard form of the Mathieu equation using the Galerkin method. Thus, to solve the buckling problem is to solve the Mathieu equation. According to the eigenvalue relation of the coefficientsλandηin the Mathieu equation, the criterion equation for the buckling problem is also obtained here. As examples, the magnetic-elasticity buckling equation of a thin current-carrying plate applied four kinds of boundaries, simply supported, simply supported at three edges, simply supported and fixed opposite and fixed are obtained. The relation curves of the instability state and with variations in some parameters are also shown in this paper. The calculation results and the effects of the relative parameters are also discussed.
     (2)The bifurcation characters of a long slender bar in an electromagnetic field were discussed applying Lagrange description from the perspective of nonlinear dynamics. The bifurcation characters were discussed at the situation state mechanical load, linear and nonlinear dynamic load compression model individual. The buckling bifurcation conditions, bifurcation point and the type of bifurcation were gotten when the long slender bar was under the action of mechanical load in a magnetic field. A hinged aluminum beam and a non-ferromagnetic steel beam were taken as computational example. Their critical load and magnetic intensity value of causing bifurcation were carried out. The relationship curves between these critical values and the length of the beam were shown in the paper.
     (3)The bifurcation conditions, bifurcation point and bifurcation type of a thin current-carrying plate simply supported or fixed at all edges were obtained through discussed the stability of equilibrium when the plate applied the mechanical load in a electromagnetic field. The dynamic bifurcation conditions, bifurcation point and bifurcation type of the same plate were also obtained using LS method. At the same time, the critical load was carried out and the relation curves and the variation rules between critical load and the current density, the intensity of magnetic field and the geometry length of the plate were shown in the paper.
     (4)The nonlinear equations of motion of a plate simply supported or fixed at all edges were established when the plate applied mechanical load in a transverse magnetic field. The balance points of the nonlinear dynamic system were gotten in the case of non-disturbance. The critical condition of chaos in the sense of Smale horseshoe of the system was also obtained using Melnikov function method when a disturbance happened.
     (5)For a strip plate in a transverse electromagnetic field, the chaotic motion under the single-mode displacement was analyzed and obtained its critical chaotic conditions using Melnikov function method. More, the bifurcation point of the strip plate under the dual-mode displacement was obtained and the stability of bifurcation point was discussed using the averaging method. The differences of the simulation to the nonlinear behavior of a system using single-, dual-mode displacement mode were analyzed theoretically.
     To sum up, it contains very rich and complex dynamic behavior when structural components are in electromagnetic, mechanical and many other physical fields at the same time. Therefore, whether it is through theoretical research or experimental study, it has the theoretical and practical application value. At the same time, the results obtained here can also be used as references to the reliability design for related electromagnetic structure.
引文
1周又和,郑晓静著.电磁固体力学.北京:科学出版社, 1999
    2白象忠.板壳磁弹性理论基础.北京:机械工业出版社,1996:156-158
    3АмбарцумянСА,БагдасарянГЕ,БелубекянМВ.Магнитоупругостьтонкихоболочекипластин.Москва::Наука, 1977
    4 W.Nowacki(вновацкий).СопряженныеполяВМеханикетвёрдоготела.УспехМех(пнр),1978,1(2):17-44
    5 Han Q , Hu H , Yang G T . A study of chaotic motion in elastic cylindrical shells . Eur J Mech. A/Solids ,1999,18(2):351-360
    6 Han Q , Hu H . Bifurcation analysis of a nonlinear viscoelastic panel . Eur J Mech. A/Solids ,2003,20(5):827-839
    7韩强编著.弹塑性系统的动力屈曲和分叉.北京:科学出版社,2000,109-119
    8吴峰民.欧拉动弯曲问题的分岔和混沌.非线性动力学学报,1994,3(1):267-270
    9 W Zhang, J W Zu, F X Wang. Global bifurcations and chaos for a rotor-active magnetic bearing system with time-varying stiffness. Chaos,Solitons and Fractals 2008,35:586-608
    10 Tina M. Morrison. Richard H. Rand. Resonance in the delayed nonlinear Mathieu equation. Nonlinear Dyn(2007)50:341-352.
    11吴连元.板壳稳定性理论.武汉:华中理工大学出版社,1996:1-8
    12刘式达,刘式适.非线性动力学和复杂现象.北京:气象出版社,1989:228-237
    13蔡圣善,朱耘,徐建军.电动力学.北京:高等教育出版社,2002:15-26
    14 Tseng W Y and Dugundji J . Nonlinear Vibrations of a Buckled Beam Under Harmonic Excitation , 4 SME Journal of Applied Mechanics,1970,37:292-297
    15 Moon F C . Shaw Chaotic S W vibration of a beam with nonlinear boundary conditi- ons, Non-LinearMech ,2003,18(6).
    16张琪昌,王洪礼.分岔与混沌理论及应用.天津:天津大学出版社,2005,169-179
    17 P Yu, W Zhang, B Qin.Vibration analysis on a thin plate with the aid of computation of normal forms. International Journal Nonlinear Mechanics, 2001,36(4):597-627
    18 Xingzhe Wang, Jong S. Lee, Xiaojing Zheng. Magneto-thermo-elastic instability of ferromagneticplates in thermal and magnetic fields. International Journal of Solids and Structures 40(2003)6125-6142
    19 Cebers. Flexible magnetic filaments. Current Opinion in Colloid & Interface Science 10(2005)167-175
    20 M Marek and M Kubicek. Computational Methods in Bifurcation Theory and Dissipative Structures, Spinger-Verlag, 1983
    21黄润生,黄浩编著.混沌及其应用.武汉:武汉大学出版社,2005,33-51
    22季颖,毕勤胜.非零平衡强非线性vander Pol系统的奇异性分析及分岔.广西师范大学学报,2005,23(2):13-16
    23刘式适,刘式达.物理学中的非线性方程.北京:北京大学出版社,2001
    24胡海岩.应用非线性动力学.北京:航空工业出版社,2000
    25 Gao P. Hamiltonian Sttructure and First Integrals for the Lotka-Volterra Systems. Physics Letters A,2000,273:85-96
    26 Brush D O and Almroth B O . Buckling of Bars , Plates and Shells , Ms Graw-Hill , 1975
    27 Gao P. Two New Exactly Solvable Case of the Euler-Poisson Equations. Mechanics Research Communications,2003,30:203-205
    28 Bolotin V U . The Dynamic Stability of Elastic Systems,Holden-Day,2003
    29朱照宣.非线性动力学中的混沌.力学进展,1984,14(2):129-146
    30杜建成.非线性板壳的分岔和混沌运动.华南理工大学硕士学位论文,2003
    31黄润生编著.混沌及应用.武汉:武汉大学出版社,2000
    32 Xingzhe Wang, Jong S Lee, Xiaojing Zheng. Magneto-thermo-elastic instability of ferromagnetic plates in thermal and magnetic fields.Internation Journal of Solids and Structures 2003,40,6125-6142
    33 Gaetano Napoil, Stefano Turzi. On the determination of nontrivial equilibrium configurations close to a bifurcation point. Computers and Mathematics with Applications.2007.04.008
    34 Moon F C, Earnshaw’s Theorem and Magnetoelastic Buckling of Superconducting Structures, Proceedings of the IUTAM-IUPAP Symposium on the Mechanical Behaviors of Electromagnetic Solid Continua, Paris,1983:378-389
    35 Brown W F. Magnetoelastic Interactions. New York: Springer-Verlag, 1966
    36 Moon F C, Pao Y H. Magnetoelastic buckling of a thin plate. ASME J Appl Mech, 1968, 35(1):53-58
    37 Takagi T, Tani J, Matsubara Y, et al. Dynamic behavior of fusion structural components under strong magnetic fields. Fusion Eng and Design, 1995, 27: 481-489
    38 Maugin G A. A continuum approach to magnonphonon couplings─I.Int J Eng Sci, 1981,17:1073-1091
    39 van Lieshout P H, van de Ven A A F. A variational approach to the magnetoelastic buckling of an arbitrary number of superconducting beams. J Eng Math, 1991,25: 353-374
    40 Zhou Y H, Zheng X J. A theoretical model of magnetoelastic buckling for soft ferromagnetic thin plates. Acta Mechanica Sinica, 1996, 12(3):3213-224
    41 Zhou Y H, Miya K. A theoretical prediction of natural frequency of a ferromagnetic plate with low susceptibility in in-plane magnetic field. ASME J Appl Mech,1998,65(1):121-126
    42周又和,郑晓静.铁磁体磁弹性相互作用的广义变分原理与理论模型.中国科学A辑,1999,29(1):61-68
    43郑晓静,刘信恩.铁磁导电梁式板在横向均匀磁场中的动力特性分析.固体力学学报,2000,21(3):243-250
    44 Yang W, Pan H, Zheng D. Energy method for analyzing magnetoelastic buckling and bending of ferromagnetic plates in static magnetic fields. Journal of Applied Mechanics, Transactions ASME,1999,66(4):913-917
    45 ZhouYouhe, GaoYuanwen, ZhengXiaojing. Buckling and post-buckling analysis for magneto-elastic–plastic ferromagnetic beam-plates with unmovable simple supports. Int. J. Solids and Structures,2003,40:2875-2887
    46 Zhou,Youhe, Gao,Yuanwen, Zheng,Xiaojing. Buckling and post-buckling of a ferromagnetic beam-plate induced by magneto-elastic interactions. International Journal of Non-Linear Mechanics,2000,35(6):1059-1065
    47 Woodson H H and Melcher J.R, Electromechanical Dynamics, Part I, II, III, John Wiley and Sons, New York 1968
    48 Wolfe P, Bifurcation Theory of an Elastic Conducting Wire Subjected Magnetic Force. J. of Elasticity, 1990,23 (2-3):201-217
    49 Healey T.J. Large Rotating States of a Conducting Elastic Wires in a Magnetic Field: Subtle Symmetry and Multiparameter Bifurcation, J. of Elasticity, 1990,24:211-227
    50 Wolfe P, Bifurcation Theory of an Elastic Conducting Rod in a Magnetic Field, Quart Mech.Appl.Math,1988,41(2):265-279
    51 Peter Wolfe, Bifurcation Theory of an Elastic Conducting Rod Subjected to Magnetic Forces, Int. J. Nonlinear Mechanics,1990,25(5):597-604
    52 Moon F C,Chattopadhyay S.Elastic Stability of a Thermonuclear Rector Coil, Princeton,(1973)
    53 Moon F.C.Buckling of a Superconducting Ring in a Toroidal Magnetic Field, J. Appl. Mech, 1979, 46(1):151-155
    54谢慧才,方葛丰,王满德.平面圆形线圈的磁弹性屈曲.力学学报,1991,23(6):706-711
    55 Lenotovich M.A and Shafranov V.D.The Stability of a Flexible Conductor in a Magnetic Field, Plasms Physics and the Problem of Controlled Thermonucler Recations, Pergamon Press, 1961
    56 Van Lieshout P H, Rongen P M J and Van de Ven A AFA. Variational Principle for Magneto-elastic Buckling. J. Eng. Math, 1987, 21:227-252
    57 Van Lieshout P.H and Van de Ven A.A.F.A Variational Approach to the Magneto-elastic Buckling Problems of an Arbitrary Number of Superconducting Beams. J. Eng. Math, 1991, 25:353-374
    58 Chattopadhyay S and Moon F.C.Magneto-elastic Buckling and Vibration of a Rod Carrying Electric Current.J. Appl. Mech, 1975,42:809-814
    59 Van de Ven AAF and Couwenberg MJH.Magneto-elastic Stability of a Superconducting Ring in its Own Field.J. Eng. Math,1986,20:251-270
    60王省哲,郑晓静,周又和.非圆Tokamak载流线圈的磁弹性分析.兰州大学学报(自然科学版),1999,35(1):34-43
    61王海滨,周又和,郑晓静.超导磁体感应电流及其对电磁弹性动力稳定性的影响.核聚变与等离子体物理, 2003,23(1):1-6
    62马文麒,杨承辉.一类耦合非线性振子同步混沌Hopf分岔及其电路仿真.物理学报.2005,54(3):1064-1070
    63 Lorenz E N. Deterministic nonperiodic flow. J. Atoms. Sci.20,1963
    64吴祥兴,陈忠等编著.混沌学导论.上海:上海科学技术文献出版社,1996
    65陈予恕,郑兆昌,闻邦春,徐业谊主编.非线性振动、分岔及混沌.天津:天津大学出版社,1992
    66陈予恕.非线性振动系统的分岔与混沌理论.北京:高等教育出版社,1993
    67陈昌萍,傅衣铭.单轴转动截锥扁壳的全局分岔与混沌.非线性动力学报.2002,9(1-2):56-61
    68徐耀寰,蔡宗熙.矩形屈曲板受微扰时的浑沌现象.固体力学学报.1997,18(1):65-69
    69王新志,王钢,赵永刚,赵宏,宋曦.圆薄板非线性动力分岔及混沌问题.甘肃工业大学学报.2003,29(1):140-142
    70王永岗,戴诗亮.具有初挠度的受热双层金属圆板的混沌运动.清华大学学报(自然科学版),2004,Vol.44,No.8:1134-1137
    71邱平,王新志,叶开沅.非线性弹性地基上的圆薄板的分岔与混沌问题.应用数学和力学,2003,24(8)
    72李银山,陈予恕,李伟锋.各种板边条件下大挠度圆板的全局分岔和混沌.天津大学学报2001,Vol.34 No.6:718-722
    73米晋生,孙晋兰,王京.非线性粘弹性板条的分叉和混沌.太原理工大学学报,2002, Vol.33, No.6:666-668
    74高原文,周又和,郑晓静.横向磁场激励下铁磁梁式板的混沌运动分析.力学学报,2002:Vol.34, No.1:101-108
    75吴晓.屈曲黏弹性矩形板的非线性振动分岔.力学与实践,2001:Vol.23,No.1:40-43
    76陆启韶编著.常微分方程的定性方法和分叉.北京:北京航空航天大学出版社,1989
    77王高雄,周之铭等编.常微分方程.北京:高等教育出版社,1982
    78陆启韶.分岔与奇异性.上海:上海科技教育出版社,1995,1-46
    79李继彬,赵晓华,刘正荣.广义哈密顿系统理论及其应用.北京:科学出版社,1997,106-119
    80高普云编著.非线性动力学.北京:国防科技大学出版社,2005
    81 J Williamson. On an Algebraic Problem, Concerning the Normal Forms of Linear Dynamical Systems. Amer of Math, 1963,58:141-163
    82АмбарцумянСА,БагдасарянГЕ,БелубекянМВ.Магнитоупругостьтонкихоболо-чекипластин.Москва:Наука,1977:150-160
    83ФинкельВМ,ГоловинЮИ,СлетковАА.Разрушениевершинытрещинысильным.электромагнитнымполем.ДОКЛ.АНСССР,1977,237(2):325-327
    84ДресвянниковВИ.Построениеуравненийдинамикиэлектропроводящихупругопластическихоболочекпридействиинестационарныхипластичности.1982,вып20:10-23
    85程昌钧,朱正右著.《结构的屈曲与分岔》.兰州:兰州大学出版社,1991年9月第1版
    86王竹溪,郭敦仁.特殊函数概论.北京:北京大学出版社,2000:601-636
    87胡波.载流板壳磁弹性稳定问题分析.硕士学位论文,燕山大学,2005
    88陈占清,孙明贵等.从非线性动力学的视角认识细长压杆的稳定性.力学与实践,2005,27(2): 40-43
    89厉彦菊,陈占清.秦越.细长受压杆的分岔特性研究.山东科技,2006,19(1):6-10
    90张仲毅.临界压力下压杆挠度的分析讨论.力学与实践,1995,17(4)73-74
    91刘延柱.压杆失稳与Liapunov稳定性.力学与实践,2002,24(4)56-58
    92张仲毅.对《细长压杆临界挠度确定性的简单解释》结果的改进.力学与实践,1996,18(1):67-69
    93薛福林.谈细长压杆稳定性问题.力学与实践,1995,17(4):65-66
    94梁枢平,邹时智.也谈细长杆稳定性问题.力学与实践,1997,19(4):67-69
    95张业民,李顺群,王丽君.细长杆屈曲后中点位移的确定.力学与实践,2002,24(6):36-38
    96 Wolf A, Swift JB, etal. Dtermining Lypunov exponents from atime seriers. Physica, 1985,16D:285-317
    97 HaiW Duan Y,PanX.An analytical study for controlling unstable,periodic motion in magneto-elastic chaos.Physics Letter A,1997,234:198-204
    98 Lu Qs,To CWS,Huang KL.Dynamic stability and bifyrcation of an alternating load and magnetic field excited magnetoelastic beam.Journal of Sound and Vibration,1995,181(5):873-891
    99 XIONG Er-gang, WANG She-liang, ZHANG Qian, DING Yi-jie.. Buckling of an elastic plate in a uniform magnetic field .J. Xi'an Univ. of Arch. & Tech.. (Natural Science Edition). 2006,38(4):533-537
    100 A. Cebers. Flexible magnetic filaments. Institute of physics, Salaspils-l, Lv-2169,Latvia Available online 18 August 2005
    101 Zhou,Youhe, Zheng,Xiaojing.A eneral expression of magnetic force for soft ferromagnetic plates in complex magnetic fields.Int J Eng Sci,1997,35(15):1404-1417
    102 J.Guckenheimer and P.Holems,Nonlinear Oscillations,Dynamical Systems,and Bifurcations of Vector Fields,Springer-Verlag,1983
    103 Moon F C,Holmes PJ.A magnetoelastic strange attractor. Journal of sound and Vibration, 1979,65(2):275-296
    104 Tani J,Zhu Q,Takagi T,Ohtomo K.Experiments on Chaotic Motions of a Magnetoelastically Buckled Beam.Int Journal of Applied Electromagnetics in Materials,1992,22:317-324
    105 Thompson RCA,Mullin T.Routes to chaos in a magneto-elastic beam. Chaos,Solitons and Fractals,1997,8(4):681-697
    106高原文,周又和,郑晓静.横向磁场激励下铁磁梁式板的混沌运动分析.力学学报,2002,34(1):101-108
    107朱卫国,白象忠.横向磁场中矩形薄板在分布载荷作用下混沌分析(I).动力学与控制学报.2006,第四卷,第2期:156-161
    108朱卫国,白象忠.横向磁场中矩形薄板在分布载荷作用下混沌分析(II).动力学与控制学报.2006,第四卷,第3期:234-240
    109高本庆.椭圆函数及其应用.国防工业出版社,1991,83-98

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700