冻融循环与氯盐侵蚀耦合作用下预应力混凝土构件劣化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代预应力混凝土结构以其良好的结构性能、经济节能的社会效益,成为工程应用最为广泛和最具潜力的一种结构。在长期恶劣侵蚀环境作用下,该结构会出现内部损伤、甚至承载性能与使用功能退化等耐久性问题。目前,国内外对多种侵蚀环境作用下预应力混凝土结构耐久性能研究相对较少。本文结合国家自然科学基金资助项目“双指标侵蚀环境作用下预应力结构耐久性试验与寿命预测研究(项目编号:50878098)”,通过试验分析与理论研究,探索氯盐侵蚀与冻融循环对预应力混凝土构件抗弯性能的影响与劣化规律。主要完成了以下工作:
     (1)完成了氯盐与冻融循环作用条件下预应力混凝土构件耐久性试验。通过对20根预应力混凝土构件进行正交侵蚀试验(先冻融后氯盐侵蚀,先氯盐侵蚀后冻融,冻融与氯盐侵蚀同时进行),找出最不利侵蚀工况;利用相对动弹性模量的衰减规律,分析了构件的损伤失效过程,测试不同侵蚀工况下氯离子含量,并对构件进行承载力试验,研究冻融循环与氯盐侵蚀作用下预应力混凝土梁的承载性能退化规律。
     (2)建立了考虑氯盐与冻融循环耦合作用下预应力混凝土中氯离子二维扩散齐次模型。针对无限大的扩散介质,以综合正负峰值温度差、氯离子扩散系数的时间依赖性和环境温湿度等影响的实际预应力混凝土氯离子方程为基础,分别在常数边界条件和幂函数边界条件下,推导出二维氯离子扩散理论的齐次模型,且探讨了水胶比、应力水平与龄期等对预应力混凝土结构氯离子扩散的影响。
     (3)对冻融循环与氯盐侵蚀条件下的预应力混凝土梁抗弯性能退化规律进行数值模拟。通过有限元方法,对不同腐蚀工况条件下的预应力混凝土梁承载力退化规律进行模拟,探讨了腐蚀条件对承载性能的影响;根据耐久性试验与数值模拟进行对比,拟合得出冻融循环与氯盐侵蚀耦合作用下预应力混凝土梁开裂荷载退化系数。
     (4)提出了冻融条件下预应力混凝土结构氯盐侵蚀的可靠度分析模型。针对季节性冰冻地区的海工结构耐久性失效特点以及结构耐久性具体要求,从失效率与可靠度的关系入手,运用随机场理论,综合考虑正负峰值温度差、氯离子临界浓度与预应力的影响,提出了冻融条件下预应力结构氯盐侵蚀的可靠度分析模型。通过算例,讨论了离散数目对失效概率的影响,并对氯离子浓度、保护层厚度等相关随机变量进行了灵敏度分析。
     (5)基于可靠度理论与Monte Carlo法对混凝土结构(RC/PC)进行了耐久性评估与寿命预测。考虑耐久性寿命预测中的不确定性因素,将影响耐久性寿命的参数作为随机变量,以现场实测数据推算出的结构耐久性参数为基准,确定了各参数的随机分布,建立了包括多个随机变量的概率型耐久性寿命预测模型。此外,对随机模拟产生的假设参数及预测参数的概率分布特征、统计分布参数及其灵敏度等进行了分析,得到了寿命预测模型中假设参数的变化对预测结果的影响程度。
     研究结果表明:预应力水平对混凝土构件在冻融循环与氯盐侵蚀过程中相对动弹性模量的变化起着重要的影响,预压应力的存在抵消了一部分冻胀压力,延缓了混凝土内部裂缝的开展。本文主要研究内容为相关混凝土设计规范的修改与完善提供一定参考。
With good performance and energy-efficient social economy, modern prestressed concrete (PC) structures is one of the most extensive and potential structures. In the condition of long harsh corrosion, there are a series of durability problems, such as internal damage and even degradation of bearing behavior and service performance. At home and abroad, durability research on prestressed concrete structures under various erosion environment is relatively few. Combining with the National Natural Science Foundation of China, " Research on durability test and life prediction of prestressed structure under double index erosion environment"(NO:50878098), the paper has explored the influence and deteriorating law to flexural performance of PC members under freeze-thaw cycle and chloride attack, based on test analysis and theory research. the following are main achievements:
     (1) Durability test of prestressed concrete members under freeze-thaw cycle and chloride attack is finished. Based on orthogonal erosion test on 20 PC specimens (freeze-thaw to chloride attack, chloride attack to freeze-thaw and freeze-thaw and chloride attack at the same time), the most unfavorable condition is found out. The damage failure process of prestressed concrete member is analyzed by attenuation law of relative dynamic elastic modulus. Chloride content under different erosion conditions is measured. Then, bearing capacity deteriorating law of PC beam under freeze-thaw cycle and chloride attack is discussed by bearing capacity experiment.
     (2) Two-dimensional chloride ion diffusion homogeneous model in prestressed concrete considering freeze-thaw cycle and chloride attack is modeled. According to infinite spread medium, based on integrated positive and negative peak temperature difference, chloride diffusion coefficient of time dependence and the influence of temperature and humidity, two-dimensional homogeneous chloride diffusion model is deduced, under both constant boundary conditions and power function ones. The influence of water-binder ratio, stress level and age on chloride diffusion is discussed.
     (3) Deteriorating law of flexural performance for PC members under freeze-thaw cycle and chloride attack is simulated. With simulating the bearing capacity deteriorating law of PC beam under different corrosion conditions by finite element, the influence of corrosion condition on bearing capacity is discussed. Based on the comparison between durability test and numerical simulation, the cracking load degradation coefficient in PC beam under freeze-thaw cycle and chloride attack is fitted.
     (4) Reliability analysis model of PC beam with chloride attack and freeze-thaw cycle is put forward. Focusing on durability failure of prestressed marine structures and requirements on structural durability in seasonal ice regions, reliability analysis model of PC beam under chloride attack and freeze-thaw cycle is put forward by stochastic field theory, considering the influence of positive and negative peak temperature difference, chloride critical concentration and prestressing. It is discussed on the influence of discrete number on failure probability, and sensitivity analysis of chloride concentration, cover thickness and other correlated variables.
     (5) Durability assessment and life prediction of concrete structures (PC/RC) based on fuzzy reliability theory and Monte Carlo method. Considering uncertainty factors in durability life prediction, random distributions of various parameters are determined, taking the affecting parameters as random variables. According to the structure durability parameter calculated from actual measurement, probabilistic durability life prediction model including multi-random variables is established. Moreover, the probability distribution, statistical distribution parameters and sensibility of hypothesis parameters produced by random simulation is analyzed. The influence of hypothesis parameters variation on the prediction results is discussed.
     It is shown that, during the process of freeze-thaw cycle and chloride attack, prestress level plays an important role to variation of relative dynamic elastic modulus. The prestressing will offset a part of frost-heaving force, delaying crack development inside concrete, which provide reference for modification and perfection of related concrete design code.
引文
[1.1]Mehta P K. Concrete Durability:Fifty Year's Progress[A]. Proceeding of International Conference on Concrete Durability[C]. ACI SP126-1,1991:1-33.
    [1.2]罗福午.建筑结构缺陷事故的分析及防治[M].北京:清华大学出版社,1996.
    [1.3]Mehta P K. Durability-critical issues for the future[J]. Concrete International,1997,19:27-33.
    [1.4]卢木.混凝土耐久性研究现状和研究方向[J].工业建筑,1997,27(5):1-6.
    [1.5]金伟良,赵羽习.混凝土结构耐久性研究的回顾与展望[J].浙江大学学报(工学版)2002,36(4):371-374.
    [1.6]中华人民共和国住房和城乡建设部.《混凝土结构耐久性设计规范》(GBT50476-2008)[S].北京:中国建筑工业出版社.
    [1.7]唐明述.提高基建工程的寿命是最大的节约[c].全国耐久性学术交流会,杭州,2005.
    [1.8]郭向勇,孙常青.混凝土耐久性设计的系统工程方法[J].苏州城建环保学院学报,2002,15(2):64-67.
    [1.9]General guidelines for durability design and redesign, The European Union-Brite EuramⅢ, Document BE95-1347/R15, Feb,2000.
    [1.10]李治国.病害隧道调查及裂缝整治技术[J].现代隧道技术(增刊),2002:15-21.
    [1.11]陈肇元主编.《土建结构工程的安全性与耐久性》[M].北京:建筑工业出版社,2003.
    [1.12]金伟良,袁迎曙,卫军,王海龙.氯盐环境下混凝土结构耐久性理论与设计方法[M].北京:科学出版社,2011.
    [1.13]田俊峰,王胜年,黄君哲,潘德强.海港工程混凝土耐久性设计与寿命预测[M].中国港湾建设,2004,133(6):1-3.
    [1.14]孟庆伶.早期预应力混凝土梁的耐久性调查[J].铁道建筑,2001(11):20-24.
    [1.15]Schupack M. A survey of the durability performance of post-tensioning tendons[J]. ACI Journal, 1978,75(10):501-510.
    [1.16]Schupack M, Suarez M G. Some recent corrosion embrittlement failures of prestressing systems in the United States[J]. PCI Journal,1982,27(2):38-55.
    [1.17]Nurnberger U. Corrosion protection of prestressing steels[C]. FIP State-of-the-Art Report, Draft Report, FIP, London,1986.
    [1.18]American Society for Testing and Materials. C671.Standard test method for critical dilation of concrete specimens subjected to freezing,1995.
    [1.19]谢和平,鞠杨.分数空间中的损伤力学研究初探[J].力学学报,1999.
    [1.20]Subramanyan S. Accumulative damage rule based on the knee point of the S-N curve[C]. Mathematics and Mechanical,1976.
    [1.21]Forgeron D P, Trottier J F. Evaluating the effects of combined freezing and thawing and flexural fatigue loading cycles on the fracture properties of FRC [A]//2nd International Conference on High Performance Structures and Materials[C].2004:177-187.
    [1.22]中国土木工程学会CCES 01-2004混凝土结构耐久性设计与施工指南(2005年修订版)[S].北京:中国建筑工业出版社,2005
    [1.23]吕志涛.现代预应力结构体系与设计方法[M].南京:江苏科学技术出版社,2010.
    [1.24]王国亮,谢峻等.在用大跨度预应力混凝土箱梁桥裂缝调查研究[J].公路交通科技,2008,25(8):52-26.
    [1.25]陈开利.帕劳共和国的桥梁倒塌事故[J].国外公路,1998,18(3):31-33.
    [1.26]Saman H, Alireza R, Khaled S. Evaluation of Creep Effects on the Time-dependent Deflections and Stresses in Prestressed Concrete Bridges[J]. Bridge Structures:Assessment, Design and Construction,2007,3(2):19-132.
    [1.27]楼庄鸿.现有大跨度预应力混凝土梁式桥的缺陷[A].全国桥梁学术会议论文集[C].北京:人民交通出版社,2003,189-193.
    [1.28]Ngoc A V. Strenthening of a long span prestressed segmental box girder bridge[J]. PCI Journal, 1979,3:52-58.
    [1.29]薛伟辰,胡于明,王巍.预应力混凝土梁徐变性能试验[J].中国公路学,2008,21(4):61-66.
    [1.30]Hwan Y. Uncertainty and sensitivity analysis of time-dependent effects in concrete structures[J]. Engineering Structures,2007,29(7):1366-1374.
    [1.31]Hwan Y. Uncertainty and updating of long-term prediction of prestress forces in PSC box girder bridges[J]. Computers and Structures,2005,83(25-26):2137-2149.
    [1.32]Li X P, Robertson I N., Long-term Performance Predictions of the North Halawa Valley Viaduct. Research Report UHM/CEE/03-04, University of Hawaii,2003.
    [1.33]AASHTO. AASHTO LRFD Bridge specifications SI Units Third Edition [S]. USA:American Association of State Highway and Transportation Officials,2004.
    [1.34]吴胜兴.混凝土结构的温度应力与温度裂缝控制研究[D].[博士学位论文].南京:河海大学,1994.
    [1.35]中华人民共和国交通部.《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTJ023-85)[S].北京:人民交通出版社,2004.
    [1.36]Laeidogna G, Tarantino M. Approximate expressions for thr aging coefficient and the relaxation function in the viscoelastic analysis f concrete structures[J]. Material and Structures,1996,29: 131-140.
    [1.37]Ngoc A V, Castel A, Francois R. Effect of stress corrosion cracking on stress-strain response of steel wires used in prestressed concrete beams[J].Corrosion Science 51 (2009) 1453-1459.
    [1.38]Collins M P. Towards a rational theory for RC members in shear[J]. Journal of the Structural Dvision, ASCE,1978,104(4):649-666.
    [1.39]Vecchio F J, Lai D. Disturbed stress field model for reinforced concrete:Validation[J]. Journal of Structure Engineering, ASCE,2001,127(4):350-358.
    [1.40]Pang X B D, Hsu T T C. Behavior og reinforced concrete membrane elements in shear[J]. ACI Structural Journal,1995,92(6):665-679.
    [1.41]陈妤.预应力结构盐冻环境下的耐久性数值模拟研究[D].镇江:江苏大学,2008.
    [1.42]陆春华.现代预应力结构耐久性分析与数值试验研究[D].镇江:江苏大学,2006.
    [1.43]Costa A,APPleton J. Chloride penetration into eoncrete in marine environment-Part Ⅰ:Main Parameters affecting chloride penetration[J]. Materials and Structures,1999,32(5):252-259.
    [1.44]Ramadan S, Gaillet L, Tessier C, Idrissi H. Detection of stress corrosion cracking of high-strength steel used in prestressed concrete structures by acoustic emission technique[J].Applied Surface Science 254 (2008) 2255-2261.
    [1.45]付凯.预应力混凝土结构在冻融条件下疲劳损伤机理的研究[D].镇江:江苏大学,2008.
    [1.46]高嵩.预应力混凝土冻融条件下的疲劳数值试验研究[D].镇江:江苏大学,2009.
    [1.47]Alonso C, Andrade C, Castellote M, Castro P. Chloride threshold values to depassivate reinforcing bars embedded in a standardized OPC mortar[J]. Cement and Concrete Research,2000,30(7): 1047-1055.
    [1.48]李文婷,孙伟,蒋金洋.疲劳荷载与环境因素耦合作用下混凝土损伤劣化研究进展[J].硅酸盐学报,2009,37(12):2142-2149.
    [1.49]于海祥,武建华,李强.混凝土损伤本构模型研究评述[J].重庆建筑大学学报,2007,29(2):68-72.
    [1.50]Lemaitre J, Chaboche J. Aspect phenomenological delay rupture parendom magcment[J], Journal of Applied Mechanies,1978,12:317-365.
    [1.51]Hoseini M, Bindiganavile V, Banthian N. The effect of mechanical stress on permeability of concrete:a review [J]. Cement and Concrete Composite,2009,31(4):213-220.
    [1.52]Gowripalan N, Sirivivatnanon V, Lim C C. Chloride diffusivity of concrete cracked in flexure [J]. Cement and Concrete Research,2000,30(5):725-730.
    [1.53]何世钦,贡金鑫.弯曲荷载作用对混凝土中氯离子扩散的影响[J].建筑材料学报,2005,8(2):134-138.
    [1.54]赵尚传,贡金鑫,水金锋.弯曲荷载作用下混凝土氯离子扩散规律的试验研究[C]∥第四届混凝土结构耐久性科技论坛《混凝土结构耐久性设计与评估方法》.杭州,2006:227-246.
    [1.55]Vidala T, Castel A. Francois R. Corrosion process and structural performance of a 17 year old reinforced concrete beam stored in chloride environment [J]. Cem Concr Res,2007, 37(11):1551-1561.
    [1.56]Li F M, Yuan Y S, Li C Q. Corrosion propagation of prestressing steel strands in concrete subject to chloride attack[J].Construction and Building Materials,2011,(25):3878-3885.
    [1.57]Li C Q, Zheng J J, Shao L. New solution for prediction of chloride ingress in reinforced concrete flexural members [J]. ACI Mater J,2003,100(4):319-325.
    [1.58]Marco O, Luciano L, Sara G, Gabriele F, Andrea B. A study of organic substances as inhibitors for chloride-induced corrosion in concrete[J].Corrosion Science 51 (2009) 2959-2968.
    [1.59]孙伟,蒋金洋,王晶等.弯曲疲劳荷载作用下HPC和HPFRCC抗氯离子扩散性能研究[J].中国材料进展,2009,28(11):19-25.
    [1.60]俞海勇,张贺,王琼,徐强,邓咏梅.海工混凝土钢筋锈蚀速率预测模型研究[J].建筑材料学报,2009,12(4):478-492.
    [1.61]Wang L C,Soda M, Ueda T. Simulation of chloride diffusion for cracked concrete based on RBSM and truss network model [J]. J Adv Concr Technol,2008,6(1):143-155.
    [1.62]Nuernberger U. Reasons and prevision of corrosion-induced failures of prestressing steel in concrete [J].J Struct E,2009, 1(1):29-39.
    [1.63]Roberto C. Detection of damage due to corrosion in prestressed RC beams by static and dynamic tests[J].Construction and Building Materials 22 (2008) 738-746.
    [1.64]Cgoinska M, Khelidj A, Chatzigeorgiou G, et al. Effects and interactions of temperature and stress-level related damage on permeability of concrete [J]. Cem Concr Res,2007, (1):79-88.
    [1.65]Boulfiza M, Sakai K, Banthian, et al. Prediction of cracking effect on the penetration of chloride ions in reinforced concrete [C]//Proceedings of the JCI,2000,22(3):91-96.
    [1.66]R.M.Schroeder, I.L.Muuller. Stress corrosion cracking and hydrogen embrittlement susceptibility of an eutectoid steel employed in prestressed concrete[J].Corrosion Science 45 (2003) 1969-1983.
    [1.67]涂永明,吕志涛.应力状态下混凝土结构的盐雾侵蚀试验研究[J].工业建筑,2004,34(5):1-3.
    [1.68]蒋金洋,孙伟,王晶等.弯曲疲劳荷载作用下结构混凝土抗氯离子扩散性能[J].东南大学学报:自然科学版,2010,40(2):362-366.
    [1.69]徐强,余海勇.大型海工混凝十结构耐久性研究与实践[M].北京:中国建筑工业出版社,2004:88.
    [1.70]蔡吴.混凝十抗冻耐久性预测模型[博士学位论文][D].北京:清华大学,1998.
    [1.71]董必钦,马红岩,刑锋.滨海地区混凝土结构在环境作用下的使用寿命评估[J].工业建筑,2008(38):817-821.
    [1.72]Ohsumin M, Kato Y, Uomoto T. Fundamental study on the rate of corrosion of reinforced concrete [C]//Proceedings of the JCI,1996,18(1):771-776.
    [1.73]Francois R, Maso J C. Effect of damage in reinforced concrete on carbonation or chloride penetration [J]. Cem Concr Res,1988,18(6):961-970.
    [1.74]Creazza G, Russo S. A new model for predicting crack width with different percentages of reinforcement and concrete strength classes [J]. Material and Structure,1999,32(9):520-524.
    [1.75]Oh B H, Kim S H. Advanced crack width analysis of reinforced concrete beams under repeated loads [J]. J Structural Engineering,2007,133(3):411-420.
    [1.76]赵羽习,金伟良.钢筋锈蚀导致混凝土构件保护层胀裂的全过程分析[J].水利学报,2005,36(8):939-945.
    [1.77]陈好,刘荣桂,付凯.冻融循环下海工预应力混凝土结构的耐久性[J].建筑材料学报,2009,12(1):17-21.
    [1.78]Lu X Y, Li C L, Zhang H X. Relationship between the free and total chloride diffusivity in concrete [J]. Cement and Concrete Research,2002,32(2):323-326.
    [1.79]Toribio J, Lanchat A M. Overload retardation effects on stress corrosion behaviour of prestressing steel[J]. Consrrucriun and Building Mrr-rriols, Vol. IO, No.7,501-505,1996.
    [1.80]徐善华,牛荻涛.锈蚀钢筋混凝十简支梁斜截面抗剪性能研究[J].建筑结构学报,2004,25(5):98-104.
    [1.81]Nilsson L O. Penetration of chloride into concrete structures--an introduction and some definitions, nordic mini-seminar on chloride penetration into concrete structures [D]. Chalmers University of Technology, Sweden,1993:7-17.
    [1.82]HaMinh, Hiroshi M, Kyoji N. Influence of grouting condition on crack and load-carrying capacity of post-tensioned concrete beam due to chloride-induced corrosion[J].Construction and Building Materials 21 (2007) 1568-1575.
    [1.83]孙伟,余洪发.混凝十结构工程的耐久性与寿命研究进展[C].土建结构工程的安全性与耐久性,北京,2001.
    [1.84]Ausloos M, Salmon E, Vandewalle N. Water invasion, freezing, and thawing in cementitious materials, Cement and Concrete Research,1999,29(2):209~213
    [1.85]Pheeraphan T, Leung C K Y. Freeze-thaw durability of microwave cured air-entrained concrete, Cement and Concrete Research,1997,27(3):427-435
    [1.86]Selleck S F, Landis E N, Peterson M L, Shah S P, Achenbach J D. Ultrasonic investigation of concrete with distributed damage, ACI Materials Journal,1998,95(1):27~36
    [I.87]Shi X P, Fwa T F, Tan S A, Flexural fatigue strength of plain concrete. ACI Materials Journal, 1993,90(5):435~440.
    [1.88]陈肇元.钢筋的混凝土保护层设计要求急待改善——混凝土结构设计规范的问题讨论之一[J].建筑结构,2007(06).
    [1.89]徐有邻,王晓锋,刘刚等.混凝十结构理论发展及规范修订的建议[J].建筑结构学报,28(1),2007:1-6.
    [1.90]JSCE-Concrete committee. Standard specification for concrete structures; 2002.
    [1.91]British Standards Institution (BSI), BS5400:Steel, concrete and composite bridges, Part 1: General statement [S]. London,2003.
    [1.92]Mangat P S, Molloy B T. Prediction of long term chloride concentration in concrete [J].Materials and Structures,1994,27(7):338-346.
    [1.93]Anna V S, Roberto V S. Analysis of chloride diffusion into partially saturated concrete[J].ACI Material Journal,1993,(5):441-451.
    [1.94]金伟良,金立兵,延永东,姚吕建.海水干湿交替区氯离子对混凝土侵入作用的现场检测和分析[J].水利学报,2009,40(3):364-371.
    [1.95]洪锦祥,缪吕文,黄卫.冻融损伤对混凝土氯离子扩散性能的影响[J].混凝土,2006,195(1):36-38.
    [1.96]Bazant Z P. Physical model for steel corrosion in concrete sea structures-application [J].Journal of the Structural Division,1979,105(6):1155-1166.
    [1.97]Liu Y, Weyers R E. Modelling the time-to-corrosion cracking in chloride contaminated reinforced concrete structures [J]. ACI Materials Journal,1998,95(6):675-681.
    [1.98]陈月顺,卫军,罗晓辉.钢筋混凝土锈胀开裂临界锈蚀率模型研究[J].武汉理工大学学报,2007,29(2):51-53.
    [1.99]Maaddawy T E, Soudki K. A model for prediction of time from corrosion initiation to corrosion cracking [J]. Cement and Concrete Composites,2007,29(3):168-175.
    [1.100]Andres A. Torres A, Sergio N G, Jorge T G. Residual flexure capacity of corroded reinforced concrete beams [J]. Engineering Structures,2007,29(6):1145~1152.
    [1.101]Apostolopoulos C A, Papadakis V G. Consequences of steel corrosion on the ductility properties of reinforcement bar [J]. Construction and Building Materials,22 (2008):2316-2324.
    [1.102]金伟良,夏晋,王伟力.锈蚀钢筋混凝土桥梁力学性能研究综述(Ⅰ)[J].长沙理工大学学报(自然科学版),2007,4(2):1-12.
    [1.103]邓德华,水泥基复合材料受冻融破坏其性能衰减耐久函数的探讨,武汉工业大学学报,1986年第3期,273-280.
    [1.104]秦权,林道锦,梅刚.结构可靠度随机有限元——理论及工程应用[M].北京:清华大学出版社,2006.
    [1.105]Stefan J, Hans C G, Erik J S, Jon A B. High strength concrete freeze/thaw testing and cracking, Cement and Concrete Research,1995,25(8):1775~1780
    [1.106]Sommer H著,冯乃谦译,高性能混凝土的耐久性[M].北京:科学出版社,1998
    [1.107]Collins A R. The destruction of concrete by frost, Journals of Institute of Civil Engineering,1944, 23,29-41
    [1.108]Susanta C. Aspect of the freezing process in a porous materials-water system Part Ⅰ.freezing and the properties of water and ice, Cement and Concrete Research,1999,29(4):627~630
    [1.109]Susanta C. Aspect of the freezing process in a porous materials-water system Part Ⅱ:freezing and the properties of frozen porous materials, Cement and Concrete Research,1999,29(6):781~784
    [1.110]Browne R D, Bamforth P B. The use of concrete for cryogenic storage:A summary of research, past and present, Proceeding of 1st international conference on cryogenic concrete, Newcastle upon Tyne,1981,135~162
    [1.111]Miroslaw G\, Christian M. Damage accumulation in concrete with and without fiber reinforcement, ACI Materials Journal,1993,90(6):594~604
    [1.112]Zhang B S, Wu K R. Residual fatigue strength and stiffness of ordinary concrete under bending, Cement and Concrete Research,1997,27(1):115~126.
    [1.113]Ballatore E, Bocca P, Variations in the mechanical properties of concrete subjected to low cyclic loads, Cement and Concrete Research,1997,27(3):453~462.
    [1.114]Zhang B. Relationship between pore structure and mechanical properties of ordinary concrete under bending fatigue, Cement and Concrete Research,1998,28(5):699~711.
    [1.115]Ashraf R M, Will H. Micromechanical modeling of concrete response under static loading—Part Ⅰ: Model development and validation, ACI Materials Journal,1999,96(2):196~203.
    [1.116]吴瑾,吴胜兴.锈蚀钢筋混凝土受弯构件承载力评估[J].河海大学学报(自然科学版),2004,32(3):283-286.
    [1.117]孙伟,严云,钢纤维高强水泥基复合材料的界面效应及其疲牢特性研究,硅酸盐学报,1994,22(2):107-116.
    [1.118]Li G Q, Zhao Y, Pang S S. Four-phase sphere modeling of effective bulk modulus of concrete, Cement and Concrete Research,1999,29(6):839~845.
    [2.1]王有志等.预应力混凝土结构[M].北京:中国水利水电出版社,1999,223.
    [2.2]ACI Committee 2009, prediction of creep, shrinkage and temperature effects in Concrete Structures [J], ACI SP76-10,193-300.
    [2.3]张誉,蒋利学,张伟平,屈文俊.混凝土结构耐久性概论[M].上海:科学技术出版社,2003,335.
    [2.4]幕儒.冻融循环与外部弯曲应力、盐溶液复合作用下混凝土的耐久性与寿命预测[D].南京:东南大学,2000,5.
    [2.5]黄十元.混凝土的抗冻性及其试验方法[J].混凝土及加筋混凝土,1983(2):35-42.
    [2.6]American Society for Testing and Materials.C671.Standard test method for critical dilation of concrete specimens subjected to freezing,1995.
    [2.7]金立兵,金伟良,等.沿海混凝土结构的现场暴露试验站设计[J].工业建筑,2008,(2):14-18.
    [2.8]Bazant Z P et al. Mathematical model for freeze-thaw durability of concrete. Journal of the American Ceramic Society,1998,71(9):776-783
    [2.9]Saito M. Characteristics of micro cracking in concrete under static and repeated tensile loading [J].Cement and Concrete Research,1987,17:211-218.
    [2.10]Subramanyan S. Accumulative damage rule based on the knee point of the S-N curve[C]. Mathematics and Mechanical,1976.
    [2.11]Leve H L. Cumulative damage theories [M]. Metal fatigue theory and design. AF Msdayay, Ed.1960.
    [2.12]Gatts R R. Application of a cumulative damage concept to fatigue [J].ASME,83, series D. 1964(4).
    [2.13]孙伟.冻融和荷载共同作用下混凝土损伤和抑制过程及其损伤统计模型的建立[c].第五届全国混凝土耐久性学术交流会,2000.
    [2.14]慕儒.冻融和应力复合作用下HPC的损伤与损伤抑制[J].建筑材料学报,1999.
    [2.15]Hasan M, Okuyama H, Sato Y. Stress-strain model of concrete damaged by freezing and thawing cycles [J]. J Adv Concrete Techno,2004,2(1):89-99.
    [3.1]朱伯芳.水工混凝土结构的温度应力与温度控制[M].北京:水利水电出版社,1990,120-124.
    [3.2]王有志等.预应力混凝土结构[M].北京:中国水利水电出版社,1999,223.
    [3.3]ACI Committee 2009, prediction of creep, shrinkage and temperature effects in Concrete Structures [J], ACI SP76-10,193-300.
    [3.4]张誉,蒋利学,张伟平,屈文俊.混凝土结构耐久性概论[M].上海:科学技术出版社,2003,335.
    [3.5]幕儒.冻融循环与外部弯曲应力、盐溶液复合作用下混凝土的耐久性与寿命预测[D].南京:东南大学,2000.
    [3.6]吕志涛.新世纪我国土木工程活动与预应力技术的展望[J].建筑技术,2000,31(12):808-809.
    [3.7]黄土元.混凝土的抗冻性及其试验方法[J].混凝土及加筋混凝土,1983(2):35-42.
    [3.8]American Society for Testing and Materials.C671.Standard test method for critical dilation of concrete specimens subjected to freezing,1995.
    [3.9]Bazant Z P, et al. Mathematical model for freeze-thaw durability of concrete. Journal of the American Ceramic Society,1998,71(9):776-783
    [3.10]谢和平,鞠杨.分数空间中的损伤力学研究初探[J].力学学报,1999.
    [3.11]Saito M. Characteristics of micro cracking in concrete under static and repeated tensile loading [J].Cement and Concrete Research,1987,17:211-218.
    [3.12]曾攀.材料的概率疲劳损伤特性及现代结构分析原理[M].北京:科学技术文献出版社,1993,52-62.
    [3.13]Subramanyan S. Accumulative damage rule based on the knee point of the S-N curve[C]. Mathematics and Mechanical,1976.
    [3.14]Leve H L. Cumulative damage theories [M]. Metal fatigue theory and design. AF Msdayay, Ed.1960.
    [3.15]Sarveswaran V, Roberts M B, Ward J A. Reliability assessment of deteriorating reinforced concrete beams[J]. Proceedings of the Institution of Civil Engineers.Structures and Buildings, 2000(14):239-247.
    [3.16]Gatts R R. Application of a cumulative damage concept to fatigue [J].ASME,83, series D. 1964(4).
    [3.17]孙伟.冻融和荷载共同作用下混凝土损伤和抑制过程及其损伤统计模型的建立[C].第五届全国混凝土耐久性学术交流会,2000.
    [3.18]严安.高等混凝土在荷载作用下的冻融性能及其可靠性分析[J].混凝土与水泥制品,2000.
    [3.19]赵卓,蒋晓东.受腐蚀混凝土结构耐久性检测诊断[M].郑州:黄河水利出版社,2006.
    [3.20]严安.在荷载与冻融双因素下混凝土的损伤过程[D].东南大学硕士学位论文,1998.
    [3.21]慕儒.冻融和应力复合作用下HPC的损伤与损伤抑制[J].建筑材料学报,1999.
    [3.22]Hasan M, Okuyama H, Sato Y. Stress-strain model of concrete damaged by freezing and thawing cycles [J]. J Adv Concrete Techno,2004,2(1):89-99.
    [3.23]Hasan M, Nagai, K, Sato Y, et al. Tensile stress-crack width model for plain concrete damaged by freezing and thawing action [A]//Proc. JCI [C].2002:109-114.
    [3.24]Maekawa K, Okamura H. The deformational behavior and constitutive equation of concrete using the elastic-plastic and fracture model [J]. J Fac Eng,1983,37(2):253-328.
    [3.25]Trottier J F, Forgeron D. Cumulative effects of flexural fatigue loading and freezing and thawing cycles on the flexural toughness of fiber reinforced concrete[A]//Proceeding 3rd International Conference on Concrete under Severe Conditions [C].2001:1165-1176.
    [3.26]周奇峰.无粘结预应力混凝土结构抗冻耐久性研究[硕十学位论文][D].长沙:中南大学,2008.
    [3.27]Enright M P.Time-variant reliability of reinforced concrete bridges under environmental attack[D]. Denver:University of Colorado,1998.
    [3.28]Kirkpatrick T J. Impact of specification changes on chloride induced corrosion service life of virginia bridge decks[D]. Blacksburg:Virginia Polytechnic Institute and State University,2001.
    [3.29]Forgeron D P, Trottier J F. Evaluating the effects of combined freezing and thawing and flexural fatigue loading cycles on the fracture properties of FRC [A]//2nd International Conference on High Performance Structures and Materials[C].2004:177-187.
    [3.30]Lappa E S. High strength fiber reinforced static and fatigue behavior in bending [D]. Netherlands: Technology University Delft,2007.
    [3.31]姚振纲,刘祖华.建筑结构试验[M].上海:同济大学出版社,1996:62-96.
    [3.32]过镇海.钢筋混凝土原理[M].北京:清华大学出版社,1999.
    [3.33]牛荻涛.混凝土结构耐久性与寿命预测[M].北京:科学出版社,2003:33-45.
    [3.34]姚武.纤维混凝土的低温性能和冻融损伤机理研究[J].冰川冻土,2005,27(4):545-549.
    [3.35]中华人民共和国建设部.混凝土结构试验方法标准(GB50152-92)[S].北京:中国建筑工业出版社,1992:14-22.
    [3.36]商怀帅,宋玉普,覃丽坤.普通混凝土冻融循环后性能的试验研究[J].混凝土与水泥制品,2005,2:9-11.
    [3.37]李兆霞.损伤力学及其应用[M].北京:科学出版社,2002:23-28.
    [3.38]姚武.纤维混凝十的低温性能和冻融损伤机理研究[J].冰川冻土,2005,27(8):545-549.
    [3.39]冯西桥,余寿文.准脆性材料细观损伤力学[M].北京:高等教育出版社,2002.
    [3.40]余寿文,冯西桥.损伤力学[M].北京:清华大学出版社,1999.
    [3.41]Kachanov L M. On the time to failure under creep condition [J]. Izv. Akad. Nauk.USSR.Otd. Tekhn.Nauk.1958, (8):26-31.
    [3.42]Rabotnov Y N. Research On the equations of state for creep [J]. Progress in Applied Mechanies, 1963,307-315.
    [3.43]Lemaitre J, Chaboche J. Aspect phenomenological delay rupture pare endommagement[J], Journal of Applied Mechanies,1978,12:317-365.
    [3.44]唐春安,朱万成.混凝土损伤与断裂一数值试验[M].北京:科学出版社,2003.
    [3.45]李金玉,曹建国,徐文雨等.混凝土冻融破坏机制的研究[J].水利学报,1999,(1):41-49.
    [3.46]Fgaerlund G. Significance of critical degrees of saturation at freezing of porous and brittle materials[C]//Durability of Concrete, ACI Special Publication. Detroit, USA:American Concrete Institute,1975:13-65.
    [3.47]Setzer M J. Mechanisms of frost action[C]//Proceedings of the International Workshop on Durability of Reinforced Concrete under Combined Mechanical and Climatic Loads. Qingdao: Aedificatio Publishers,2005:263-274.
    [3.48]蔡吴.混凝土抗冻耐久性预测模型[博士学位论文][D].北京:清华大学,1998.
    [3.49]秦权,林道锦,梅刚.结构可靠度随机有限元-理论及工程应用[M].北京:清华大学出版社,2006,7-11.
    [4.1]李田,刘西拉.混凝土结构耐久性设计的研究[J].建筑结构学报,1998,19(4):23-26.
    [4.2]中国工程院土木水利与建筑学部工程结构安全性与耐久性研究咨询项目组.混凝土结构耐久性设计与施工指南[M].北京:中国建筑[业出版社,2004.
    [4.3]金伟良,吕清芳,赵羽习等.混凝十结构耐久性设计方法与寿命预测研究进展[J].建筑结构学报,2007,28(1):7-13.
    [4.4]Narayanan R S, Brooker O. How to design concrete structures using Eurocode 2:Introduction to Eurocodes- Camberley[M]. The Concrete Centre, Switzerland,2005.
    [4.5]Harikrishna N, Chew M Y L. Integration of durability with structural design:An optimal life cycle cost based design procedure for reinforced concrete structures[J]. Construction and Building Materials,2009,23(2):918-929.
    [4.6]Schroeder R M, Muller I L. Stress corrosion cracking and hydrogen embrittlement susceptibility of an eutectoid steel employed in prestressed concrete[J]. Corrosion Science,2003,45(9): 1969-1983.
    [4.7]Darmawan M S, Stewart M G. Spatial time-dependent reliability analysis of corroding pretensioned prestressed concrete bridge girders[J]. Structural Safety,2007,29 (1):16-31.
    [4.8]余红发,孙伟,张云升等.在冻融或腐蚀环境下混凝土使用寿命预测方法Ⅰ——损伤演化方程与损伤失效模式[J].硅酸盐学报,2008,36(S1):128-135.
    [4.9]Siegwart M. Influence of electrochemical chloride extraction on the performance of prestressed concrete under dynamic loading conditions [J]. Journal of Materials in Civil Engineering.2006, 18(6):800-812.
    [4.10]俞海勇,张贺,王琼,徐强,邓咏梅.海工混凝土钢筋锈蚀速率预测模型研究[J].建筑材料学报, 2009,12(4):478-492.
    [4.11]Costa A, Appleton J. Chloride penetration into eoncrete in marine environment-Part Ⅰ:Main Parameters affecting chloride penetration [J]. Materials and Structures,1999,32(5):252-259.
    [4.12]Costa A, Appleton J. Chloride penetration into eoncrete in marine environment-Part Ⅱ:Prediction of long-term chloride Penetration[J]. Materials and Struetures,1999,32(6):354-359.
    [4.13]Meira G R, Andrade C, Padaratz I J, et al. Chloride penetration into concrete structures in the marine atmosphere zone-Relationship between deposition of chlorides on the wet candle and chlorides accumulated into concrete[J]. Cement and Concrete Composites,2007,29(9):667-676.
    [4.14]陆春华.现代预应力结构耐久性分析及数值试验研究[D].镇江:江苏大学,2006.
    [4.15]Peter P, Christian H, David S. Microscopic effects on chloride diffusivity of cement pastes-a scale-transition analysis[J]. Cement and Concrete Research.2004,34(12):2251-2260.
    [4.16]Nguyen V H, Ngo T A T. Service-life estimation for concrete structures in marine environment[C]. London:Thomas Telford Services Ltd,2005:191-198.
    [4.17]Rob B P, Mario R D R. Durability of marine concrete structures-Field investigations and modeling[J]. Delft University of Technology,2005,50(3):133-154.
    [4.18]Lu P T, Joost G. On the mathematics of time-dePendent apparent chloride diffusion coefficient in conerete[J]. Cementand Conerete Researeh,2007,37(4):589-595.
    [4.19]耿欧,袁迎曙.钢筋混凝土耐久性人工气候加速退化试验的相关性研究[J].混凝土2004(1):29-31.
    [4.20]吴瑾.海洋环境下钢筋混凝土结构绣胀损伤评估研究[D].南京:河海大学,2003.
    [4.21]Batis G, Rakanta E. Corrosion of steel reinforcement due to atmospheric pollution[J]. Cement& Concrete Composites,2005,27:269-275.
    [4.22]Mohammed T U, Hamada H. Relationship between free chloride and total chloride contents in concrete[J]. Cement and Concrete Research,2003,33(9):1487-1490.
    [4.23]Paulo J M M, Kimberly E K. Time to failure for concrete exposed to severe sulfate attack[J]. Cement and Concrete Research.2003,33(7):987-993.
    [4.24]余红发,孙伟.混凝土氯离子扩散理论模型的研究Ⅰ—基于无限大体的非稳态齐次与非齐次扩散问题[M/CD].2006-11-23/2007-02-28.
    [4.25]Erik P N, Geiker M R B. Chloride diffusion in partially saturated cementitious material[J]. Cement and Concrete Research,2003,33(1):133-138.
    [4.26]金伟良,张奕,卢振勇.非饱和状态下氯离子在混凝土中的渗透机理及计算模型[J].硅酸盐学报,2008,36(10):1362-1369.
    [4.27]赵国藩,结构可靠度理论[M].北京:中国建筑工业出版社,2000.
    [4.28]Baroghel-Bouny V, Nguyen T Q, Dangla P. Assessment and prediction of RC structure service life by means of durability indicators and physical/chemical models[J]. Cement and Concrete Composites,2009,31(6):394-403.
    [4.29]刘荣桂,陈妤,曹大富.预应力混凝土结构氯离子二维扩散理论[J].江苏大学学报(自然科学版),2009,30(1):86-89.
    [4.30]Schueremans L, Van G D, Giessler S. Chloride penetration in RC structures in marine environment-Long term assessment of a preventive hydrophobic treatment. Construction and Building Materials,2007,21(9):1238-1249.
    [4.31]中华人民共和国交通部.水运工程混凝土试验规程(JTJ270-98)[S].人民交通出版社,1998.
    [4.32]陆春华.现代预应力结构耐久性分析与数值试验研究[D].镇江:江苏大学,2006.
    [4.33]张德锋.现代预应力混凝土结构耐久性研究[D].南京:东南大学,2001.
    [4.34]Monteiro P J M, Kurtis K E. Time to failure for concrete exposed to severe sulfate attack[J]. Cement and Concrete Research,2003,33(3):987-993.
    [4.35]Odriozola M, A'ngel B, Gutie'rrez P A. Comparative study of different test methods for reinforced concrete durability assessment in marine environment[J]. Materials and Structures,2007,38(5): 481-496.
    [4.36]Bhargava A, Banthia N. Permeability of concrete with fiber reinforcement and service life predictions. Materials and Structures,2007,38(3):310-319.
    [4.37]陈斌林.连云港近海域环境演变及其对策研究[D].上海:华东师范大学,2006.
    [4.38]王济川,王玉倩.结构可靠性鉴定与试验诊断[M].长沙:湖南大学出版社,2004.
    [4.39]Enright M P, Frangopol D M. Failure time prediction of deteriorating fail-safe strucrures[J]. Journal of Structural Engineering,1998,124(12):1448-1457.
    [5.1]封孝信,冯乃谦等.沿海公路桥梁破坏的原因分析及防止对策[J].公路,2002(1):31-34
    [5.2]Chloride profiles:Analysis and interpretation of observations. Ervin Poulsen. AEC Laboratory, 20 Staktoften. DK-2850 Vedbak, Denmark.
    [5.3]Hasan M, Nagai, K, Sato Y, et al. Tensile stress-crack width model for plain concrete damaged by freezing and thawing action [A]//Proc. JCI [C].2002:109-114.
    [5.4]Maekawa K, Okamura H. The deformational behavior and constitutive equation of concrete using the elastic-plastic and fracture model [J]. J Fac Eng,1983,37(2):253-328.
    [5.5]Forgeron D P, Trottier J F. Evaluating the effects of combined freezing and thawing and flexural fatigue loading cycles on the fracture properties of FRC [A]//2nd International Conference on High Performance Structures and Materials[C].2004:177-187.
    [5.6]罗小勇,李政.无黏结预应力钢绞线锈蚀后力学性能研究[J].铁道学报,2008,30(2):108-112.
    [5.7]Val D V, Melchers R E. Reliability of deteriorating RC slab bridges[J].Journal of Structural Engineering,1997,123(12):1638-1644
    [5.8]蒋凤昌.锈蚀钢筋混凝土柱承载力试验研究[D].上海:同济大学,2008.
    [5.9]金伟良,夏晋,蒋遨宇,王海龙.锈蚀钢筋混凝土梁受弯承载力计算模型[J].土木工程学报,2009,42(8):75-82.
    [5.10]Byung H O, Soo W C, Bong S J, et al. Development of high-performance concrete having high resistance to chloride penetration[J]. Nuclear Engineering and Design,2002,212:221-231
    [5.11]牛荻涛,卢梅,王庆霖.锈蚀钢筋混凝土梁承载力计算方法研究[J].建筑结构,2002,32(10):14-17.
    [5.12]Dotto J M R, De-Abreu A G, Dal-Molin D C C, et al. Influence of silica fume addition on concretes physical properties and on corrosion behaviour of reinforcement bars[J]. Cement and Concrete Composites,2004,26:31-39
    [5.13]Mori Y, Ellingwood B R. Reliability-based service-life assessment of aging concrete structures[J]. Journal of Structural Engineering,1992,119(5):1600-1621
    [5.14]江见鲸,李杰,金伟良.高等混凝土结构理论[M].北京:中国建筑工业出版社,2007
    [5.15]金伟良,赵羽习,混凝土结构耐久性[M].北京:科学出版社,2002
    [5.16]Trevor J K. Impact of Specification Changes on Chloride Induced Life of Virginia Bridge Decks. Thesis in Civil and Environmental Engineering, Virginia Polytechnic Institute and State University,2001
    [6.1]Costa A, Appleton J. Chloride penetration into eoncrete in marine environment-Part Ⅱ:Prediction of long-term chloride Penetration[J]. Materials and Struetures,1999,32(6):354-359.
    [6.2]Alonso C, Andrade C, Castellote M, Castro P. Chloride threshold values to depassivate reinforcing bars embedded in a standardized OPC mortar[J]. Cement and Concrete Research,2000,30(7): 1047-1055.
    [6.3]Stewart M G Spatial variability of pitting corrosion and its influence on structural fragility and reliability of RC beams in flexure[J]. Structural Safety,2004,26:453-470.
    [6.4]Batis G, Rakanta E. Corrosion of steel reinforcement due to atmospheric pollution[J]. Cement& Concrete Composites,2005,27:269-275.
    [6.5]Rafiq M. Health monitoring in proactive reliability management of deteriorating concrete bridges[D]. Surrey, UK:University of Surrey,2005.
    [6.6]Vedalakshmi R, Renugha R D, Bosco E, Palaniswamy N. Determnation of diffusion coeffient of chloride in conerete:an electrochemical impedance spectroscopic approaeh[J]. Materials and Structures,2008,41(7):1315-1326.
    [6.7]卢木.基于耐久性评定的钢筋混凝土结构的剩余寿命预测[J].建筑科学,1999,15(2):23-28.
    [6.8]吴瑾,吴胜兴.氯离子环境下钢筋混凝十结构耐久性寿命评估[J].土木工程学学报,2005,38(2):59-63.
    [6.9]朱平华,金伟良.在役混凝土桥梁结构耐久性随机抽样评估方法[J].建筑结构学报(增刊),2008(1):208-211.
    [6.10]董必钦,马红岩,邢锋.滨海地区混凝土结构在环境作用下的使用寿命评估[J].工业建筑,2008(38):817-821.
    [6.11]刘海,姚继涛,牛荻涛.一般大气环境下既有混凝土结构的耐久性评定与剩余寿命预测[J].建筑结构学报,2009,30(2):143-148.
    [6.12]范宏.混凝土结构中氯离子侵入与寿命预测[D].西安:西安建筑科技大学,2009.
    [6.13]金伟良,王晓舟.一种改进的混凝土桥梁耐久性评估模型[J].土木工程学报,2009,42(8):83-90.
    [6.14]Nguyen V H, Ngo T A T. Service-life estimation for concrete structures in marine environment[C]. London:Thomas Telford Services Ltd,2005:191-198.
    [6.15]Rob B P, Mario R D R. Durability of marine concrete structures-Field investigations and modeling[J]. Delft University of Technology,2005,50(3):133-154.
    [6.16]Tang L P, Joost G. On the mathematics of time-dePendent apparent chloride diffusion coefficient in conerete[J]. Cementand Conerete Researeh,2007,37(4):589-595.
    [6.17]田冠飞.氯离子环境中钢筋混凝土结构耐久性与可靠性研究[D].北京:清华大学,2006.
    [6.18]史长莹,焦峰华,王丽娟.混凝土结构耐久性模糊综合评估系统中指标权值计算模型[J].西安建筑科技大学学报(自然科学版),2006,38(1):105-108.
    [6.19]刘志勇,孙伟,周新刚.基于Monte Carlo随机计算的海工混凝土使用寿命预测[J].东南大学学报(自然科学版),2006,36(11):221-225.
    [6.20]刘志勇.基于环境的海工混凝土耐久性试验与寿命预测方法研究[D].南京:东南大学,2006.
    [6.21]Shiraishi N, Furuta H. Assessment of structural durability with fuzzy sets[C]. Proceedings of Workshop on Civil Engineering Applications of Fuzzy Sets,1985:193-218.
    [6.22]Anoop M B, Rao K B, Rao T V. Application of fuzzy sets for estimating service life of reinforced concrete structural members in corrosive environments[J]. Engineering Structures,2002,24(9): 1229-1242.
    [6.23]Atzeni C, Sanna U, Spanu N. Fuzzy mathematics:A tool for the holistic approach to concrete durability[J]. Industria Italiana del Cemento,2006,76(821):616-625.
    [6.24]Bjegovie D, Krstic V, Mikulic D. Design for durability including initiation and propagation period based on the fuzzy set theory[J]. Materials and Corrosion,2006,57(8):642-647.
    [6.25]Marano G C, Quaranta G, Sgobba S. Fuzzy lifetime prediction of reinforced concrete structures subjected to chlorides[J]. Indian Concrete Journal,2008,82(2):39-46.
    [6.26]Nehdi M L,Bassuoni M T. Fuzzy logic approach for estimating durability of concrete[J]. Proceedings of Institution of Civil Engineers:Construction Materials,2009,162(2):81-92.
    [6.27]Deby F. Probabilistic approach for durability design of reinforced concrete in marine environment[J]. Cement and Concrete Research,2009,39(5).166-471.
    [6.28]美国混凝土学会(ACI).结构混凝十的评估寿命预测修复[M].阎渝,译.重庆:重庆大学出版社,2007.
    [6.29]陈斌林.连云港近海域环境演变及其对策研究[D].上海:华东师范大学,2006.
    [6.30]赵卓,蒋晓东.受腐蚀混凝土结构耐久性检测诊断[M].郑州:黄河水利出版社,2006.
    [6.31]王济川,王玉倩.结构可靠性鉴定与试验诊断[M].长沙:湖南大学出版社,2004.
    [6.32]Audenaert K, Marsavina L, De S G. Influence of cracks on the service life of concrete structures in a marine environment[J]. Key Engineering Materials,2009,399:153-160.
    [6.33]Li Z J, Chau C K, Zhou X M. Accelerated assessment and fuzzy evaluation of concrete durability [J]. Journal of Materials in Civil Engineering,2005,17(3):257-263.
    [6.34]Timothy J R著,钱同惠译.模糊逻辑及工程应用[M]..北京:电子工业出版社,2001.
    [6.35]蒲高军.模糊随机可靠度理论在海洋平台中的应用[D].大连:大连理工大学,2003.
    [6.36]孙占全.模糊可靠性研究[D].大连:大连理工大学,2003.
    [6.37]Du P A A, Alexander M G A site study of durability indexes for concrete in marine conditions[J]. Materials and Structures/Materiaux et Constructions,2004,37(267):146-154.
    [6.38]De V P. How durable is our marine concrete[J]. Concrete (London),2006,40(11):82-83.
    [6.39]Deby F, Carcasses M, Sellier A. Probabilistic approach for durability design of reinforced concrete in marine environment[J]. Cement and Concrete Research,2009,39(5):466-471.
    [6.40]Polder B R, De R, Mario R. Durability of marine concrete structures-field investigations and modelling[J]. Heron,2005,50(3):133-154.
    [6.41]王娴明,赵宏延.一般大气条件下钢筋混凝土结构构件剩余寿命的预测[J].建筑结构学报,1996(3):58-62.
    [6.42]张跃松,王要武,张钟涛.建筑工程结构可靠度与使用寿命预测及定量关系分析[J].建筑科学,2001(4):35-380.
    [6.43]田冠飞.氯离子环境中钢筋混凝土结构耐久性与可靠性研究[D].北京:清华大学,2006.
    [6.44]张宇贻,秦权.钢筋混凝十桥梁构件的时变可靠度分析[J].清华大学学报,2001,41(12):65-67.
    [6.45]Anders L. Probabilistic Performance based service life design of concrete structures-environmental actions and response[J]. In:Ion and mass transport in cement-Based materials. USA, American Ceramic Society,2001.323-339.
    [6.46]Sarveswaran V, Roberts M B, Ward J A. Reliability assessment of deteriorating reinforced concrete beams[J]. Proceedings of the institution of civil engineers. Structures and Buildings, 2000,14:239-247.
    [6.47]罗刚.氯离子侵蚀环境下钢筋混凝土构件的耐久性寿命预测[D].泉州:华侨大学土木工程系,2002.
    [6.48]张宇贻,秦权.钢筋混凝土桥梁构件的时变可靠度分析[J].清华大学学报,2001,41(12):65-67.
    [6.49]陈元芳.随机模拟中模型与参数不确定性影响的分析[J].河海大学学报,2000,28(1):32-35.
    [6.50]Enright M P. Time-variant reliability of reinforced concrete bridges under environmental attack[D]. Denver:University of Colorado,1998.
    [6.51]Kirkpatrick T J. Impact of specification changes on chloride induced corrosion service life of virginia bridge decks[D]. Blacksburg:Virginia Polytechnic Institute and State University,2001.
    [6.52]王磊.考虑随机性和模糊性的既有RC梁桥时变可靠性研究[D].长沙:长沙理工大学,2008.
    [6.53]Tanaka Y, Watanabe H, Nakajo T. Study on required cover depth of concrete highwaybridges in coastal environment[C].17th US-Japan Bridge Engineering Workshop,2001.
    [6.54]Yanaka M. Reliability-based criteria for corrsion in prestressed concrete bridge gerders[D]. Detroit:University of Michigan,2004.
    [6.55]Stewart M G, Rosowsky D V. Time-dependent reliability of deteriorating reinforced concrete bridge decks[J]. Structural Safety,1998,20:91-109.
    [6.56]马亚丽.基于可靠性分析的钢筋混凝土结构耐久寿命预测[D].北京:北京工业大学,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700