三种产萜类药用植物转录组分析和产地适宜性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
功能基因组学(functional genomics)是利用结构基因组学提供的信息,应用高通量、大规模分析方法,在基因组或系统水平全面研究基因的表达、调控与功能,并探索基因间、基因与蛋白质之间、基因及其产物与生长发育相互联系和规律的科学。功能基因组学将生物学研究从单个基因或蛋白质上升至基因组,同时对多个基因和蛋白质进行系统研究。阐明药用植物生物活性成分的次生代谢途径及其调控是药用植物功能基因组学的主要内容之一。人参、西洋参和红豆杉是三种有重大药用和经济价值的药用植物,主要生物活性成分均为萜类化合物。本课题采用目前最新的技术,结合西洋参、人参、东北红豆杉的研究现状,从微观和宏观的不同角度,采用功能基因组学研究方法和地理信息系统技术,分别从转录组分析、药用天然产物生物合成途径、关键酶基因克隆与鉴定、产地适宜性等方面,有针对性地进行了研究。
     西洋参(Panax quinquefolius L.)为五加科(Araliaceae)人参属(Panax)的名贵药材,以根入药,具有促进记忆、抗癌、降血压、降血脂、抗疲劳、抗糖尿病、强心、镇静等多种药理作用。但由于生长缓慢,连作障碍严重,西洋参药用资源的发展受到极大的限制。本研究以四年生西洋参根、叶、花为材料,构建了cDNA文库,通过5′端测序,获得了根、叶、花的表达序列标签(expressed sequence tag, EST),共有6,678条ESTs,序列拼接产生了3,349条unigenes,包括534条contigs和2,815条singletons。通过转录组分析,探讨了组织特异性基因表达模式。采用Gene Ontology(GO)功能分类,将基因产物划分到生物学过程,细胞成分和分子功能三大本体。BLAST比对发现了24条参与人参皂苷生物合成的关键酶,对甲羟戊酸途径中的限速酶3-羟基-3-甲基戊二酰辅酶A还原酶(HMGR)进行了克隆与鉴定。采用同源克隆的方式,克隆了达玛烷合成酶(DS)基因。克隆了人参皂苷生物合成的最后一步糖基转移酶(GT)基因。发现了63条转录因子序列,编码包括zinc finger, WRKY, homeobox和MADS-box家族蛋白。并且发现了588条SSR微卫星标记,探讨了其组成与特点。这些结果,提供了西洋参转录谱、功能基因、转录调节、花发育和分子标记方面的重要信息,对于促进西洋参及其人参属药用植物的发展具有重要意义。
     红豆杉是重要的木本药用植物,是紫杉醇提取和半化学合成的重要来源之一。尽管商业和医药价值巨大,关于红豆杉属的基因组或转录组研究却很少。目前,紫杉醇生物合成途径还未完全阐明,紫杉醇和紫杉烷类生物合成的调控还不清楚。本研究应用新一代高通量测序技术454 GS FLX Titanium对东北红豆杉(Taxus cuspidata)针叶转录组进行测序,共获得表达序列标签(EST)81,148条。序列拼接得到20,557条unique sequences,包括12,957条singletons和7,582条contigs。数据库中的序列同源性比较表明,68.6%(14,095)与其它生物的已知基因具有同源性。研究发现总的序列同源性在裸子植物中高于被子植物。GO分类将11,220条序列注释到45个类目上。通过生物化学途径注释,2,403条序列注释到3,821条KEGG途径中。生物信息学分析,获得了质体赤藓糖磷酸酯途径(methylerythritol phosphate pathway)的所有酶以及参与紫杉醇生物合成的部分酶的基因。发现了可能参与紫杉醇合成未阐明步骤酶的基因,包括85条CYP450,7条epoxidase,18条CoA ligases和3条N-benzoyltransferase。从数据中还获得了291个转录因子和753个微卫星标记(SSR)。这些基因的发现为紫杉醇和紫杉烷类化合物生物合成研究和代谢调控提供了有利条件,也为红豆杉属植物种质改良奠定了基础。
     石柱参是中国特有人参珍稀品种,具有较高的经济价值。为了对人参种植区划筛选提供科学依据,利用中药材产地适宜性分析地理信息系统(TCMGIS),以辽宁省宽甸县石柱参现代分布区最适宜生长环境因子为依据,区划石柱参在全国的适宜产地。结果显示适宜种植区(相似度为95%-100%)所在县区有15个,总面积为15,943.93平方公里,辽宁省占96.44%,吉林省占3.56%;较适宜种植区(相似度为90-95%)所在县区有22个,总面积20,070.83平方公里,辽宁省占73.88%,吉林省和秦岭中东部地区也有一定份额。研究结果覆盖了石柱参现代分布区,从一定程度上验证了TCMGIS系统用于石柱参适生地分析的科学性和准确性,预测了石柱参潜在适宜分布区。对于规划人参种植区域,保护优良品种,把人参生产规划在真正的适宜产地具有重要的指导作用。
     本文的研究工作,分别探讨了西洋参和红豆杉两种药用植物的基因表达谱,代谢途径相关功能基因,代谢调控机制,并预测了石柱参的适生栽培区域。这些研究工作为重要药用次生代谢产物的生物合成研究,功能基因的开发和利用,药用植物的品种改良和人工引种提供了基础数据和理论支持。
Based on the information provided by structural genomics and the application of high throughput, large-scale analysis, functional genomics is a comprehensive way of study in gene expression, regulation and function, as well as to explore relationship and laws between genes, genes and proteins, and both with the growth and development at the level of genome. Biological research is increased from a single gene or protein to the genome based on functional genomics, while a lot of genes and proteins are systematically studied at the same time. Clarification the pathways and regulation of secondary metabolic pathway is one of the main contents of functional genomics in medicinal plants. Ginseng, American ginseng and yew are three medicinal plants with significantly medical and economic value and the main active ingredients are terpenoids. The three medicinal plants were selected for the study in this paper, from micro and macro perspectives, using functional genomics methods and geographic information system technology, respectively. Studies have focused on the transcriptome analysis, medicinal natural product biosynthesis, the key enzyme gene cloning and identification, and producing area suitability, respectively.
     American ginseng (Panax quinquefolius L.) for the Araliaceae (Araliaceae) are one of valuable medicinal herbs in the world and its roots are used as medicine, with the promotion of memory, anti-cancer, lowering blood pressure, blood fat, anti-fatigue, anti-diabetic, cardiac, sedative and other pharmacological effects. However, because of slow growth and succession cropping obstacles, the development of American ginseng as medicinal resources is extremely limited. The major bioactive phytochemicals responsible for this plant's pharmacological features are ginsenosides. Thus far, little is known regarding the genes involved in ginsenosides biosynthesis in this species. In this study, we generated 6678 expressed sequence tags (ESTs) from the flower, leaf, and root cDNA libraries of American ginseng. Assembly of ESTs resulted in 3349 unigenes including 534 contigs (with ESTs number ranging from 2 to 52) and 2815 singletons. By analyzing the predominant transcripts within specific tissues, a gene expression pattern was obtained in a tissue-specific manner. They were assigned according to the functional classification of unigenes to broad ranges of Gene Ontology (GO) categories which include biological processes, cellular components and molecular functions. Based on BLASTX search results,24 unigenes representing candidates related to ginsenosides biosynthesis were identified. Cloning and characterization of 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR, EC:1.1.1.34), the rate-limiting enzyme in mevalonic acid (MVA) pathway, demonstrated that it belonged to the plant HMGR family and was highly expressed in leaves. Putative transcription factors were detected in 63 unigenes, including zinc finger, WRKY, homeobox and MADS-box family proteins. Five hundred eighty eight SSR motifs were identified, of which, dimer was the most abundant motif. These data will provide useful information on transcript profiles, gene discovery, transcriptional regulation, flower biogenesis, and marker-assisted selections. The analysis and information from this study will greatly contribute to the improvement of this medicinal plant as well as of other species in the Araliaceae family, for the purpose of ensuring adequate drug resources.
     Taxus species are highly valued both as renewable resources for the production of Taxol and as important trees for biodiversity conservation within the Northern Hemisphere. Thus far, few genomic or transcriptomic data are available for the members of this genus as demonstrated by only 179 expressed sequence tags (ESTs) in GenBank. In this study,81,148 high-quality reads from the needles of Taxus cuspidata were produced using the Roche GS FLX Titanium system. A total of 20,557 unique sequences were obtained, including 12,975 singletons and 7,582 contigs, with EST numbers ranging from 2 to 2,051. A total of 14,095 (68.6%) unique sequences shared a significant similarity to the sequences in public databases and have orthologs in other organisms. Gene Ontology revealed 11,220 (54.6%) unique sequences that could be assigned to 45 vocabularies. In the Kyoto Encyclopedia of Genes and Genomes mapping,2,403 transcripts were established as associated with 3,821 biochemical pathways. All enzymes in the plastidial 2-C-methyl-D-erythritol 4-phosphate pathway were well represented together with 8 of the 12 characterized enzymes involved in Taxol biosynthesis. Data mining homologues correlated with the putative remaining steps revealed candidates of cytochrome P450, epoxidase, coenzyme A ligase, and N-benzoyltransferase in the data sets. In total,291 transcripts were identified, representing putative homologues of a wide array of transcription factor families. There was also 753 simple sequence repeat motifs identified, of which hexamer was the most abundant motif. In the meantime, the results of this study revealed that a substantial number of transcripts had no obvious orthologs to known databases and might represent peculiar transcripts within the Taxus. These results provide the largest EST collections in Taxus and are essential for future efforts of gene discovery, functional genomics, and genome annotation in related species.
     In order to provide scinetific evidences for screening potential areas suitable for growing Chinses Shizhu Panax, adaptability and associated growing areas of its were analyzed using TCMGIS. Based on the optimum ecological data collected from Kuandian County, Liaoning Province, a geographic information system was established to analyze the adaptability of potential areas suitable for growing Chinses Shizhu Panax. Results showed that fifteen of areas under investigation enjoyed a similarity index of 95-100%, which adds up to 15943.93 km2 in area. These most adaptive areas mainly located in Liaoning Province and Jilin Province, which accounted for 96.44% and 3.56%, respectively. Results also showed that twenty two of areas under investigation having a similarity index of 90-95%, which adds up to 20070.83 km2 in area. These adaptive areas mainly located in Liaoning Province, Henan Province, Shanxi Province, and Jilin Province, which accounted for 73.88%,16.02%,9.78%, and 3.2%, respectively. The results went along with the current growing areas. Meanwhile, the potential growing regions had been identified by TCMGIS. The results in current study demonstrated the rationality and reliability of TCMGIS. The finding provides important evidances for the P. ginseng cultivation planning, protecting fine varieties, and growing the species under national standards.
     Data derived from present study will provide theoretical support for the research of functional genomics in medicinal plants and will lead to better utilization and development of natural medicinal resources in the future for the purpose of drug improvement.
引文
[1]李方元.中国人参和西洋参[M].北京:中国农业科学技术出版社,2002.
    [2]Lee SY, Kim GT, Roh SH, et al.. Proteomic Analysis of the Anti-Cancer Effect of 20S-Ginsenoside Rg(3) in Human Colon Cancer Cell Lines[J]. Biosci Biotechnol Biochem,2009,73(4):811-816
    [3]Qiu YK, Dou DQ, Cai LP, et al.. Dammarane-type saponins from Panax quinquefolium and their inhibition activity on human breast cancer MCF-7 cells[J]. Fitoterapia,2009,80:219-222
    [4]Wang CZ, Aung HH, Ni M, et al.. Red American ginseng ginsenoside constituents and antiproliferative activities of heat-processed Panax quinquefolius roots [J]. Planta Med,2007,73(7):669-674
    [5]Wang CZ, Yuan CS. Potential Role of Ginseng in the Treatment of Colorectal Cancer[J]. Am J Chin Med,2008,36(6):1019-1028
    [6]Shigemori H, Kobayashi Ji. Biological activity and chemistry of taxoids from the Japanese yew, Taxus cuspidata[J]. J Nat Prod,2004,67:245-256
    [7]Wani MC, Taylor HL, Wall ME, et al.. Plant antitumor agents Ⅵ. Isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia[J]. J Am Chem Soc,1971,93(9):2325-2327
    [8]高晓山.“人参”名称试诠释[J].中医文献杂志,2000,(1):22-23
    [9]何永明.人参本草史考源[J].中成药,2001,23(5):384-387
    [10]宋承吉.对《古代人参基源再认识》的质疑[J].人参研究,1998,(3):16-20
    [11]国家药典委员会.中华人民共和国药典(第一部)[M].北京:化学工业出版社,2005.
    [12]王筠默.人参史的研究[J].中成药,2002,24(3):225-226
    [13]Carlson AW. Ginseng:America's botanical drug connection to the orient[J]. Economic Botany,1986,40(2):233-249
    [14]项长生.汪昂医学全书[M].北京:中国中医药出版社,1999.
    [15]屈新运.陕西留坝西洋参药材质量评价研究[D]:陕西师范大学,2006.
    [16]赵学敏.本草纲目拾遗[M].北京:人民卫生出版社,1983.
    [17]臧日华.浅析西洋参的经济价值及发展状况[J].特种经济动植物,2007,10(9):39-40
    [18]Shibata S. Chemistry and cancer preventing activities of ginseng saponins and some related triterpenoid compounds[J]. J Korean Med Sci,2001,16(Suppl):S28-37
    [19]Bach TJ, Boronat A, Caelles C, et al.. Aspects related to mevalonate biosynthesis in plants[J]. Lipids,1991,26(8):637-648
    [20]Ramos-Valdivia AC, Heijden Rvd, Verpoorte R. Isopentenyl diphosphate isomerase: a core enzyme in isoprenoid biosynthesis. A review of its biochemistry and function[J]. Nat Prod Rep,1997:591-603
    [21]Suzuki H, Achnine L, Xu R, et al.. A genomics approach to the early stages of triterpene saponin biosynthesis in Medicago truncatula[J]. Plant J,2002,32:1033-1048
    [22]Lee MH, Jeong JH, Seo JW, et al.. Enhanced triterpene and phytosterol biosynthesis in Panax ginseng overexpressing squalene synthase gene[J]. Plant Cell Physiol, 2004,45(8):976-984
    [23]Choi DW, Jung J, Ha YI, et al.. Analysis of transcripts in methyl jasmanate-treated ginseng hairy roots to identify genes involved in the biosynthesis of ginsenoides and other secondary metabolites[J]. Plant Cell Rep,2005,23:557-566
    [24]Haralampidis K, Trojanowska M, Osbourn AE. Biosynthesis of triterpenoid saponins in plants[J]. Adv Biochem Eng Biotechnol,2002,75:31-49
    [25]Tansakul P, Shibuya M, Kushiro T, et al.. Dammarenediol-II synthase, the first dedicated enzyme for ginsenoside biosynthesis, in Panax ginseng[J]. FEBS Letters, 2006,580:5143-5149
    [26]Basyuni M, Oku H, Tsujimoto E, et al.. Triterpene synthases from the Okinawan mangrove tribe, Rhizophoraceae[J]. FEBS Journal,2007,274:5028-5042
    [27]Kushiro T, Shibuya M, Ebizuka Y. Beta-Amyrin synthase:Cloning of oxidosqualene cyclase that catalyzes the formation of the most popular triterpene among higher plants[J]. Eur J Biochem,1998,256:238-244
    [28]Kushiro T, Shibuya M, Ebizuka Y. Molecular cloning of oxidosqualene cyclase cDNA from Panax ginseng:the isogene that encodes beta-amyrin synthase[J]. Towards Natural Medicine Research in the 21 st Century, Excerpta Medica International Congress Series,1998,1157:421-428
    [29]Han JY, Kwon YS, Yang DC, et al.. Expression and RNA interference-induced silencing of the dammarenediol synthase gene in Panax ginseng[J]. Plant Cell Physiol, 2006,47(12):1653-1662
    [30]Kim MK, Lee BS, In JG, et al.. Comparative analysis of expressed sequence tags (ESTs) of ginseng leaf[J]. Plant Cell Rep,2006,25:599-606
    [31]罗志勇,陆秋恒,刘水平,等.人参植物皂苷生物合成相关新基因的筛选与鉴定[J].生物化学与生物物理学报,2003,35(6):554-560
    [32]刘水平,罗志勇,陈湘晖,等.人参皂苷生物合成相关新基因GBR6的cDNA克隆及序列分析[J].生命科学研究,2004,8(4):351-354
    [33]赵寿经,侯春喜,梁彦龙,等.人参皂苷合成相关β-AS基因的克隆及基反义植物表达载体的建立[J].中国生物工程杂志,2008,28(4):74-77
    [34]杨鹤,郜玉钢,李瑛,等.人参皂苷等萜类化合物生物合成途径及HMGR的研究进展[J].中国生物工程杂志,2008,28(10):130-135
    [35]Pandit J, Danley DE, Schulte GK, et al.. Crystal structure of human squalene synthase[J]. J Biol Chem,2000,275(39):30610-30617
    [36]Uchida H, Yamashita H, Kajikawa M, et al.. Cloning and characterization of a squalene synthase gene from a petroleum plant, Euphorbia tirucalli L.[J]. Planta, 2009,229(6):1243-1252
    [37]Do R, Kiss R, Gaudet D, et al.. Squalene synthase:a critical enzyme in the cholesterol biosynthesis pathway[J]. Clin Genet,2009,75:19-29
    [38]Devarenne TP, Ghosh A, Chappell J. Regulation of squalene synthase, a key enzyme of sterol biosynthesis, in tobacco[J]. Plant Physiol,2002,129:1095-1106
    [39]Shibuya M, Zhang H, Endo A, et al.. Two branches of the lupeol synthase gene in the molecular evolution of plant oxidosqualene cyclases[J]. Eur J Biochem,1999,266: 302-307
    [40]Ormaetxe Ⅱ, Haralampidis K, Papadopoulou K, et al.. Molecular cloning and characterization of triterpene synthases from Medicago truncatula and Lotus japonicus[J]. Plant Mol Biol,2003,51:731-743
    [41]Basyuni M, Oku H, Tsujimoto E, et al.. Cloning and functional expression of cycloartenol synthases from Mangrove species Rhizophora stylosa Griff. and Kandelia candel(L.) Druce[J]. Biosci Biotechnol Biochem,2007,71(7):1788-1792
    [42]Muller TH, Schaller H, Benveniste P. Molecular cloning and expression in yeast of 2,3-oxidosqualene triterpene cyclases from Arabidopsis thaliana[J]. Plant Mol Biol, 2001,45:75-92
    [43]Hayashi H, Huang P, Kirakosyan A, et al.. Cloning and characterization of a cDNA encoding β-amyrin synthase involved in glycyrrhizin and soyasaponin biosyntheses in licorice[J]. Biol Pharm Bull,2001,24(8):912-916
    [44]Morita M, Shibuya M, Kushiro T, et al.. Molecular cloning and functional expression of triterpene synthases from pea (Pisum sativum)[S]. Eur J Biochem,2000,267: 3453-3460
    [45]Qi X, Bakht S, Leggett M, et al.. A gene cluster for secondary metabolism in oat Implications for the evolution of metabolic diversity in plants[J]. PNAS,2004,101: 8233-8238
    [46]Shibuya M, Katsube Y, Otsuka M, et al.. Identification of a product specific β-amyrin synthase from Arabidopsis thaliana[J]. Plant Physiol Bioch,2009,47:26-30
    [47]Shibuya M, Hoshino M, Katsude Y, et al.. Identification of β-amyrin and sophoradiol 24-hydroxylase by expressed sequence tag mining and functional expression assay[J]. FEBS J,2006,273:948-959
    [48]Jung JD, Park HW, Hahm Y, et al.. Discovery of genes for ginsenoside biosynthesis by analysis of ginseng expressed sequence tags[J]. Plant Cell Rep,2003,22:224-230
    [49]Meesapyodsuk D, Balsevich J, Reed DW, et al.. Saponin biosynthesis in Saponaria vaccaria. cDNAs encoding β-amyrin synthase and a triterpene carboxylic acid glucosyltransferase[J]. Plant Physiol,2006,143:959-969
    [50]Achnine L, Huhman DV, Farag MA, et al.. Genomics-based selection and functional characterization of triterpene glycosyltransferases from the model legume Medicago truncatula[J]. The Plant Journal,2005,41:875-887
    [51]王勇波,刘忠,赵爱华,等.功能基因组学方法在药用植物次生代谢物研究中的应用[J].中国中药杂志,2009,34(1):6-10
    [52]潘夕春,孙敏,张磊,等.RNA干扰及其在药用植物代谢工程中的应用[J].中草药,2005,36(9):1281-1284
    [53]Engels B, Dahm P, Jennewein S. Metabolic engineering of taxadiene biosynthesis in yeast as a first step towards Taxol (Paclitaxel) production[J]. Metabolic Engineering, 2008,10:201-206
    [54]Chemler JA, Koffas MA. Metabolic engineering for plant natural product biosynthesis in microbes[J]. Curr Opin Biotechnol 2008,19:597-605
    [55]中国植物志编委会.中国植物志第七卷[M].北京:中国科学出版社,1978.
    [56]车熙哲,赵传彦,赵海涛.东北红豆杉的发展前景与效益分析[J].特种经济动植物,2004,(5):26-27
    [57]周志强,刘彤,袁继连.黑龙江穆棱天然东北红豆杉种群资源特征研究[J].植物生态学报,2004,28(4):476-482
    [58]王冰,郑红月,肖晶,等.东北红豆杉的生药鉴定[J].中草药,1998,29(4):267-268
    [59]黄泰康,丁志遵,赵守训.现代本草纲目(上卷)[M].北京:中国中医药科技出版社,2001.
    [60]张艳平,刘同祥.东北红豆杉的研究进展[J].中央民族大学学报(自然科学版),2009,18(3):30-32
    [61]Schiff PB, Fant J, Horwitz SB. Promotion of microtubule assembly in vitro by taxol[J]. Nature,1979,277:665-667
    [62]Eisenreich W, Menhard B, Hylands PJ, et al.. Studies on the biosynthesis of taxol: The taxane carbon skeleton is not of mevalonoid origin[J]. PNAS,1996,93:6431-6436
    [63]Hefner J, Ketchum REB, Croteau R. Cloning and Functional Expression of a cDNA Encoding Geranylgeranyl Diphosphate Synthase from Taxus canadensis and Assessment of the Role of this Prenyltransferase in Cells Induced for Taxol Production[J]. Arch Biochem Biophys,1998,360(1):62-74
    [64]Wildung MR, Croteau R. A cDNA clone for taxadiene synthase, the diterpene cyclase that catalyzes the committed step of taxol biosynthesis[J]. J Biol Chem, 1996,271(16):9201-9204
    [65]Hezari M, Lewis NG, Croteau R. Purification and characterization of taxa-4(5), 11(12)-diene synthase from pacific yew (Taxus brevifolia) that catalyzes the first committed step of taxol biosynthesis[J]. Arch Biochem Biophys,1995,322(2):437-444
    [66]Jennewein S, Long RM, Williams RM, et al. Cytochrome P450 taxadiene 5α-hydroxylase, a mechanistically unusual monooxygenase catalyzing the first oxygenation step of Taxol biosynthesis[J]. Chem Biol,2004,11:379-387
    [67]Walker K, Schoendorf A, Croteau R. Molecular cloning of a taxa-4(20),11(12)-dien-5α-ol-O-acetyl transferase cDNA from Taxus and functional expression in Escherichia coli[J]. Arch Biochem Biophys,2000,374(2):371-380
    [68]Chau M, Walker K, Long R, et al.. Regioselectivity of taxoid-O-acetyltransferases: heterologous expression and characterization of a new taxadien-5α-ol-O-acetyltransferase[J]. Arch Biochem Biophys,2004,430:237-246
    [69]Schoendorf A, Rithner CD, Williams RM, et al.. Molecular cloning of a cytochrome P450 taxane 10 β-hydroxylase cDNA from Taxus and functional expression in yeast[J]. PNAS,2001,98(4):1501-1506
    [70]Jennewein S, Wildung MR, Chau M, et al.. Random sequencing of an induced Taxus cell cDNA library for identification of clones involved in Taxol biosynthesis[J]. PNAS,2004,101(24):9149-9154
    [71]Chau M, Jennewein S, Walker K, et al.. Taxol biosynthesis:Molecular cloning and characterization of a cytochrome P450 taxoid 7β-hydroxylase[J]. Chem Biol,2004,11: 663-672
    [72]Chau M, Croteau R. Molecular cloning and characterization of a cytochrome P450 taxoid 2a-hydroxylase involved in Taxol biosynthesis[J]. Arch Biochem Biophys, 2004,427:48-57
    [73]Jennewein S, Rithner CD, Williams RM, et al.. Taxol biosynthesis:Taxane 13 a-hydroxylase is a cytochrome P450-dependent monooxygenase[J]. PNAS,2001,98(24): 13595-13600
    [74]Walker K, Croteau R. Molecular cloning of a 10-deacetylbaccatin Ⅲ-10-O-acetyl transferase cDNA from Taxus and functional expression in Escherichia coli[J]. PNAS, 2000,97(2):583-587
    [75]Walker K, Fujisaki S, Long R, et al.. Molecular cloning and heterologous expression of the C-13 phenylpropanoid side chain-CoA acyltransferase that functions in Taxol biosynthesis[J]. PNAS,2002,99(20):12715-12720
    [76]Walker K, Long R, Croteau R. The final acylation step in Taxol biosynthesis: Cloning of the taxoid C13-side-chain N-benzoyltransferase from Taxus[J]. PNAS, 2002,99(14):9166-9171
    [77]Walker KD, Klettke K, Akiyama T, et al.. Cloning, heterologous expression, and characterization of a phenylalanine aminomutase involved in Taxol biosynthesis[J]. J Biol Chem,2004,279(52):53947-53954
    [78]Jennewein S, Rithner CD, Williams RM, et al.. Taxoid metabolism:Taxoid 14β-hydroxylase is a cytochrome P450-dependent monooxygenase[J]. Arch Biochem Biophys,2003,413:262-270
    [79]Jennewein S, Park H, DeJong JM, et al.. Coexpression in yeast of Taxus cytochrome P450 reductase with cytochrome P450 oxygenases involved in taxol biosynthesis[J]. Biotechnol Bioeng,2005,89(5):588-598
    [80]Chemler JA, Koffas MA. Metabolic engineering for plant natural product biosynthesis in microbes[J]. Curr Opin Biotech,2008,19:597-605
    [81]Huang Q, Roessner CA, Croteaub R, et al.. Engineering Escherichia coli for the Synthesis of Taxadiene, a Key Intermediate in the Biosynthesis of Taxol[J]. Bioorgan Med Chem,2001,9:2237-2242
    [82]DeJong JM, Liu Y, Bollon AP, et al.. Genetic engineering of taxol biosyntheticGenes in Saccharom ycescerevisiae[J]. Biotechol Bioeng,2006,93:212-224
    [83]Rontein D, Onillon S, Herbette G, et al.. CYP725A4 from Yew Catalyzes Complex Structural Rearrangement of Taxa-4(5),11(12)-diene into the Cyclic Ether 5(12)-Oxa-3(11)-cyclotaxane[J]. J Biol Chem,2008,283:6067-6075
    [84]程广有,沈熙环.东北红豆杉开化结实的规律[J].东北林业大学学报,2001,29(3):44-46
    [85]Zu YG, Chen HF, Wang WJ, et al.. Population structure and distribution pattern of Taxus cuspidata in Muling region of Heilongjiang Province, China[J]. Journal of Forestry Research,2006,17(1):80-82
    [86]周志强,胡丹,刘彤.天然东北红豆杉种群生殖力与开花结实特性[J].林业科学,2009,45(5):80-86
    [87]浩仁塔本,赵颖.东北红豆杉的组织培养技术研究[J].内蒙古林业科技, 2004,(3):11-13
    [88]Lee SW, Choi WY, Kim WW, et al.. Genetic Variation of Taxus cuspidata SIEB. et ZUCC. in Korea[J]. Silvae Genetica,2000,49(3):124-130
    [89]Li Y, Tao W. Interactions of Taxol-producing endophytic fungus with its host{Taxus spp.) during Taxol accumulation[J]. Cell Biol Int,2009,33:106-112
    [90]任毅,黄三文.功能基因组学在蔬菜中的应用[J].中国蔬菜,2009,(2):1-6
    [91]Velculescu VE, Zhang L, Zhou W, et al.. Characterization of the yeast transcriptome[J]. Cell,1997,88:243-251
    [92]Lander ES, Linton LM, Birren B, et al.. Initial sequencing and analysis of the human genome[J]. Nature,2001,409(6822):860-921
    [93]黄琛,武明花,李桂源.鼻咽癌转录组学研究的现状与进展[J].生物化学与生物物理进展,2007,34(11):1129-1135
    [94]薛建江,邱景富.病原菌感染宿主的转录组学研究进展[J].河北北方学院学报(医学版),2007,24(5):63-66
    [95]吴春颖,宋经元,陈士林.表达序列标签在药用植物研究中的应用[J].中草药,2008,39(5):778-782
    [96]Li Y, Luo H, Sun C, et al.. EST analysis reveals putative genes involved in glycyrrhizin biosynthesis[J]. BMC Genomics,2010,11:268
    [97]Sun C, Li Y, Wu Q, et al.. De novo sequencing and analysis of American ginseng root transcriptome using a GS FLX Titanium platform to discover putative genes involved in ginsenoside biosynthesis[J]. BMC Genomics,2010,11:262
    [98]Colebatch G, Trevaskis B, Udvardi M. Functional genomics:tools of the trade[J]. New Phytologist,2002,153:27-36
    [99]Dinant S, Clark AM, Zhu Y, et al.. Diversity of the Superfamily of Phloem Lectins (Phloem Protein 2) in Angiosperms[J]. Plant Physilo,2003,131:114-128
    [100]Angelo PCS, Nunes-Silva CG, Brigido MM, et al.. Guarana (Paullinia cupana var. sorbilis), an anciently consumed stimulant from the Amazon rain forest:the seeded-fruit transcriptome[J]. Plant Cell Rep,2008,27:117-124
    [101]Proite K, Leal-Bertioli SC, Bertioli DJ, et al.. ESTs from a wild Arachis species for gene discovery and marker development[J]. BMC Plant Biol,2007,7(7):
    [102]Gasser CS, Gunning DA, Budelier KA, et al.. Structure and expression of cytosolic cyclophilin/peptidyl-prolyl cis-trans isomerase of higher plants and production of active tomato cyclophilin in Escherichia coli[J]. Proc Natl Acad Sci USA,1990,87:9519-9523
    [103]Kim SI, Kweon SM, Kim EA, et al.. Characterization of RNase-like major storage protein from the ginseng root by proteomic approach[J]. J Plant Physiol,2004,161: 837-845
    [104]Schroder G, Eichel J, Breinig S, et al.. Three differentially expressed S-adenosylmethionine synthetases from Catharanthus roseus:molecular and functional characterization[J]. Plant Mol biol,1997,33:211-222
    [105]Ye J, Fang L, Zheng HK, et al.. WEGO:a web tool for plotting GO annotations [J]. Nucleic Acids Research,2006,34:
    [106]Sando T, Takaoka c, Mukai Y, et al.. Cloing and characterization of mevalonate pathway genes in a natural rubber produing plant, Hevea brasiliensis[J]. Biosci Biotechnol Biochem,2008,72(8):2049-2060
    [107]Pateraki I, Kanellis AK. Isolation and functional analysis of two Cistus creticus cDNAs encoding geranylgeranyl diphosphate synthase[J]. Phytochemistry,2008,69: 1641-1652
    [108]Laskaris G, Heijden Rvd, Verpoorte R. Purification and partial characterisation of geranylgeranyl diphosphate synthase, from Taxus baccata cell cultures an enzyme that regulates taxane biosynthesis[J]. Plant Sci,2000,51:97-105
    [109]Meijer AH, Souer E, Verpoorte R, et al.. Isolation of cytochrome P-450 cDNA clones from the higher plant Catharanthus roseus by a PCR strategy[J]. Plant Mol Biol, 1993,22:379-383
    [110]Nelson DR, Schuler MA, Paquette SM, et al.. Comparative Genomics of Rice and Arabidopsis. Analysis of 727 Cytochrome P450 Genes and Pseudogenes from a Monocot and a Dicot[J]. Plant Physiol,2004,135(6):756-772
    [111]Vij S, Tyagi AK. Genome-wide analysis of the stress associated protein (SAP) gene family containing A20/AN1 zinc-finger(s) in rice and their phylogenetic relationship with Arabidopsis[J]. Mol Gen Genomics,2006,276:565-575
    [112]Vij S, Tyagi AK. A20/AN1 zinc-finger domain-containing proteins in plants and animals represent common elements in stress response[J]. Funct Integr Genomics,2008,8: 301-307
    [113]Yanagisawa S. Dof domain proteins:plant-specific transcription factors associated with diverse phenomena unique to plants[J]. Plant Cell Physiol,2004,45:386-391
    [114]Lijavetzky D, Carbonero P, Vicente-Carbajosa J. Genome-wide comparative phylogenetic analysis of the rice and Arabidopsis Dof gene families[J]. BMC Evol Biol, 2003,3:17
    [115]Marzabal P, Gas E, Fontanet P, et al.. The maize Dof protein PBF activates transcription of c-zein during maize seed development[J]. Plant Mol Biol,2008,67: 441-454
    [116]Chia TYP, Muller A, Jung C, et al.. Sugar beet contains a large CONSTANS-LIKE gene family including a CO homologue that is independent of the earlybolting (B) gene locus[J]. J Exp Bot,2008,59(10):2735-2748
    [117]Martin J, Storgaard M, Andersen CH, et al.. Photoperiodic regulation of flowering in perennial ryegrass involving a CONSTANS-like homolog[J]. Plant Mol Biol,2004,56: 159-169
    [118]Armstead IP, Sk(?)t L, Turner LB, et al.. Identification of perennial ryegrass (Lolium perenne (L.)) and meadow fescue (Festuca pratensis (Huds.)) candidate orthologous sequences to the rice Hd1 (Se1) and barley HvCO1 CONSTANS-like genes through comparative mapping and microsynteny[J]. New Phytol,2005,167:239-347
    [119]Mangelsen E, Kilian J, Berendzen KW, et al.. Phylogenetic and comparative gene expression analysis of barley (Hordeum vulgare) WRKY transcription factor family reveals putatively retained functions between monocots and dicots[J]. BMC Genomics, 2008,9:194
    [120]Kim KC, Lai ZB, Fan BF, et al.. Arabidopsis WRKY38 and WRKY62 Transcription Factors Interact with Histone Deacetylase 19 in Basal Defense [J]. Plant Cell,2008,20:2357-2371
    [121]Lai ZB, Vinod K, Zheng ZY, et al.. Roles of Arabidopsis WRKY3 and WRKY4 Transcription Factors in Plant Responses to Pathogens[J]. BMC Plant Biol,2008,8:68
    [122]Naoumkina MA, He X, Dixon RA. Elicitor-induced transcription factors for metabolic reprogramming of secondary metabolism in Medicago truncatula[J]. BMC Plant Biol,2008,8:132
    [123]Zhang J, Peng YL, Guo ZJ. Constitutive expression of pathogen-inducible OsWRKY31 enhances disease resistance and affects root growth and auxin response in transgenic rice plants[J]. Cell Res,2008,18:508-521
    [124]Gao WW, Jiao XL, Bi W, et al.. Variation of ginsenosides in infected roots of American ginseng (Panax quinquefolium)[J]. China Journal of Chinese Materia Medica, 2008,33(24):2905-2953
    [125]Green KA, Prigge MJ, Katzman RB, et al.. CORONA, a member of the class Ⅲ homeodomain leucine zipper gene family in Arabidopsis, regulates stem cell specification and organogenesis[J]. Plant Cell,2005,17:691-704
    [126]Sona O, Choa H-Y, Kima M-R, et al.. Induction of a homeodomain-leucine zipper gene by auxin is inhibited by cytokinin in Arabidopsis roots[J]. Biochem Bioph Res Co, 2005:
    [127]Jager M, Hassanin A, Manuel M, et al.. MADS-box genes in Ginkgo biloba and the evolution of the AGAMOUS family[J]. Mol Biol Evol,2003,20(5):842-854
    [128]Kim S, Koh J, Yoo MJ, et al.. Expression of floral MADS-box genes in basal angiosperms:implications for the evolution of floral regulators[J]. Plant J,2005,43: 724-744
    [129]Morgante M, Hanafey M, Powell W. Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes[J]. Nat Genet,2002,30:194-200
    [130]Ellis J, Burke J. EST-SSRs as a resource for population genetic analyses[J]. Heredity,2007,99:125-132
    [131]Senthilvel S, Jayashree B, Mahalakshmi V, et al.. Development and mapping of Simple Sequence Repeat markers for pearl millet from data mining of Expressed Sequence Tags[J]. BMC Plant Biol,2008,8:119
    [132]Temnykh S, DeClerck G, Lukashova A, et al.. Computational and experimental analysis of microsatellites in rice (Oryza sativa L.):frequency, length variation, transposon associations, and genetic marker potential [J]. Genome Res,2001,11: 1441-1452
    [133]Varshney Rk, Thiel T, Stein N, et al.. In silico analysis on frequency and distribution of microsatellites in ESTs of some cereal species[J]. Cell Mol Biol Lett, 2002,7:537-546
    [134]Parkinson J. Expressed sequence tags (ESTs) generation and analysis[M]. Hertfordshire:Humana Press,2009.
    [135]Livak KJ, Schmittgen TD. Analysis of relative gene expression data using realtime quantitative PCR and the 2-deltadelta CT method[J]. Methods,2001,25:402-408
    [136]Basyuni M, Oku H, Tsujimoto E, et al.. Triterpene synthases from the Okinawan mangrove tribe, Rhizophoraceae[J]. FEBS J,2007,274:5028-5042
    [137]Margulies M, Egholm M, Altman WE, et al.. Genome sequencing in open microfabricated high density picoliter reactors[J]. Nature,2005,15(437):376-380
    [138]Altschul SF, Gish W, Miller W, et al.. Basic local alignment search tool[J]. J Mol Biol,1990,215:403-410
    [139]Berardini TZ, Mundodi S, Reiser L, et al.. Functional annotation of the Arabidopsis genome using controlled vocabularies[J]. Plant Physiol,2004,135:745-755
    [140]Kanehisa M, Goto S, Hattori M, et al.. From genomics to chemical genomics:new developments in KEGG[J]. Nucleic Acids Res,2006,34:D354-D357
    [141]E.Turner N, Clark WG, J.Tabor G, et al.. The genes encoding the small subunit of ribulose-1,5-bisphosphate carboxylase are expressed differentially in petunia leaves[J]. Nucleic Acids Res,1986,14:3325-3342
    [142]Fuentes SI, Allen DJ, Ortiz-Lopez A, et al.. Over-expression of cytosolic glutamine synthetase increase photosynthesis and growth at low nitrogen concentrations[J]. J Exp Bot,2001,52(358):1071-1081
    [143]Hanashiro I, Itoh K, Kuratomi Y, et al.. Granule-bound starch synthase I is responsible for biosynthesis of extra-long unit chains of amylopectin in rice[J]. Plant Cell Physiol,2008,49(6):925-933
    [144]Lefebvre S, Lawson T, Fryer M, et al.. Increased sedoheptulose-1,7-bisphosphatase activity in transgenic tobacco plants stimulates photosynthesis and growth from an early stage in development[J]. Plant Physiol,2005,138:451-460
    [145]Pagadala NS, Arha M, Reddy PS, et al.. Phylogenetic analysis, homology modelling, molecular dynamics and docking studies of caffeoyl-CoA-O-methyl transferase (CCoAOMT 1 and 2) isoforms isolated from subabul(Leucaena leucocephala)[5]. J Mol Model,2009,15:203-221
    [146]Liu P, Goh CJ, Loh CS, et al.. Differential expression and characterization of three metallothioneinlike genes in Cavendish banana (Musa acuminata)[J]. Physiologia Plantarum,2002,114:241-250
    [147]Baloglu E, Kingston DGI. The taxane diterpenoids[J]. J Nat Prod,1999,62: 1448-1472
    [148]Kaspera R, Croteau R. Cytochrome P450 oxygenases of Taxol biosynthesis[J]. Phytochem Rev,2006,5:433-444
    [149]Long RM, Croteau R. Preliminary assessment of the C13-side chain 2'-hydroxylase involved in Taxol biosynthesis[J]. Biochem Biophys Res Comm,2005,338:410-417
    [150]Wu Q, Song JY, Sun YQ, et al.. Transcript profiles of Panax quinquefolius from flower, leaf and root bring new insights into genes related to ginsenosides biosynthesis and transcriptional regulation[J]. Physiol Plantarum,2010,138:134-149
    [151]Shu QY, Wischnitzki E, Liu ZA, et al.. Functional annotation of expressed sequence tags as a tool to understand the molecular mechanism controlling flower bud development in tree peony [J]. Physiol Plantarum,2009,135:436-449
    [152]Chagne D, Chaumeil P, Ramboer A, et al.. Cross-species transferability and mapping of genomic and cDNA SSRs in pines[J]. Theor Appl Genet,2004,109: 1204-1214
    [153]Futamura N, Totoki Y, Toyoda A, et al.. Characterization of expressed sequence tags from a full-length enriched cDNA library of Cryptomeria japonica male strobili[J]. BMC Genomics,2008,9:383
    [154]Pavy N, Paule C, Parsons L, et al.. Generation, annotation, analysis and database integration of 16,500 white spruce EST clusters[J]. BMC Genomics,2005,6:144
    [155]Consortium G The Gene Ontology project in 2008[J]. Nucleic Acids Res,2008,36: D440-D444
    [156]Hampel D, Mau CJD, Croteau RB. Taxol biosynthesis:Identification and characterization of two acetyl CoA:taxoid-O-acetyl transferases that divert pathway flux away from Taxol production[J]. Arch Biochem Biophys,2009,487:91-97
    [157]Riechmann JL, Heard J, Martin G, et al.. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes[J]. Science,2000,290:2105-2110
    [158]Endt DV, Kijne JW, Memelink J. Transcription factors controlling plant secondary metabolism:what regulates the regulators?[J]. Phytochemistry,2002,61:107-114
    [159]Blackshear PJ. Tristetraprolin and other CCCH tandem zinc-finger proteins in the regulation of mRNA turnover[J]. Biochem Soc T,2002,30:945-952
    [160]Wang L, Xu Y, Zhang C, et al.. OsLIC, a novel CCCH-type zinc finger protein with transcription activation, mediates rice architecture via brassinosteroids signaling[J]. PLOS ONE,2008,3(10):e3521
    [161]Kong Z, Li M, Yang W, et al.. A novel nuclear-localized CCCH-type zinc finger protein, OsDOS, is involved in delaying leaf senescence in rice[J]. Plant Physiol, 2006,141:1376-1388
    [162]Li J, Jia D, Chen X. HUA1, a regulator of stamen and carpel identities in Arabidopsis, codes for a nuclear RNA binding protein[J]. Plant cell,2001,13:2269-2281
    [163]Schmitz RJ, Hong L, Michaels S, et al.. FRIGIDA-ESSENTIAL 1 interacts genetically with FRIGID A and FRIGIDA-LIKE 1 to promote the winter-annual habit of Arabidopsis thaliana[J]. Development,2005,132:5471-5478
    [164]Smith TF, Gaitatzes C, Saxena K, et al.. The WD repeat:a common architecture for diverse functions[J]. Trends Biochem Sci,1999,24:181-185
    [165]Huang J, Wang M-M, Bao Y-M, et al.. SRWD:A novel WD40 protein subfamily regulated by salt stress in rice (Oryza sativa L.)[J]. Gene,2008,424:71-79
    [166]Testone G, Condello E, Verde I, et al.. The peach (Prunus persica [L.] Batsch) homeobox gene KNOPE3, which encodes a class 2 knotted-like transcription factor, is regulated during leaf development and triggered by sugars[J]. Mol Gen Genomics, 2009,282:47-64
    [167]Chan RL, Gago GM, Palena CM, et al.. Homeoboxes in plant development[J]. Biochimica et Biophysica Acta,1998,1442:1-19
    [168]Devaiah BN, Karthikeyan AS, Raghothama KG WRKY75 transcription factor is a modulator of phosphate acquisition and root development in Arabidopsis[J]. Plant Physiol,2007,143:1789-1801
    [169]Robatzek S, Somssich IE. Targets of AtWRKY6 regulation during plant senescence and pathogen defense[J]. Gene Dev,2002,16:1139-1149
    [170]Kantety RV, Rota ML, Matthews DE, et al.. Data mining for simple sequence repeats in expressed sequence tags from barley, maize, rice, sorghum and wheat[J]. Plant Mol Biol,2002,48:501-510
    [171]Sharma RK, Bhardwaj P, Negi R, et al.. Identification, characterization and utilization of unigene derived microsatellite markers in tea (Camellia sinensis L.)[J]. BMC Plant Biol,2009,9:53
    [172]Varshney RK, Graner A, Sorrells ME. Genic microsatellite markers in plants: features and applications [J]. Trends Biotechnol,2005,23(1):48-55
    [173]王荣祥,赵建东,许亮.石柱参的历史考证[J].辽宁中医学院学报,2005,7(3):269
    [174]索风梅,陈士林,任德权.道地药材的产地适宜性研究[J].中国中药杂志,2005,30(19):1485-1488
    [175]孙成忠,刘召芹,陈士林,等.基于GIS的中药材产地适宜性分析系统的设计与实现[J].世界科学技术-中医药现代化,2006,8(3):112-117
    [176]王贺新,王占伟,范俊岗,等.中国石柱参的生态条件、栽培特点及其生长特征[J].特产研究,1995,(1):14-17
    [177]闫宽珍,于国龙,范真,等.石柱参的研究[J].Bulletin of Botanical Research,1993,13(1):51-57
    [178]傅立国,金鉴明.中国植物红皮书(第一册)[M].北京:科学出版社,1992.
    [179]陈士林,索风梅,韩建萍.中国药材生态适宜性分析及生产区划[J].中草药,2007,38(4):482-487
    [180]赵润怀,王继永,孙成忠,等.基于TCMGIS-Ⅰ的道地药材附子产地适宜性分析[J].中国现代中药,2006,8(7):4-8
    [181]魏建和,陈士林,孙成忠,等.三七产地适宜性数值分类与区划研究[J].世界科学技术-中医药现代化,2006,8(3):118-121
    [182]王瑀,魏建和,陈士林,等.应用TCMGIS-Ⅰ分析人参的适宜产地[J].亚太传统医药,2006,(6):73-78
    [183]马小军,汪小全,肖培根,等.国产人参种质资源研究进展[J].中国药学杂志,2000,35(5):289-292
    [184]王贺新.中国石柱参生长特征研究[J].辽宁林业科技,2001,(5):5-7

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700