MeJA对人参DS基因表达的影响及DS在酵母中的表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人参是珍贵的药用植物,由于具有显著的药理活性而得到十分广泛的应用。人参的主要有效成分为人参皂苷。至今已从人参中分离出至少60种单体皂苷,除R0外,均为达玛烷型三萜皂苷。而DS负责催化2,3-氧化角鲨烯生成达玛烯二醇,然后经一系列的羟基化、糖基化反应生成各种类型的达玛烷型皂苷。并且对人参DS基因的RNA干扰研究表明,DS基因的沉默导致人参皂苷合成量显著下降,这证明了DS是人参皂苷合成的关键酶,但其具体的调控机制还不清楚。基于以上分析,本论文对DS基因进行了研究。
     本文首先检测了MeJA对人参发根生长和总皂苷的积累以及5种单体皂苷含量的影响。发现MeJA对人参发根生长和总皂苷的积累及人参皂苷单体Rb1、Rd、Re、Rg2的积累均有明显的促进作用。但是对人参皂苷单体Rg1有明显的抑制作用,且随着浓度的增高,这种积累(或抑制)的作用逐渐减弱。然后利用半定量RT-PCR法检测人参发根DS基因的表达量,发现DS基因的表达量得到提高。以上结果证明了,DS基因表达量的提高能够促进人参皂苷的积累;MeJA的诱导不仅能提高人参皂苷的含量,还能通过影响某些糖基转移酶的表达量来改变人参皂苷单体含量的比例。
     提取了高质量的人参发根RNA,逆转录合成cDNA,扩增DS基因,建立克隆载体pMD-19T-DS,热转化到大肠杆菌JM109中,通过宝生物测序,发现改变的6个碱基并不引起目的氨基酸编码序列发生改变,证明所克隆的基因为目的基因。利用pAUR123载体构建表达载体pAUR123-DS,并转染酿酒酵母菌(CICC,31476)。利用SDS-PAGE法检测工程菌所表达的蛋白,发现得到85.5kDa的目的蛋白,证明目的基因片段在酵母菌中表达。用HPLC检测酵母代谢产物中达玛烯二醇的含量,发现达玛烯二醇含量较低。最后,检测了工程菌的遗传稳定性,结果证明本实验室构建的工程菌株yeast-pAUR123-DS在无筛选压力下存在质粒不稳定现象。
     本研究对人参皂苷生物合成调控机制的研究和达玛烯二醇的工业化生产具有重要的指导作用,为调控人参皂苷的含量及人参代谢工程的研究奠定了理论和实践基础,具有广阔的应用前景。
Panax ginseng is one of the most famous medicinal plants and used intensively because of its potent pharmaceutical activities. Ginsenosides are the major active constituents including dammarene-type and oleanane-type saponins. So far, more than 60 kinds of ginsenosides were found. All the ginsenosides except ginsenoside R0 belong to dammarene-type saponins. Dammarene-type saponins have many physiological and pharmaceutical effects, including anti-fatigue, antihyperglycemic, anti-aging and anti-cancer effects. Dammarane-type ginsenosides are biosynthesized from dammarenediol by a sequence of two steps, namely hydroxylation and glycosidation. Dammarane type ginsenosides are biosynthesized from dammarenediol by a sequence of two steps, namely hydroxylation and glycosidation. RNA interference of DS in transgenic P. ginseng resulted in silencing of DS expression, which leads to a reduction of ginsenoside production. These results indicate that DS is a key enzyme involved in ginsenoside biosynthesis. However, mechanism of regulation in ginsenoside synthesis remains to be answered.
     In this study, methyl jasmonate induced effect on the growth, content of total saponins and individual ginsenoside content of Panax ginseng hairy root and DS gene expression were investigated by HPLC and semi-quantitative reverse transcription and polymerase Chain reaction. Meantime, a recombinant S.cerevisiaes strain which can produce dammarenediol-Ⅱwere constructed as yeast-pAUR123-DS. The main contents and conclusions of this study are as follows:
     1. First, we choosed the time of MeJA elicitation for 4 weeks from growth curve of Panax ginseng hairy root. Different concentration of MeJA elicitation could remarkably improve the growth of Panax ginseng hairy root and increase level of total ginsenoside and Rb1, Rd, Re, Rg2 ginsenoside by HPLC and colorimetry of vanillina. In the case of Rgl ginsenoside after MJ elicitation, the content was affected negatively in ginseng hairy root cultures. But the effects were weakened with increase of concentration. When the concentration of MeJA elicitation was 0.01mmol/L, growth, content of total saponins and Rb1,Rd, Re, Rg2, Rgl ginsenoside was 41.59g/L,24.1mg/g,2.4 mg/g,1.96 mg/g,5.82 mg/g,0.53mg/g,3.87 mg/g respectively.
     2. In order to analyze the change of DS gene expression, concentration of Mg2+, annealing temperature and cycle number of PCR system were optimized analyzed, and then a stable and convenient semi-quantitative RT-PCR system which amplified DS andβ-actin gene at the same time in different tubes was established. The PCR condition for DS andβ-actin gene were as follows:concentration of Mg2+ was 1.5 mmol/L, annealing temperature was 55℃, the primes of P-actin gene was added after 6 cycles of DS gene amplication. When the 30th cycles, they arrived the exponential period at the same time.
     3. The transcription of DS genes in hairy root cultures elicited by 0.1mm MeJA treatment remarkably increased as compared with the control. Compared with 24h,48h of MeJA elicitation, DS gene expression is the maximum at 12h. The difference is insignificant, so the upregulation of DS gene expression do not depend on time.
     4. Total RNA was isolated from P.ginseng hairy roots. Total RNA were reverse-transcribed to produce cDNA. PCRs were performed with F and MR primer. After tailing and purifaction, the PCR product was subcloned to the plasmid vector (pMD-19T), namely pMD-19T-DS. Compared with sequence of DS gene in Genebank, the positive vector has 6 basic group changed by sequence analysis of TaKaRa. However, the mutated basic group did not mutate encode sequence of amino acids. After enzyme digestion, the DS fragment was ligated into the multi-cloning site of yeast expression vector pAUR123, namely pAUR123-DS. The plasmid pAUR123-DS was transferred to S. cerevisiae strain 31476. After screening on medium and enzyme digestion, the transformant had object,namely yeast-pAUR123-DS.
     5. S. cerevisiae extract from transformed cells were applied onto SDS-PAGE, and then target protein of molecular weight 85.5kDa was found, whereas target protein was not found in the control. Meanwhile, dammarenediol-Ⅱwas found in secondary metabolite of S. cerevisiae by HPLC, and the content of dammarenediol-Ⅱwas 1.85mg/100g.
     6. Plasmid stability of transgenic engineering bacteria was detected. The consequence showed that plasmid of recombinant yeast was not stable under no selective pressure. After 168h of culture, plasmid stability of recombinant yeast was 67% under no selective pressure, and plasmid stability of recombinant yeast was above 90% under selective pressure.
     Analysis and prospect based on above result:First, DS is the key enzyme in biosynthensis pathway of ginsenoside, and upregulation of gene expression could improve level of dammarenediol-Ⅱand promote saponin accumulation ginsenoside. Second, MeJA elicitation could change glycosyltransferase gene expression, so the ratio of ginsenoside Rx was changed. Last, because the yield of dammarenediol-Ⅱof transgenic engineering bacteria is very low, we should knockout unwanted gene and optimize fermentation condition to improve level of dammarenediol-Ⅱ. This study is significant for further investigation of ginsenoside biosynthesis pathway and for the large-scale production of dammarenediol-Ⅱ.
引文
[1]唐斌,程绪菊,刘江,等.人参皂苷药理作用研究进展[J].西南军医,2005,7(03):45-47.
    [2]任跃英,丛林,官秀芝,等.人参资源现状及可持续发展战略[J].人参研究,2003,15(04):9-10.
    [3]Furuya T, Yoshikawa T, Orihara Y, et al. Saponin production in cell suspension cultures of Panax ginseng [J]. Planta Med,1983,48(6):83-87.
    [4]Liu C J and Hou S S. Regulation of fungal elicitors on the cell growth and biosynthesis of saponin of Panax ginseng cell suspension culture [J]. Shi Yan Sheng Wu Xue Bao,1999,32(2):168-174.
    [5]Thanh N T, Murthy H N, Yu K W, et al. Methyl jasmonate elicitation enhanced synthesis of ginsenoside by cell suspension cultures of Panax ginseng in 5-1 balloon type bubble bioreactors[J]. Appl Microbiol Biotechnol,2005,67(2):197-201.
    [6]Furuya T, Kojima H, Syono K, et al. Isolation of saponins and sapogenins from callus tissue of Panax ginseng[J]. Chem Pharm Bull (Tokyo),1973,21(1):98-101.
    [7]Furuya T, Yoshikawa T, Ishii T, et al. Regulation of saponin production in callus cultures of Panax ginseng[J]. Planta Med,1983,47(4):200-204.
    [8]蒋晶,王敬文.人参组织和细胞培养的研究Ⅱ.影响愈伤组织中人参皂甙生物合成的因素[J].林业科学研究,1989,2(02):198-201.
    [9]蒋晶,王敬文.人参组织和细胞培养的研究Ⅰ.环境因子对人参愈伤组织生长的影响[J].林业科学研究,1988,1989(06):23-35.
    [10]Kim Y S, Hahn E J, Murthy H N, et al. Adventitious root growth and ginsenoside accumulation in Panax ginseng cultures as affected by methyl jasmonate [J]. Biotechnol Lett,2004,26(21): 1619-1622.
    [11]Kim Y S, Yeung E C, Hahn E J, et al. Combined effects of phytohormone, indole-3-butyric acid, and methyl jasmonate on root growth and ginsenoside production in adventitious root cultures of Panax ginseng C.A. Meyer[J]. Biotechnol Lett,2007,29(11):1789-1792.
    [12]Yu K-W, Gaob W, Hahn E-J, et al. Jasmonic acid improves ginsenoside accumulation in adventitious root culture of Panax ginseng C.A. Meyer[J]. Biochemical Engineering Journal,2002,11: 211-215.
    [13]Mallol A, Cusido R M, Palazon J, et al. Ginsenoside production in different phenotypes of Panax ginseng transformed roots[J]. Phytochemistry,2001,57(3):365-371.
    [14]赵寿经,李昌禹,钱延春,等.人参发根的诱导及其适宜培养条件的研究[J].生物工程学报,2004,20(02):215-220.
    [15]赵寿经,杨振堂,李昌禹,等.发根农杆菌A4菌株诱导人参根外植体产生人参发根及人参皂甙的生产方法:中国,99111664[P].2001-02-28.
    [16]赵寿经,杨振堂,李昌禹,等.发根农杆菌介导的人参遗传转化及人参皂甙工厂化生产[J].云南大学学报(自然科学版),1999(S3):34-37.
    [17]孙彬贤,杨光孝,汪沁琳,等.人参毛状根合成人参皂苷培养条件的优化[J].中成药,2003,25(09):746-748.
    [18]Palazona J, Cusidoa R, Bonfilla M, et al. Elicitation of different Panax ginseng transformed root phenotypes for an improved ginsenoside production [J]. Plant Physiology and Biochemistry,2003, 41(11-12):1019-1025.
    [19]Woo S S, Song J S, Lee J Y, et al. Selection of high ginsenoside producing ginseng hairy root lines using targeted metabolic analysis [J]. Phyto chemistry,2004,65(20):2751-2761.
    [20]周倩耘,丁家宜,刘峻,等.植物激素对人参毛状根生长和皂甙含量的影响[J].植物资源与环境学报,2003,12(01):26-28.
    [21]周倩耘,周建民,刘峻,等.诱导子对人参毛状根中皂苷含量的影响[J].南京军医学院学报,2003,25(02):76-78.
    [22]Haralampidis K, Trojanowska M, and Osbourn A E. Biosynthesis of triterpenoid saponins in plants[J]. Adv Biochem Eng Biotechnol,2002,75:31-49.
    [23]Lee M H, Jeong J H, Seo J W, et al. Enhanced triterpene and phytosterol biosynthesis in Panax ginseng overexpressing squalene synthase gene[J]. Plant & Cell Physiology,2004,45(8):976-984.
    [24]Suzuki H, Achnine L, Xu R, et al. A genomics approach to the early stages of triterpene saponin biosynthesis in Medicago truncatula[J]. Plant J.2002,32:1033-1048.
    [25]Kim Ok Tae, Bang Kyong Hwan, Kim Young Chang, et al. Upregulation of insenoside and gene expression related to triterpene biosynthesis in ginseng hairy root cultures elicited by methyl jasmonate[J]. Plant Cell Tiss Organ Cult,2009,98:25-33.
    [25]Tansakul P, Shibuya M, Kushiro T, et al. Dammarenediol-II synthase, the first dedicated enzyme for ginsenoside biosynthesis, in Panax ginseng[J]. FEBS Letters,2006,580(22):5143-5149.
    [26]Kushiro T, Shibuya M, and Ebizuka Y. Beta-amyrin synthase--cloning of oxidosqualene cyclase that catalyzes the formation of the most popular triterpene among higher plants[J]. European Journal of Biochemistry,1998,256(1):238-244.
    [27]Choi DW, Jung JD, Ha YI, Park HW, In DS, Chung HJ, Liu JR. Analysis of transcripts in methyl jasmonate-treated ginseng hairy roots to identify genes involved in the biosynthesis of ginsenosides and other secondary metabolites. Plant Cell Rep,2005,23:557-566.
    [28]Kim OT, Bang KH, Jung SJ, et al. Molecular characterization of ginseng farnesyl diphosphate synthase gene and its up-regulation by methyl jasmonate. BIOLOGIA PLANTARUM,2010,54 (1): 47-53.
    [29]Liang Y and Zhao S. Progress in understanding of ginsenoside biosynthesis[J]. Plant Biol (Stuttg), 2008,10(4):415-421.
    [30]Kim M K, Lee B S, In J G, et al. Comparative analysis of expressed sequence tags (ESTs) of ginseng leaf[J]. Plant Cell Rep,2006,25(6):599-606.
    [31]Shin H R, Kim J Y, Yun T K, et al. The cancer-preventive potential of Panax ginseng:a review of human and experimental evidence[J]. Cancer Causes Control,2000,11(6):565-576.
    [32]Dou D Q, Chen Y J, Liang L H, et al. Six new dammarane-type triterpene saponins from the leaves of Panax ginseng[J]. Chemical & Pharmaceutical Bulletin,2001,49(4):442-446.
    [33]Dou D, Li W, Guo N, et al. Ginsenoside Rg8, a new dammarane-type triterpenoid saponin from roots of Panax quinquefolium[J]. Chemical & Pharmaceutical Bulletin,2006,54(5):751-753.
    [34]Park I H, Han S B, Kim J M, et al. Four new acetylated ginsenosides from processed ginseng (sun ginseng)[J]. Archives of Pharmacal Research,2002a,25(6):837-841.
    [35]Park I H, Kim N Y, Han S B, et al. Three new dammarane glycosides from heat processed ginseng[J]. Archives of Pharmacal Research,2002b,25(4):428-432.
    [36]Wang J Y, Li X G, Zheng Y N, et al. Isoginsenoside-Rh3, a new triterpenoid saponin from the fruits of Panax ginseng C.A. Mey[J]. Journal of Asian Natural Products Research,2004,6(4):289-293.
    [37]Yoshikawa M, Sugimoto S, Nakamura S, et al. Medicinal flowers. XI. Structures of new dammarane-type triterpene diglycosides with hydroperoxide group from flower buds of Panax ginseng[J]. Chemical & Pharmaceutical Bulletin,2007,55(4):571-576.
    [38]张春枝,安利佳,金凤燮.人参皂苷生理活性的研究进展[J].食品与发酵工业,2002,25(04):70-74.
    [39]Shibata S. Chemistry and cancer preventing activities of ginseng saponins and some related triterpenoid compounds[J]. Journal of Korean Medical Science,2001,16(6):28-37.
    [40]Park M W, Ha J, and Chung S H.20(S)-ginsenoside Rg3 enhances glucose-stimulated insulin secretion and activates AMPK[J]. Biol Pharm Bull,2008,31(4):748-751.
    [41]傅晓晴,蔡宗苇,杨显荣.人参延缓中枢神经系统衰老的生理调节治疗作用的研究[J].中医药学刊,2003,21(07):1044-1047.
    [42]周迎春等.高效液相色谱法同时测定三七总皂苷中人参皂苷Rbl、Rgl、Re与三七皂苷Rbl含量[J].沈阳药科大学学报.2003,20(1):27-31.
    [43]王本祥,崔景朝,刘爱晶,等.人参茎叶皂甙抗疲劳作用的研究[J].中医杂志,1981,22(9):697-699.
    [44]周迎春等.高效液相色谱法同时测定三七总皂苷中人参皂苷Rb1、Rg1、Re与三七皂苷Rbl含量[J].沈阳药科大学学报.2003,20(1):27-31.
    [45]王隶书,程东岩,朱杰.薄层扫描法测定仙灵双保心胶囊中人参皂苷Rgl及人参皂苷Rbl之和的含量[J].中国药师.2003,6(3):155-156.
    [46]Goldstein JL, Brown MS. Regulation of the mevalonate pathway[J]. Nature,1990,343:425-430.
    [47]Berges T, Guyonnet D, Karst F. Characterisation of a Leuto-Pro mutation in a conserved sequence of mevalonate diphosphatedecarboxylase in yeast[J]. Bacteriol.1997,179:4664-4670.
    [48]Chappell J. Biochemistry and molecular biology of the isoprenoid biosynthetic pathway in plants[J]. Annu Rev Plant Physiol Plant Mol Biol,1995,46:521-547.
    [49]Ajikumar P K, Tyo K, Carlsen S, et al. Terpenoids:Opportunities for Biosynthesis of Natural Product Drugs Using Engineered Microorganisms[J]. MOLECULAR PHARMACEUTICS,2008, 5(2):167-190.
    [50]陈大华,叶和春,李国凤,刘彦.植物类异戊二烯代谢途径的分子生物学研究进展[J].植物学报,2000,42(6):551-558.
    [51]吴琼,周应群,孙超, 陈士林.人参皂苷生物合成和次生代谢工程[J].中国生物工程杂志,2009,29(10):102-108.
    [52]Bach TJ, Boronat A, Caelles C, et al. Aspects related to mevalonate biosynthesis in plants[J]. Lipids, 1991,26(8):637-648.
    [53]杨鹤, 郜玉钢,李瑛,等.人参皂苷等萜类化合物生物合成途径及HMGR的研究进展[J].中国生物工程杂志,2008,28(10):130-135.
    [54]Ramos-Valdivia AC, Heijden R V D, Verpoorte R. Isopentenyl diphosphate isomerase:a core enzyme in isoprenoid biosynthesis. A review of ite biochemistry and function[J]. Nat Prod Rep,1997, 14(6):591-603.
    [55]Wu Tung-Kung, Chang Cheng-Hsiang. Enzymatic Formation of Multiple Triterpenes by Mutation of Tyrosine 510 of the Oxidosqualene-Lanosterol Cyclase from Saccharomyces cerevisiae[J]. ChemBioChem.2004,5:1712-1715.
    [56]Abe Ikuro. Enzymatic synthesis of cyclic triterpenes[J]. The Royal Society of Chemistry 2007.2007, 24:1311-1331.
    [57]Meredith B J, Julian N R, Michael J B, et al. Structure and synthesis of polyisoprenoids used in N-glycosylation across the three domains of life[J]. Biochimica et Biophysica Acta 1790.2009, 485-494.
    [58]Denis T, Andrea H, Thomas J B, et al, Plant isoprenoid biosynthesis via the MEP pathway:In vivo IPP/DMAPP ratio produced by (E)-4-hydroxy-3-methylbut-2-enyl diphosphate reductase in tobacco BY-2 cell cultures[J]. FEBS Letters 584.2010,129-134.
    [59]陈建,赵德刚.植物萜类生物合成相关酶类及其编码基因的研究进展[J].分子植物育种,2004,2(6):757-764.
    [60]Bostock R M, Avdiushko S, Hildebrand D F. Lipid-derived signals that discriminate wound and pathogen-responsive isoprenoid pathways in plants:methyl jasmonate and the fungal elicitor arachidonic acid induce different 3-hydroxy-3-methylglutaryl-coenzyme A reductase genes and antimicrobial isoprenoids in Solanum tuberosum L[J]. Proc NatlAcad SciU SA,1994,15,91 (6): 2329-2333.
    [61]Daraselia N D, Tarchevskaya S, Narita J O. The promoter for tomato 3-hydroxy-3-methylglu taryl coenzyme A reductase gene 2 has unusual regulatory elements that direct high-level expression[J]. Plant Physiol,1996,112 (2):727-733.
    [62]Chye M L, Tan C T, Chua N H. Three genes encode 3-hydroxy-3-methylglutaryl-coenzyme A reductase in Hevea brasiliensis:hmgl and hmg3 are differentially expressed[J]. Plant Mol Biol,1992, 19 (3):473-484.
    [63]Rodriguez-ConcepcionM, Gruissem W. Arachidonic acid alters tomato HMG expression and fruit growth and induces 3-hydroxy-3-methylglutaryl coenzyme A reductase-independent lycopene accumulation[J]. Plant Physiol,1999,119(1):41-48.
    [64]Schaller H, Grausem B, Benveniste P, et al. Expression of theHevea brasiliensis (H. B. K.) Mull. Arg 3-hydroxy-3-methylglutaryl-coenzyme A reductase 1 in tobacco results in sterol overproduction[J]. Plant Physiology,1995,109 (3):761-770.
    [65]刘涤,胡之壁.植物类异戊二烯生物合成途径的调节[J].植物生物学通讯,1998,34(1):1-9.
    [66]韩军丽,李振秋,刘本叶,等.植物萜类代谢工程[J].生物工程学报,2007,23(4):561-569.
    [67]张云峰,魏东,邓雁如,等.三萜皂苷的生物活性研究新进展[J].中成药,2006,28(9):1349-1353.
    [68]罗永明,刘爱华,李琴,等.植物萜类化合物的生物合成途径及其关键酶的研究进展[J].江西中医学院学报,2003,15(2):46-49.
    [69]王莉,史玲玲,张艳霞,等.植物次生代谢物途径及其研究进展[J].武汉植物学研究,2007,25(5):500-508.
    [70]兰文智,余龙江,蔡永君,等.类异戊二烯非甲羟戊酸代谢途径的分子生物学研究进展[J].西北植物学报,2001,21(5):1039-1047.
    [71]郝宏蕾,朱旭芬,曾云中.类异戊二烯的生物合成及调控[J].浙江大学学报,2002,28(2):224-230.
    [72]杜丽娜,张存莉,朱玮,等.植物次生代谢合成途径及生物学意义[J].西北林学院学报,2005,20(3):150-155.
    [73]陈大华,叶和春,李国凤,等.植物类异戊二烯代谢途径的分子生物学研究进展[J].植物学报,2000,42(6):551-558.
    [74]杨涛,曾英.植物萜类合酶研究进展[J].云南植物研究,2005,27(1):1-10.
    [75]张长波,孙红霞,巩中军,等.植物萜类化合物的天然合成途径及其相关合酶[J].植物生理学通讯,2007,43(4):779-786.
    [76]邢朝斌,王一曼,陈正恒,等.三萜皂苷的生物合成[J].生命的化学,2005,25(5):420-422.
    [77]陈莉,吴耀生.三萜皂苷生物合成途径及相关酶[J].国外医药,2004,19(4):156-161.
    [78]刘强,丛丽娜,张宗申.植物甾醇与三萜类皂苷生物合成基因调控的研究进展[J].安徽农业科学,2006,34(19):4844-4846.
    [79]Chambon C, Ladeveze V, Blanchard L, et al. Sterol pathway in yeast Identification and properties of mutant strains defective in mevalonate diphosphate decarboxylase and farnesyl diphosphate synthetase[J]. Lipids,1991,26:633-636.
    [80]Dassanayake RS, Cao L, Samaranayake LP, et al.Characterization, heterologous expression and functional analysis of mevalonate diphosphate decarboxylase gene (MVD) of Candida albicans[J]. Mol Genet Genomics,2002,267:281-290.
    [81]Toth MJ, Huwyler L. Molecular cloning and expression of the cDNAs encoding human and yeast mevalonate pyrophosphate decarboxylase[J]. J Biol Chem,1996,271:7895-7898.
    [82]Toth MJ, Huwyler L, Park J.Purification of rat liver mevalonate pyrophosphate decarboxylase[J]. Prep Biochem Biotechnol,1996,26:47-51.
    [83]罗志勇,陆秋恒,刘水平,等.人参植物皂苷生物合成相关新基因的筛选与鉴定[J].生物化学与生物物理学报,2003,35(6):554-560.
    [84]Wu Q, Song J, Sun Y, et al. Transcript profiles of Panax quinquefolius from flower, leaf and root bring new insights into genes related to ginsenosides biosynthesis and transcriptional regulation[J]. Physiologia plantarum,2010,138(2):134-149.
    [85]Kaminaga Y, Sahin FP, Mizukami H. Molecular cloning and characterization of a glucosyltransferase catalyzing glucosylation of curcumin in cultured Catharanthus roseus cells[J]. FEBS Lett.2004, 567:197-202.
    [86]罗志勇,刘水平,陈湘晖,等.人参植物高质量RNA的分离及其皂苷生物合成相关新基因GBR6的表达分析[J].生命科学研究,2004,8(1):52-57.
    [87]刘水平,罗志勇,陈湘晖,等.人参皂苷生物合成相关新基因GBR6的cDNA克隆及序列分析[J].生命科学研究,2004,8(4):351-354.
    [88]罗志勇,陆秋恒,刘水平,等.人参植物皂苷生物合成相关新基因的筛选与鉴定[J].生物化学与生物物理学报,2003,35(6):554-560.
    [89]Bohlmann J, Meyer-Gauen G, Croteau R. Plant terpenoid synthases:molecular biology and phylogenetic analysis[J]. Proc Natl Acad Sci USA,1998,95:4126-4133.
    [90]Basson M E, Thorsness M, Finer M J, et al. Structural and functional conservation between yeast and human 3-hydroxy-3-methylglutaryl coenzyme A reductases, the rate-limiting enzyme of sterol biosynthes[J]. Molecular and Cellular Biology,1988,8:3797-3808.
    [91]明乾良,韩婷,黄芳,等.人参皂苷生物合成途径及其相关酶的研究进展[J].中草药,2010, 41(11):1913-1917.
    [92]Soo Kyung, In Jeong K, Dong Ho S, et al. Cloning, Characterization, and Heterologous Expression of a Functional Geranylgeranyl Pyrophosphate Synthase from Sunflower[J]. Plant physiol, 2000(157):535-542.
    [93]张蕾.丹参牻牛儿基牻牛儿基焦磷酸合酶基因的克隆与功能研究[D].天津:中国人民解放军军事医学科学院,2009.
    [94]丁一新.灵芝法呢基焦磷酸合酶基因的克隆和表达特性研究[D].南京:南京农业大学微生物系,2008.
    [95]Kim O T, Kim S H, Ohyama K, et al. Upregulation of phytosterol and triterpene biosynthesis in Centella asiatica hairy roots overexpressed ginseng farnesyl diphosphate synthase[J]. Plant Cell Rep,2010,29(4):403-411.
    [96]Jayvardhan Pandit D E D, Gayle K S. Crystal stucture of human squalene synthase[J]. Biol Chem, 2000,275(39):30610-30617.
    [97]Uchida H, Yamashita H, Kajikawa M, et al. Cloning and characterization of squalene synthase gene from a petroleum plant[J], Euphorbia tirucalli L. Planta,2009,229(6):1243-1252.
    [98]Do R K R, Gaudet D. Squalene synthase:a critical enzyme in the cholesterol biosynthesis pathway[J]. Clin Genet,2009,75:19-29.
    [99]黄璇.人鲨烯合成酶的克隆表达及其重组工程菌的高密度发酵研究[D].四川:西南大学微生物与生化药学,2009.
    [100]Chang J, Guo C-H, Yin Y-Z, et al. cDNA Cloning and Sequencing of Squalene Synthase of Artem is a apiacea[J]. Agricultural Science & Techno logy,2010,11 (2):80-83,86.
    [101]张明哲,王真慧,张美萍,等.人参SQS和SE酶基因的克隆及其表达载体的构建[J].现代农业科技,2010,4:20-22.
    [102]Devarenne TP, Ghosh A, Chappell J. Regulation of squalene synthase, a key enzyme of sterol biosynthesis[J], in tobacco. Plant Physiol,2002,129:1095-1106.
    [103]李珅.三七三萜皂甙合成途径鲨烯环氧酶基因的克隆及初步表达[D].广西:广西医科大学生物化学与分子生物学,2003.
    [104]成慧,杨光,刘雅婧,等.龙牙木SE基因克隆与植物表达载体构建[J].吉林农业大学学报.2011,33(1):47-50.
    [105]Han JY, In JG, Kwon YS, et al. Regulation of ginsenoside and phytosterol biosynthesis by RNA interferences of squalene epoxidase gene in Panax ginseng[J]. Ph yt ochemistry,2010,71:36-46.
    [106]Massaki Shibuya H Z, Aki Endo. Two branches of the lupeol synthase gene in the molecular evolution of plant oxidosqualene cyclases[J]. Eur J Biochem,1999,266:302-307.
    [107]Mohammad Basyuni H O, Etsuko Tsujimoto. Cloning and functional expression of cycloartenol synthases from Mangrove species Rhizophora stylosa Griff and Kandelia candel(L.)Druce[J]. Biosci. Biotechnol. Biochem,2007,71(7):1788-1792.
    [108]Muller T H, Schaller H, Benveniste P. Molecular cloning and expression in yeast of 2,3-oxidosqualene triterpene cyclases from Arabidopsis thaliana[J].Plant Mol Biol,2001,45:75-92.
    [109]Shibuya M, Hoshino M, Katsude Y, Identification of β-amyrin and sophoradiol 24-hydroxylase by expressed sequence tag mining and functional expression assay[J]. FEBS J,2006,273:948-959.
    [110]Masayo Morita M S, Tetsuo Kushiro. Molecular cloning and functional expression of triterpene synthases from pea(Pisum sativum) [J]. Eur J Biochem,2000,267:3453-3460.
    [111]Qi X, Bakht S, Leggett M, et al. A gene cluster for secondary metabolism in oat implications for the evolution of metabolic diversity in plants[J]. PNAS,2004,101:8233-8238.
    [112]Shibuya M, Kasube Y, Otsuka M, et al. Identification of a product specific β-amyrin synthase from Arabidopsis thaliana[J]. Plant Physiol Bioch,2009,47:26-30.
    [113]梁彦龙.反义RNA抑制环阿乔醇合成酶基因对人参皂苷合成的影响研究[D].吉林:吉林大学生物与农业工程学院,2009.
    [114]Kushiro T, Ohno Y, Shibuya M, et al. In vitro conversion of 2,3-oxidosqualene into dammarenediol by Panax ginseng microsomes[J]. Biological & Pharmaceutical Bulletin,1997,20(3):292-294.
    [115]侯春喜.人参皂苷生物合成关键酶基因MVD和βAS的克隆及βAS的反义表达[D].吉林:吉林大学生物与农业工程学院,2009.
    [116]王斌,李德远.细胞色素P450的结构与催化机理[J].有机化学,2009,29(4):658-662.
    [117]Schuler M A, Daniele W R. Functional genomics of P450s[J]. Annual Review of Plant Biology, 2003,54:627-629.
    [118]Koprek T, McElroy D, Louwerse J, et al. Negative selection systems for transgenic barley (Hordeum vulgare L):comparison of bacterial codA-and cytochrome P450 gene-mediated selection [J]. Plant Journal,1999,19:719-726.
    [119]邢朝斌,王一曼,陈正恒,等.三萜皂苷的生物合成[J].生命的化学,2005,25(5):420-422.
    [120]刘强,丛丽娜,张宗申.植物甾醇与三萜类皂苷生物合成基因调控的研究进展[J].安徽农业科学,2006,34(19):4844-4846.
    [121]VOGT T, JONES P. Glycosyltransferases in plant natural product synthesis:characterization of a supergene family[J]. Trends Plant Sci,2000,5(9):380-386.
    [122]Yanlong Liang, Shoujing Zhao and Xin Zhang. Antisense suppression of cycloartenol synthase results in elevated ginsenoside levels in Panax ginseng Hairy Roots[J]. Plant Molecular Biology Reporter,2009,27(3):298.
    [123]赵寿经,侯春喜,梁彦龙,等。人参皂苷合成相关β-AS基因的克隆及其反义植物表达载体的建立[J].中国生物工程杂志,2008,28(4):74-77.
    [124]Chilton MD, Tepfer DA, Petit A et al. Agrobacterium rhizogenes insert T-DNA into the genomes of the host plant root cell [J]. Nature,1982,295:432-434.
    [125]GeorgierM I, ParlorA I, Bley T. Hairy root type p lant in vitro systems as sources of bioactive substances[J]. App 1. Microbiol. Biotechnol,2007,74 (6):1175-1185.
    [126]Hu Z-B and Du M. Hairy root and its application in plant genetic engineering[J]. Journal of Integrative Plant Biology 2006,48(2):121-1270.
    [127]Bourgaud F, Cravot A, Milesi S, et al. Production of plant secondary metabolites:a historical perspective[J]. Plant Science,2001,161:839-851.
    [128]张兴,刘晓娟,吕巧玲,等.毛状根生产次生代谢产物的研究进展[J].化工进展,2007,26(09):228-1232.
    [129]张广求,王伯初,段传人,等.提高毛状根中次生代谢产物含量的方法与技术[J].重庆大学学报(自然科学版),2005,28(06):121-124.
    [130]Mateus L, Cherkaoui S, Christen P, et al. Simultaneous determination of scopolamine, hyoscyamine and littorine in plants and different hairy root clones of Hyoscyamus muticus by micellar electrokinetic chromatography[J]. Phytochemistry,2000,54(5):517-523.
    [131]黄建安,刘仲华.毛状根培养与植物次生代谢物的生产[J].徽生物学杂志,2003,23(5):35-39
    [132]Guillon S, Tremouillaux-Guiller J, Pati P K, et al. Harnessing the potential of hairy roots:dawn of a new era[J]. Trends Biotechnol,2006,24(9):403-409.
    [133]孙敏,曾建军.长春花毛状根培养及抗癌生物碱产生的研究[J].中国中药杂志,2005,30(10):741-755
    [134]杜曼,向德军,丁家宜,等.甘草毛状根培养系统的建立及化学成分分析[J].植物资源与环境学报,2001,10(1):7-10.
    [135]付春祥,金治平,杨睿,等.新疆雪莲毛状根的诱导及其植株再生体系的建立[J].生物工程学报,2004,20(3):366-371.
    [136]张荫麟,宋经元,吕桂兰,等.丹参毛状根培养的建立和丹参酮的产生[J].中国中药杂志,1995,20(5):269-271.
    [137]刘娟,李杨,陈万生,等.植物转基因发根的研究方向和应用[J].第二军医大学学报,2010,31(4):433-437
    [138]Giri A and Narasu M L. Transgenic hairy roots:recent trends and applications[J]. Biotechnol Adv, 2000,18(1):1-22.
    [139]Handa T, Sujimura T, Kato E, et al. Genetic transformation of Eustoma grandiflorum with rol genes[J]. Acta Hort,1995,392:209-218.
    [140]Damiani F and Aricioni S. Transformation of Medicago arborea L with Agrobacterium rhizogenes binary vector carrying the hygromycin resistance genes[J]. Plant Cell Reports,1991(10):300-303.
    [141]Menzel G, HarloffH J, and Jung C. Expression of bacterial poly(3-hydroxybutyrate) synthesis genes in hairy roots of sugar beet (Beta vulgaris L.)[J]. Appl Microbiol Biotechnol,2003,60(5):571-576.
    [142]Kumar G B S, Ganapathi T R, Srinivas L, et al. Expression of hepatitis B surface antigen in potato hairy roots[J]. Plant Science,2006,170:918-925.
    [143]Jin U H, Chun J A, Lee J W, et al. Expression and characterization of extracellular fungal phytase in transformed sesame hairy root cultures[J]. Protein Expr Purif,2004,37(2):486-492.
    [144]Guillon S, Trmouillaux G J, Pati P K, et al. Hairy root research:recent scenario and exciting prospects[J]. CurrOpin Plant Biol,2006,9:341-346.
    [145]王莉,张艳霞,史玲玲,等.功能基因组学和代谢组学技术在植物次生代谢物合成及调控研究中的应用[J].北京林业大学学报,2007,29(5):153-159.
    [146]张艳霞,史玲玲,戴向辰,等.茉莉酸及其衍生物:一类重要的植物次生代谢诱导子[J].海南师范大学学报(自然科学版),2008,21(3):323-327.
    [147]Seo H S, Song JT, Cheong JJ, et a.l Jasmonic acid carboxyl methyltransferase:a key enzyme for jasmonate-regulated plant responses[J]. Proceedings of the National Academy of Sciences of the USA,2001,98 (8):4788-4793.
    [148]李清清,李大鹏,李德全.茉莉酸和茉莉酸甲酯生物合成及其调控机制[J].生物技术通报,2010,1:53-57.
    [149]Martin D, Throll D, Gershenzon J, Bohlmann J. Methyl Jasmonate induces traumatic resin ducts, terpenoid resion biosynthesis, and terpenoid accumulation in developing xylem of Norway spruce stem[J]. Plant Physiol,2002,129:1002-1028.
    [150]Yukimine Y, Tabata H, Higashi Y, et al. Methyl jasmonate induced overproduction of paclitaxel and baccation III in Taxus cell suspension cultures[J]. Nat Biotechnol,1996,14:1129-1132.
    [151]Sasaki Y, Asamizu E, Shibata D, et al. Monitoring of methyl jasmonate-responsive genes in Arabidopsis by cDNA macroarray:self-activation of jasmonic acid biosynthesis and cross talk with other phytohormone signaling pathways[J]. DNA Res,2001,8:153-161.
    [152]Delker C, S tenzel I, H ause B, et a.l. Jasmonate biosynthesis in A rabidopsis thalian a enzymes, p roducts, regulation[J]. Plant Biology,2006,8 (3):297-306.
    [153]刘新琼,王春台,叶志杰,等.茉莉酸甲酯对水稻同核异质系HLCMS幼苗叶片蛋白质、纤维素及木质素含量的影响[J].中南民族大学学报(自然科学版),2007,26(2):43-46.
    [154]柳爱莲,崔香环.茉莉酸类物质影响植物生理作用的研究进展[J].河南大学学报(自然科学版).2000,30(3):55-57.
    [155]蔡昆争,董桃杏,徐涛.茉莉酸类物质(JAs)的生理特性及其在逆境胁迫中的抗性作用[J].生态环境.2006,15(2):397-404.
    [156]邱德有,朱蔚华,吴蕴祺,等.利用茉莉酸类结合mRNA差示技术研究紫杉醇生物合成机制 [J].中国新药杂志,2000,4(9):224-228.
    [157]潘瑞炽,豆志杰,叶庆生.茉莉酸甲酯对水分胁迫下花生幼苗SOD活性和膜脂过氧化作用的影响[J].植物生理学报,1995,21(3):221-228.
    [158]朱家红,彭世清.茉莉酸及其信号传导研究进展[J].西北植物学报,2006,26(10):2166-2172.
    [159]Cheong JJ, Yang DD. Methyl jasmonate as vital substance in plants[J]. Trends in Genetics,2003, 19(7):409-413.
    [160]董桃杏,蔡昆争,张景欣,等.茉莉酸甲酯对水稻幼苗抗旱生理效应[J].生态环境,2007,16(4):1261-1265.
    [161]韩晋,田世平.外源茉莉酸甲酯对黄瓜采后冷害及生理生化的影响[J].园艺学报,2006,33(2):289-293.
    [162]孙清鹏,王小著.植物伤反应中的茉莉酸类信号[J].植物学通报,2003,20(4):481-488.
    [163]朱家红,彭世清.茉莉酸及其信号传导研究进展[J].西北植学,2006,26(10):2166-2172.
    [164]Bae KH, Choi YE, Shin CG, et al.Enhanced ginsenoside productivity by combination of ethephon and methyl-jasmonate in ginseng (Panax ginseng C.A. Meyer) adventitious root cultures[J]. Biotechnol Lett,2006,28:1163-1166.
    [165]Creelman RA, Mullet JE. Biosynthesis and action of jasmonates in plants[J]. Annu Rev Plant Physiol Plant Mol Biol,1997,48:355-381.
    [166]Hu FX, Zhong JJ. Jasmonic acid mediates gene transcription of ginsenoside biosynthesis in cell cultures of Panax notoginseng treated with chemically synthesized 2-hydroxyethyl jasmonate[J]. Process Biochem,2008,43:113-118.
    [167]Pauwels L, Morreel K, Witte ED,et al. Goossens A Mapping methyl jasmonate-mediated transcriptional reprogramming of metabolism and cell cycle progression in cultured Arabidopsis cells. Proc Natl Acad Sci USA,2008,105:1380-1385.
    [168]Sathiyamoorthy S, In JG, Gayathri S, et al. Gene ontology study of methyl jasmonate-treated and non-treated hairy roots of Panax ginseng to identify genes involved in secondary metabolic pathway. RUSSIAN JOURNAL OF GENETICS.2010.46(7):828-835.
    [169]王保军,张秀清,孙立伟,等.茉莉酸甲酯(MeJA)对贯叶连翘悬浮细胞生长和贯叶金丝桃素产量的影响[J].植物生理学通讯.2008,44(4):669-672.
    [170]Laskaris G, Bounkhay M, Theodoridis G, et al. Induction of geranylgeranyl diphosphate synthase activity and taxane accumulation in Taxus baccata cell cultures after elicitation by methyl jasmonate[J]. Phytochemistry,1999,50:939-946.
    [171]王学勇,崔光红,黄璐琦,等.茉莉酸甲酯对丹参毛状根中丹参酮类成分积累和释放的影响[J].中国中药杂志.2007,32(4):300-302.
    [172]杨英,郑辉,何峰,等.不同浓度茉莉酸甲酯对悬浮培养的胀果甘草细胞合成甘草总黄酮的 影响[J].云南植物研究.2008,30(5):586-592.
    [173]Goossens A, Hakkinen S T, Laakso I, et al. A functional genomics approach toward the understanding of secondary metabolism in plant cells[J]. Proc Natl Acad Sci USA,2003, 100:8595-8600.
    [174]陈名红,陈毅坚,叶艳青,等.用半定量RT-PCR法分析基因表达水平的影响因素[J].贵州农业科学,2009,37(8):28-30.
    [175]王荣,李红菊.半定量RT-PCR法在检测基因表达水平中的应用.阜阳师范学院学报(自然科学版),2007,24(1):49-52.
    [176]Wang A M, Doyle M V, Mark D F. Quantitation of mRNA by the polymerase chain reaction[J]. Leukemia,2000,14(2):316-323.
    [177]边杉,王颖,于涛,等.聚丙烯酰胺凝胶银染技术在半定量RT-PCR中的应用.中国药科大学学报,2004(2):178-182.
    [178]Fellenr M D, Durand K, Correa M. A semi quantitative PCR method (SQ-PCR) to measure Epstein-Barrvirus (EBV)load:its application in transplant patients [J]. Biotechniques,1997,22 (1): 630-634,636.
    [179]Mathias C, Martine B, Anne V C.A semi-quantitative RT-PCR method to readily compare expression levels within Botrytiscinerea multigenic families in vitro and in planta [J]. Curr Genet, 2003,43(1):303-309.
    [180]Rolland V G. Semi-quantitative analysis of gene expression in cultured chondrocytes by RT-PCR [J]. Methods Mol Med,2004,100(1):69-78.
    [181]Kuddus R H, Lee T H, Valdivea L A. A semi-quantitative PCR technique for detecting chimerism in hamster-to-rat bone marrowxeno transplantation[J]. Immunol Methods,2004,285(1):245-251.
    [182]徐春兰,汪以真.半定量RT-PCR法分析猪肌肉组织细胞谷胱甘肽过氧化物酶mRNA表达水平[J].中国兽药杂志,2005,39(8):3-6;23.
    [183]陈昕,王保莉,曲东,等.小麦硫转运蛋白基因半定量RT-PCR检测方法的建立[J].西北植物学报.2006,26(2):0309-0313.
    [184]张洁,张晓红,张振海,等.半定量RT-PCR法检测低磷胁迫下大豆根系质膜H+-ATPase基因的表达[J].河北农业大学学报,2009,32(4):53-56;75.
    [185]许磊,石庆华,代培红,等.半定量RT-PCR方法检测NaCl胁迫下杂花苜蓿(?)mvNHX基因表达及体系优化[J].新疆农业科学,2010,47(12):2484-2488.
    [186]Marone M, Mozzetti S, Ritis DD, et al. Semiquantitative RT-PCR analysis to assess the expression levels of multiple transcripts from the same sample[J]. Biol Proced Online,2001,3 (1):19-25.
    [187]邓春梅,葛玉强,刘丽.外源基因表达系统的研究进展[J].现代生物医学进展.2010,10(19):3744-3746
    [188]Choi YU, Toyoda Y. Cyclodextrin removes cholesterol from mouse sperm and induces capacitation in a protein free medium[J]. Biol Reprod,1998,59(6):1328-1333.
    [189]Pet rounkina AM, Harrison RAP, Petzddt R, et al. Cyclicalchanges in sperm volume during in vitro incubation under capacitating conditions:a novel boar semen characteristic[J]. J Reprod Fertil,2000, 118(2):1283-1293.
    [190]R. S. Donovan, C. W. Robinson, B. R.Glick Review:Optimizing Inducer and Culture Conditions for Expression of Foreign Protein under the Control of the Lac Promoter J[J]. Ind. Microbiol,1996,16: 145-154.
    [191]王瑶,吴玉水,兰风华,等. NADH-细胞色素b5还原酶在大肠杆菌中的表达及其产物的纯化[J].中国生物化学与分子生物学报,2000,16(4):452-457.
    [192]P. Caspers, M. Stieger, P. Burn. Overproduction of Bacterial Chaperones Improves theolubility of Recombinant Protein Tyrosine Kinase in Escherichia coli[J]. Cell. Mol. Biol,1994,40:635-644.
    [193]Lee SC, Olins PO. Effect of Overproduction of Heat Shock Chaperons GroESL and DnaK on Human Procollagenase Production in Escherichia coli.[J]. Biol. Chem.,1992,267:2849-2852.
    [194]R. S. Donovan, C. W. Robinson, B. R.Glick Review:Optimizing Inducer and Culture Conditions for Expression of Foreign Protein under the Control of the Lac Promoter[J]. Ind Microbiol.,1996,16: 145-154.
    [195]Zhang Y, Guo YJ, Sun SH, et al. Non-fusion expression in Eschriebia coli, purification, and characterization of a novel Ca2+ and phospholipids-binding protein annexin B1[J]. Protein Expr Purif,2004,34(1):68-74.
    [196]Hoff M F, Van D H J, Zidek N. Minimizing inclusion body formation during recombinant protein production in Escherichia coli at bench and pilot plant scale[J]. Enzyme Microb Technol,2004,34: 235-241.
    [197]Jonasson P, Liljeqvist S, Nygren PA, et al. Genetic design for facilitated production and recovery of recombinant proteins in Escherichia coli [J]. Biotechnology and Applied Biochemistry,2002, 35(2):91-105.
    [198]Terpe K. Overview of bacterial expression systems for heterologous protein production:from molecular and biochemical fundamentals to commercial systems[J]. Appl Microbiol Biotechnol, 2006,72 (2):211-222.
    [199]Wilson CJ, Zhan H, Swint Kruse, et al. The lactose repressor system:paradigms for regulation, allosteric behavior and protein folding[J]. Cell Mol Life Sci,2007,64 (1):3-16.
    [200]Bow ers LM, Lapoint K, Anthony L, et al. Bacterial expression system with tightly regulated gene expression and plasmid copy number[J]. Gene,2004,340 (1):11-18.
    [201]Jinbiao L, Dong W, Guozhi W, et al. High level expression and single step purification of recombinant Bacillus anthracis protective an tigen from Escherichia coli[J]. Biotechnol Appl Biochem,2008,4 (7):102-110.
    [202]E. L. Schneider, J. G. Thomas, J. A. Bassuk, et al. Manipulating the Aggregation and Oxidation of Human SPARC in the Cytoplasm of Escherichia coli[J]. Nat Biotechnol,1997,15:581-585.
    [203]T. Yasukawa, C. Kanei-Ishii, T. Maekawa, et al. Increase of Solubility of Foreign Proteins in Escherichia coli by Coproduction of the Bacterial Thioredoxin[J]. Biol Chem,1995, 270:25328-25331.
    [204]C. L. Gordon, S. K. Sather, S. Casjens, et al. Selective in vivo Rescue by GroEL/GroES of Thermolabile Folding Intermediate to Phage P22 Structural Proteins[J]. Biol Chem,1994,269: 27941-27951.
    [205]C. H. Schein, M. H. M. Noteborn. Formation of Soluble Recombinant Proteins in Escherichia coli is Favored by Lower Growth Temperatures[J]. Bio-technology,1988,6:291-294.
    [206]Ostergaard S, Olsson L, Nielsen J. Metabolic Engineering of Saccharomyces cerevisiae[J]. Microbiol Mol Biol Rev,2000,64(1):34-50.
    [207]Mo C, Milla P, Athenstaed t K, et al. In yeast sterol biosynthesis the 3-keto reductase protein (E rg27p) is required for oxidosqualen ecyclase (Erg7p) activity [J]. Biochimicaet Biophysica Acta, 2003,1633:68-74.
    [208]Kennedya M A, Johnsona T A, Leesa D N, et al. Cloning and sequencing of the Candida albicans C-4 sterol methyl oxidase Gene(ERG25) and expression of an ERG25 conditional lethalmu tat ion in Saccharomyces cerevisiae[J].Lipids,2000,35(3):257-262.
    [209]Meyera S, Szkop in skab A, Karsta F, et al. Farnesyl diphosphatesyn thase activity affects ergosterol level and proliferation of yeast Saccharomyces cerevisae[J]. Cell Biology International,2004,28: 193-197.
    [210]Lee N D, Skaggs B, K irsch D R, et al. Cloning of the late genes in the ergosterol biosynthetic pathway of Saccaromy cescerevisiae[J]. Lipid,1995,30 (3):221-226.
    [211]Tainaka H, Hashimoto H, Aoyama Y, et al. Effects of elevated expression of the CYP51 (P45014DM) gene on the sterol contents of Saccharomyces cerevisiae[J]. Journal of fermentation and Bioengineering,1995,79 (1):64-66.
    [212]Veen M, Stah U, Lang C. Combined overexpression of genes of the ergosterol biosynthetic pathway leads to accumulation of sterols in Saccharomyces cerevisiae[J]. FEMS Yeast Reserch,2003,4 (1):87-95.
    [213]He XP, Zhang BR, Tan HR. Overexpression of a sterol C-24(28) reductasse increase ergosterol production in Saccharomyces cerevisiae[J]. Biotechnology Letters,2003,25:773-778.
    [214]Tamura KI, Gu YQ, Wang Q, et al. A haplutation in a laboratory strain of Saccharomyces cerevisiae results in decreased expression of ergosterol content compared to sake yeast [J]. Journal of Bioscience and Bioengineering,2004,98 (3):159-166.
    [215]Sakai A, Ozawa F, Higashizaki T. Enhanced secretion of human nerve growth factor from Saccharomyces cerevisiae using an advanced delta-integration system[J]. Biotechnology(N Y),1991, 9(12):1382-1385.
    [216]Lopes TS, De Wijs IJ, Steenhauer SI, et al. Factor affecting the miotic stability of high-cope-number integration into the ribosomal DNA of Saccharomyces cerevisiae[J]. Yeast,1996, 12:467-477.
    [217]Hitzeman RA, Hagie FE, Levine HL, et al. Expression of human gene for interferon in yeast[J]. Nature,1981,293:717-722.
    [218]赵颖怡,梁世中,黄鲲等.一种新型酵母附加型分泌表达载体的构建[J].微生物学报,2002,42(4):431-435.
    [219]郑敏,张飞雄,刘丽,酵母表达系统表达外源基因的研究进展[J].首都师范大学学报,1999,20(4):73-78.
    [220]唐香山,张学文.酿酒酵母表达系统[J].生命科学研究,2004,8(2):106-109.
    [221]Emst J F. Improved secertion of heterologous proteins by Saccharomyces cerevisiae:effects of prooter substitution in alpha-factor fusions[J]. DNA,1986, S(6):783-791
    [222]Kjeldsen T, Brandt J, Andersen A S, et al. A removable spacer peptide in an a-factor-leader/insulin precursor fusion protein improves processing and concomitant yield of the insulin precursor in Saccharomyces cerevisiae [J]. Gene,1996(710):107-112.
    [223]Crabe T, Weir N, Walton E F, et al. The secretion of active recombinant human gastric lipase by Saccharomyces cerevisiae[J]. Protein Expr Purif,1996(7):229-236.
    [224]Sakai Y, Rogi T, Yonehara T, et al. High level ATP production by a genetically-engineered Candida yeast [J]. Biotechnology,1994,12:291-293.
    [225]Lopes TS, De Wijs IJ, Steenhauer SI, et al. Factor affecting the miotic stability of high-cope-number integration into the ribosomal DNA of Saccharomyces cerevisiae [J]. yeast,1996,12:467-477.
    [226]Volschenk H, Viljoen M, Grobler J, et al. Engineering a pathway for malate degradation in Saccharomyces cerevisiae [J]. Nature Biotechnol,1997,15:253-257.
    [227]Volschenk H, Viljoen M, et al. Malo-ethanolic fermentation in grape must by recombinant strain of Saccharomyces cerevisiae [J]. Yeast,2001,18:963-970.
    [228]郑立运,方先珍.酵母表达系统最新研究进展[J].郑州牧业工程高等专科学校学报,2005,25(4):250-253.
    [229]Spangfort MD, Ipsen H, Sparholt SH, et al. Characterization of Purified Recombinant Betvl with Authentic N-Terminus, Cloned in Fusion with Maltose-binding Protein. Protein Express[J]. Purific, 1996,8:365-373.
    [230]K. Nishihara, M. Kanemori, M. Kitagawa, et al. Chaperone Coexpression Plasmids:Differential and Synergistic Roles of DnaK-dnaJ-grpE and GroEL-groES in Assisting Folding of an Allergen of Japanese Cedar Pollen Cryj2 in Escherichia coli[J]. Appl Environ Microbiol,1998,64:1694-1699.
    [231]Gemmill T R, Tr imble R B. Overview of N-and Olinked oligo saccharide structures found in various yeast species [J]. Biochem Bio phys Acta,1999,1426(2):227-237.
    [232]Zhao H L, Xue C, W ang Y, et al. Increaing the cell viability and heterologous protein expression of Pichiapastoris mutant deficient in PMR1 gene by culture condition optimization[J]. ApplMicrobiol Biotechnol,2008,81(2):235-241.
    [233]Lin-cereghino J, Hashimoto M D, Moy A, et al. Direct selection of Pichiapastoris expression strains using new G418 resistan cevectors[J]. Yeast,2008,25 (4):293-299.
    [234]Menendez J, Hernandez L, Banguela A, et al. Functional production and secretion of the Gluconoace tobacter diazatrophicus fructose-releasing exolevanase (LsdB) in Pichia pastoris[J]. Enz Microb Technol,2004,34(5):446-452.
    [235]Terpe K. Overview of Tag Protein Fusions:From Molecular and Biochemical Fundamentals to Commercial Systems[J]. Appl Microbiol Biotechnol,2003,60:523-533.
    [236]Rosenberg H E. Isolation of ecombinant Secretory Proteins by Limited Induction and Quantitative Harvest[J]. Biotechniques,1998,24:188-191.
    [237]J. E. Kane. Effects of Rare Codon Clusters on High Level Expression of Heterologous Proteins in Escherichia coli[J]. Curr Opin Biotechnol,1995,6:494-500.
    [238]Clare J J, Rayment F B, Ballantine S P, et al. High-level expression of tetanus toxin fragment C in Pichia pastoris strains containing multiple tandem integrations of the gene[J]. Biotechnology,1991, 9:455-460.
    [239]Ye R, Kim J H, Kim B G, et al. High-level secretary production of intact, biologically active staphylokinase from Bacillus subtilis. Biotechnol Bioeng,1999,62:86-96.
    [240]E. L. Schneider, J. G. Thomas, J. A. Bassuk, et al. Manipulating the Aggregation and Oxidation of Human SPARC in the Cytoplasm of Escherichia coli[J]. Nat Biotechnol.,1997,15:581-585.
    [241]F. Bonekamp, H. Dalboge, H. Chiristensen, et al. Translation Rates of Individual Codons Are Not Correlated with Trna Abundance or with Frequencies of Utilization in Escherichia coli[J]. Bacteriol, 1989,171:5812-5816.
    [242]Thomas AK, Patric C, Donald LJ. Baculovirus as versatile vectors for protein expression in insect and mammalian cells [J]. Nature Biotechnology,2005,23(5):567-575.
    [243]Breithach K, Jarvis DL. Improved glycosylation of foreign protein by TN5 B1-4 cells engineered to express mammalian glycosyltransferases[J]. Biotechmol Bioeng,2001,74:230-239.
    [244]刘高强,章克昌,王晓玲,等.昆虫杆状病毒表达系统的研究与应用进展[J].中国生物工程杂志,2004,24(7):40-44.
    [245]王文兵,张志芳,何家禄,等.杆状病毒基因组DNA复制相关基因的研究进展[J].生物化学与生物物理进展,2000,27(3):257-261.
    [246]Piluso L G, Wei G, Li A G, et al. Purification of acetyl-p53 using p300 co-infection and the baculovirus expression system[J]. Protein Expres Purif,2005,40:370-378.
    [247]Khoo K M, Chang C F, Schuber T J, et al. Expression and purification of the recombinant His-tagged GST-CD38 fusion protein using the baculovirus insect cell expression system[J]. Protein Expres Purif,2005,40:396-403.
    [248]Kang Y B, Xie L T, Tran D T, et al. Enhancing hepatocyte gene transfer with baculovirus GP64 glycoprotein[J].Mol Ther,2004,9:65.
    [249]郑光宇.真核生物表达系统研究进展[J].喀什师范学院学报,2004,25(6):33-36.
    [250]Browne SM, Al-Rubeai M. Selection methods for high-producing mammalian cell lines[J].Trends Biotechnol,2007,25:425-32.
    [251]Peng wu ping, Qiu hua ji. Recombinant Baculoviruses as mammalian cell gene-delivery vectors:a review [J]. China Biotechnology,2006,27(1):126-130.
    [252]P. T. Kallio, J. E. Bailey. Intracellular Expression of Vitreoscilla Hemoglobin (VHb) Enhances Total Protein Secretion and Improves the Production of a-Amylase and Neutral Protease in Bacillus subtilis. Biotechnol Prog,1996,12:31-39.
    [253]Loyd D R, Emery A N, et al. The role of cell cycle in determining gene expression and productivity in CHO cells[J]. Cytotechnolegy.1999,30:49-57.
    [254]侯丕勇,郭顺星.真菌对植物的诱导作用及其在天然药物研究上的应用.中草药,2002,33(9):855.
    [255]王镜岩,朱圣庚,徐长法《生物化学》高等教育出版社.
    [256]Dominov J A, Strnzler L, Lee S, et al. Cytokinins and auxins control the expression of a gene in Nicotiana plumbaginifolia cells by feed back regulatin[J]. Plant Cell,1992,4:451-461.
    [257]徐立新.植物激素和诱导子对人参发根皂苷含量的影响研究[D].吉林:吉林大学生物与农业工程学院,2007.
    [258]金凤媚,薛俊,郏艳红,等.半定量RT-PCR技术的研究及应用[J].天津农业科学.2008,14(1):10-13.
    [259]王迪,傅彬英,张立军.半定量RT-PCR方法研究microRNA393在旱处理后的孕穗期水稻叶片和穗部的表达情况[J].分子植物育种,2008,6(2):355-357.
    [260]张晓娟,张林生,杨颖.水分胁迫下小麦类脱水素基因表达的半定量RT-PCR分析[J].西北植物学报,2007,27(11):2158-2162.
    [261]黄瑛,曾庆平.萜类生物合成的基因操作[J].中国生物工程杂志,2006,26(1):60-64.
    [262]Mo CQ, Valachovic M, B ard M. The ERG28-encoded protein, Erg28p, interacts with both the sterol C-4 demethylation enzym ecom p lex as well as the late biosynthetic protein, the C-24 sterol methyltrans ferase (Erg6p) [J]. Biochimicaet Biophysica Acta,2004,1686:30-36.
    [263]Jackson BE, Hart-Wells E A, M atsuda S P. Metabolic engineernig to produce sesquiterpenes in yeast[J]. Orglett 2003,5(10):1629-1632.
    [264]Yamano S, Ishii T, Nakagawa M, et al. Metabolic engineering for production of beta-carotene and lycopene in Saccharamyces cerevisiae[J]. Biosci Biotechnol Biochan.1994,58(6):1112-1114.
    [265]李华,刘延琳,夏惠,等.菌落PCR技术在重组质粒筛选与鉴定中的应用[J].西北农林科技大学学报(自然科学版).2004,32(9):35-37.
    [266]夏诏杰.提高重组酵母质粒稳定性和蛋白质产率的培养策略研究[D].陕西:西北大学生物化工学院,2002.
    [267]Seo J H, Bailey J E. Effects of recombinant plasmid content on growth properties and cloned gene product formation in E.coli[J]. Biotechnol Bioeng.1985.27:1688-1675.
    [268]蔡丰聚,徐英黔.基因工程菌稳定性的若干影响因素[J].生命的化学,2006,26(5):451-453.
    [269]姜立春,郭晓萍,涂朝勇,等.重组嘧啶核苷磷酸化酶工程菌菌种的稳定性考察[J].华西药学杂志,2007,22(3):295-297.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700