陕西省煎茶岭金镍矿田构造特征及其控岩控矿作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煎茶岭金镍矿田位于扬子板块和秦岭造山带的结合部位,大地构造位置独特。只有弹丸之地的煎茶岭矿田聚集着金矿、镍矿、铁矿、石棉矿、菱镁矿、蛇纹石纳米管材料等多种金属和非金属矿产。目前,煎茶岭镍矿床已进入开采阶段,金矿也进行外围找矿。研究该区的构造变形不仅可以为恢复扬子板块和秦岭造山带区域构造演化规律提供最直接和最基本的地质素材,而且还可以分析矿田内金镍矿的控矿规律,指导今后找矿工作,因此,煎茶岭金镍矿田构造研究具有重大的理论和实际意义。
     本文采用构造解析的方法,以煎茶岭金镍矿田构造特征为研究中心,将区内控岩控矿作用作为研究重点,并以区域构造、构造地质学、构造岩石学、地球化学、同位素年代学和矿床学等学科理论为基础,系统研究矿田构造特征与演化规律、金镍矿的控矿构造特征和控岩控矿作用,进而探讨了研究区内找矿方向。取得的主要成果和认识可概括为以下几点:
     (1)分析了变质基底中元古界接官亭多期褶皱变形:中元古代初期,中基性火山岩、酸性火山岩以及火山凝灰岩生成之后,接官亭组沉积了少量碎屑岩和炭质泥岩;中元古代末期,接官亭组发生第一期褶皱,褶皱的北翼为正常翼,南翼为倒转翼,轴面产状S1≈216°∠45°,形成的重斜褶皱枢纽产状为β1≈215°∠50°,晚期褶皱叠加在早期重斜褶皱之上,致使早期轴面发生弯曲,形成背斜,其轴面产状165°∠75°,枢纽产状β2≈70°∠20°。加里东早期,盖层在构造运动作用下形成了一系列轴面近东西向褶皱,主要有:断头崖向斜、九道拐向斜、官地梁向斜、西渠沟背斜等,其中,九道拐向斜和断头崖向斜为似箱状褶皱,枢纽向东倾伏,倾伏角20°-30°;西渠沟背斜为线性褶皱,两者轴面走向115°-120°;官地梁向斜为短轴褶皱。本区地层受多期褶皱控制。
     (2)在煎茶岭金镍矿田厘定了两条区域韧性剪切带:北西西向区域韧性剪切带和北东向区域韧性剪切带(以下简称北西西向韧性剪切带和北东向韧性剪切带)。通过野外调研和室内定向薄片鉴定以及透射电子显微镜观察,对其运动学、动力学特征进行了系统总结。研究还发现,这两组共轭韧性剪切带的形成与演化不仅对煎茶岭超基性岩、花岗斑岩及钠长斑岩具有严格的控制作用,而且还是重要的控矿因素。
     矿田内新厘定两条韧性剪切带特征表现为:北西西向韧性剪切带和北东向韧性剪切带呈共轭产出,经历了三期活动。中元古代晚期,北西西向脆韧性剪切带为压扭性右行剪切,北东向脆韧性剪切带为压扭性左行剪切,σ1≈282°∠24°,古应力值约59.1MPa,动力变质作用达高绿片岩亚相,两者均为平面型应变;加里东期,北西西向脆韧性剪切带为张扭性右行剪切,北东向脆韧性剪切带为张扭性左行剪切,σ1≈344°∠78°,古应力值约86.5MPa,动力变质作用为中绿片岩亚相;印支期,随着脆性程度进一步增加,北西西向韧脆性剪切带经历了压扭性左行剪切,北东向韧脆性剪切带经历了压扭性右行剪切,σ1≈120°∠20°,古应力值约116.3MPa,动力变质作用为低绿片岩亚相,两者为压扁型应变特征。北西西向韧性剪切带总拉伸量为0.259%,第一、二期右行位移量为0.98km,第三期左行位移量为1.65km,二者相差0.67km。
     (3)对煎茶岭超基性岩和花岗斑岩的岩体构造进行了初步研究,提出了煎茶岭超基性岩体和花岗斑岩岩体的就位机制:北西西向和北东向韧性剪切带中期活动过程中,超基性岩体以岩墙扩展式侵入到韧性剪切带内后经历了剪切作用的改造生成蛇纹质糜棱岩、滑镁质糜棱岩和糜棱岩化菱镁岩等动力变质岩;两韧性剪切带第三期活动时,花岗斑岩体以气球膨胀式侵位。根据岩体与围岩的接触关系,对超基性岩形成的地质时代提出了新的认识。由于岩体与震旦纪白云岩和炭质片岩存在穿插关系,而且在超基性岩内多处发现它们的捕虏体,因此认为超基性岩形成的地质时代应晚于震旦纪。结合韧性剪切带活动期次,超基性岩形成于加里东期。
     (4)通过控矿因素和矿床地质特征的研究,针对煎茶岭金、镍矿床,提出了韧性剪切带-超基性岩-酸性岩体(脉)三位一体的成矿机制。认为煎茶岭金、镍矿床具有相同的控矿因素和相似的成矿作用,它们是在统一的成矿系统中不同的物理化学条件下,在同一地质时期形成的。
     (5)煎茶岭花岗斑岩体结晶时代确定为216±4Ma,其代表时代为三叠纪(印支期),通过综合研究,认为花岗斑岩与金、镍矿床和韧性剪切带具有密切的时间、空间和成因联系。说明煎茶岭金镍矿的成矿时代是印支期,同时限定了第三期韧脆性剪切活动发生在印支期。
     (6)总结了煎茶岭金镍矿田内控矿韧脆性剪切带特征和控矿规律。金矿控矿构造位于构造蚀变超基性岩体与白云质糜棱岩接触带附近的韧脆性剪切带之中,总体倾向100°-50°,局部东倾,倾角变化于50°-85°之间,无论沿走向还是顺倾向均呈舒缓波状;发育的动力变质岩主要以韧脆性变形为主;利用透射电镜观察,与金矿有关的脉石英形成大量的位错弓弯、位错环、位错列、位错壁、位错网、亚晶粒构造等;金矿体绕超基性岩分布,形成“金项链”控金格局。镍矿控矿构造位于以花岗斑岩为核的“σ”型“旋转碎斑系”拖尾内韧脆性剪切带之中,即花岗斑岩体西北和东南方位拖尾部位;控矿构造产状为170°-200°∠56°-80°,无论沿走向还是顺倾向均呈舒缓波状;发育的动力变质岩以韧脆性变形为主,构造岩中可见S-C面理、旋转碎斑系、亚颗粒、膝折带等;目前,发现的绝大部分镍矿体位于“旋转碎斑系”的北西向“拖尾”中,东南“拖尾”中也发现很好的镍矿化,具有极好的成矿条件。
     (7)根据本论文研究成果,笔者认为煎茶岭金镍矿田构造演化时序可能是:①晚太古代末期,鱼洞子群经历了强烈变形变质作用的改造,生成花岗质片麻岩、浅粒岩、变粒岩、磁铁石英岩等,同时发育褶皱,变质作用达(低)角闪岩相。随后,该区处于隆起剥蚀阶段。②中元古代末期,在接官亭组地层形成并发生多期变形之后,区内发生了韧性剪切变形,形成北西西向和北东向两条共轭韧性剪切带。随后地层挤压褶皱隆升,在接官亭组产生了一系列褶曲,同时在鱼洞子群,该期褶皱叠加在早期等斜、同斜及重斜褶皱之上。③晚元古代晚期,研究区随扬子板块一同进入稳定的被动大陆边缘演化阶段,广泛沉积了下震旦统断头崖组和九道拐组,断头崖组与中元古界接官亭组呈明显的角度不整合接触。④加里东期,研究区发生一期强烈挤压褶皱和推覆构造之后,再次发生韧性剪切活动,北西西向和北东向张扭性韧性剪切带交汇部位变形相对较强烈,形成薄弱地带,且向下有较大延伸,提供了超基性岩浆侵入的有利通道,形成了煎茶岭超基性岩,随着剪切活动的持续进行,岩体也随之发生了强烈的塑性变形。由于地壳上隆,区内缺失寒武纪-泥盆纪地层。⑤印支期,区内构造再次活动,引起北西西向和北东向韧性剪切带发生第三期活动,随之带内有花岗斑岩和钠长斑岩脉侵入。⑥印支运动之后(燕山-喜山期),三角区和扬子板块向秦岭俯冲碰撞造山,导致研究区内南北地层不同程度的剥蚀,F18以北九道拐组和略阳组地层大部分被剥蚀,其程度明显大于南部。
     (8)根据“韧性剪切带-超基性岩-酸性岩体(脉)三位一体”的原则,笔者圈出四个金、镍矿的成矿远景区:构造蚀变超基性岩体东南部金矿成矿远景区、花岗斑岩东南和西北部镍矿成矿远景区、九道拐金镍矿成矿远景区。
     本文创新点有如下两点:
     ①笔者在煎茶岭金镍矿田新厘定了两条区域韧性剪切带:北西西向区域韧性剪切带和北东向区域韧性剪切带,详细研究了它们的几何学、运动学、动力学以及两韧性剪切带相互关系、变质相、变形期次和构造应力场等特征,进而探讨了它们对矿田内超基性岩体、花岗斑岩体、钠长斑岩脉以及金镍等矿产的控制作用。
     ②总结了煎茶岭金镍矿田内控矿韧脆性剪切带特征和控矿规律。控金构造是蚀变超基性岩体与白云质糜棱岩接触带附近的韧脆性剪切带,金矿体绕超基性岩分布,形成“金项链”控金格局;镍矿控矿构造是以花岗斑岩为核的“σ”型“旋转碎斑系”拖尾内韧脆性剪切带。目前,发现的绝大部分镍矿体位于“旋转碎斑系”的北西向“拖尾”中,东南“拖尾”中也发现很好的镍矿化,具有极好的成矿条件。
Jianchaling gold and nickel ore field, which has the unique tectonic structure position, is located in the combining site between the Yangtze plate and Qinling orogenic belt. Jianchaling is just a small place where gathers many kinds of minerals, such as gold minerals, nickel minerals, iron minerals, asbestos minerals, magnesite, serpentine nanotubes and other materials of metal and non-metallic minerals. Jianchaling nickel deposit has been exploiting, gold minerals has been prospecting external at present. The research of the tectonic deformation in this area not only provides the most directly and basically geological material to restore the tectonic evolution regularity of Yangtze plate and Qinling orogenic belt, but also analyzes the ore-controlling rule of the gold and nickel ore in ore field, which can be used to guide further exploration. Therefore, the research of the structure in Jianchaling gold and nickel ore field has great theoretical and practical significance.
     Using structural analysis methods, with the structure characteristics of Jianchaling gold and nickel ore field as the research center and focusing on the rock-controlling and ore-controlling structure, based on the theory of regional tectonic rule, structural geology, structural petrology, geochemistry, isotope chronology, the mineral deposit geology and other subjects, structure characteristics and evolution regularity of ore field, ore-controlling structure characteristics, rock-controlling and ore-controlling structure are studied systematically, and then discuss how to find other minerals. The main achievements and conclusions of this paper are as follows:
     (1) The multi-episodic deformation of Mesoproterozoic metamorphic basement in Jieguanting Formation is analysed:In the early Mesoproterozoic, after the intermediate-basic volcanic rocks, medium acid volcanic rocks and cinerite were formed, a small amount of clastic rocks and carbonaceous mudstone are deposited in Jieguanting Formation; in the later of Mesoproterozoic, the first-phase fold occured in the Jieguanting Formation, the north wing of the fold is normal and the south wing is reversed, axial surface occurrence is S1≈216°(?)45°, hinge of fold isβ1≈215°(?) 50°, late fold overlied on the early fold make early axial surface curve to form an antiform anticlinal fold, which axial surface occurrence is 165°(?)75°, hinge of fold isβ2≈70°(?)20°. In the early Caledonian, because of the tectonic movement, overlying strata formed a series of nearly east-westward folds, such as Duantouya syncline, Jiudaoguai syncline, Guandiliang syncline, Xiqugou anticline and so on. Jiudaoguai syncline and Duantouya syncline are box-like folds, pitching angle is 20°-30°; Xiqugou anticline is linear anticline fold, the occurrence of axis surface is 115°-120°; Guandiliang syncline is a short axis fold. The stratums are controlled by the folds in this area.
     (2) Two area ductile shear belt in Jianchaling ore field are determined:NWW area ductile shear belt and NE area ductile shear belt(NWW ductile shear belt and NE ductile shear belt for short below). Based on the methods of field geological survey, ultramicrostructural and microstructural observation in laboratory, the kinematics and kinetics characteristics of two ductile shear belts are studied systematically. It is also found that the formation and evolution of the two ductile shear belts are not only strict controlling role, but also an important ore-controlling factors to Jianchaling ultrabasic rocks, granite porphyry and albitophyre.
     The characteristics of two ductile shear belts in the ore field are as follows:NWW ductile shear belt and NE ductile shear belt are conjugate, and both have the three activitie stages:At the late of Mesoproterozoic, NWW ductile shear belt is compressive and shear, surname cut; NE ductile shear belt is compressive and shear, sinistral cut,σ1≈282°(?)24°, paleostress value is about 59.1MPa, dynamometamorphism reached high greenschist-facies, both of which are flat-type strain; In Caledonian-Hercynian, NWW ductile shear belt is tension-shear, surname cut; NE ductile shear belt is tension-shear, sinistral cut,σ1≈344°(?)78°, paleostress value about 86.5MPa, dynamometamorphism reached middle greenschist-facies; in the Indo-Chinese epoch, with the degree of brittle further increasing, NWW shear ductile belt is compressive and shear, sinistral cut, NE ductile shear belt is compressive and shear, surname cut,σ1≈120°(?)20°, paleostress value is about 116.3MPa, dynamometamorphism reached low greenschist-facies, both are the flattening strain. the total draft of NWW ductile shear belt is about 0.259%, the total displacement of the first and second phases is about 0.98km, the sinistral displacement of the third phase is about 1.65km, and the difference between both is 0.67km.
     (3) By the preliminary study of Jianchaling ultrabasic rocks and granite-porphyry structures, the emplacement mechanism of Jianchaling ultrabasic rocks and granite-porphyry are proposed. During the medium-term activity of NWW ductile shear belt and NE ductile shear belt, ultrabasic rocks intruded into two ductile shear belts by the way of dike propagation, and then the shear transformated formed serpentinite mylonite, mylonitization magnesite and other dynamic metamorphism rocks; during the third phase of activities of two ductile shear belts, the granite-porphyry emplaced like a expandable balloon. According to the contact relation between rock mass and the surrounding rocks, a new understanding of the ultrabasic rocks formation period is proposed. Because some intrusive relation and many xenoliths are found in the rock mass and Sinian dolomite or the carbonaceous schist, the formation of ultrabasic rocks should be later than the Sinian; according to the activity issue of two ductile shear belts, it is formed in Caledonian.
     (4) According to the research of ore-controlling factors and geological features of mineral deposits, "three factors and one orebody" ore-forming mechanism, which is the ductile shear belts-ultrabasic rocks-acid-instrusions(veins), is proposed. Jianchaling gold and nickel deposits have the similar ore-controlling factors and mineralization, they are in a unified metallogenic system, but in the different physical and chemical conditions and formed at same time.
     (5) The crystallization age of the Jianchaling granite-porphyry is 216±4Ma, and it is belong to the Triassic (Indosinian), by the comprehensive study, the granite-porphyry and gold and nickel deposits are close connection with time, space and cause of formation, So Jianchaling gold nickel mineralization era is Indosinian, and the third activity of ductile-brittle shear occurred in Indosinian too.
     (6) The characteristics and ore-controlling disciplines of the ore-controlling ductile-brittle shear belts in the Jianchaling gold and nickel ore field are summarized. Gold ore-controlling structure is in ductile-brittle shear zone which is near contact zone between the structural alteration ultrabasic rocks and dolomitic mylonites contact zone, the general tendency is 10°-50°, the local tendency is east, obliquity changes are between 50°and 85°, both along the strike and the tendency show the wave-like. The dynamic metamorphic rock mainly consisted of ductile deformation, using transmission electron microscopy, and gold-related quartz veins formed a lot of dislocation arches, dislocation loops, dislocation lines, dislocation walls, dislocation nets, second grain structure and so on. Ore bodies are around the ultrabasic rocks and form the "gold necklace" ore-controlling pattern. Nickel ore-controlling structures are the ductile-brittle shear belts among the granite porphyry northwest and southeast direction trailing position, which the core of "a-type rotating porphyroclasts system" is granite porphyry. The occurrence of Ore-controlling structures is 170°-200°(?) 56°-80°, both along the strike and the tendency show the wave-like, the dynamic metamorphic rock is mainly ductile deformation, S-C surface is visible in the tectonic foliation, also the rotating porphyroclasts system, sub-particles, kink band. Currently, most of nickel ore bodies are found in the north-western "tail" of "rotating porphyroclasts system", the south-east "tail" is also a very good nickel mineralization with excellent mineralization conditions.
     (7) According to the research of this paper, the tectonic evolution of Jianchaling gold nickel ore field should be:①At the end of the late Archean, Yudongzi Group has a strong transformation of deformation and metamorphism to generate granitic gneiss, leucoleptite, granulite, magnetite-quartzite and so on, and folds were formed simultaneously, metamorphism was (low) amphibolite facies. Subsequently, the district is in the uplift denudation phase.②At the late Mesoproterozoic, a ductile shear deformation occured in the ore field after Jieguanting Formation generated, formed the NWW and NE direction ductile shear belts. Series of heavy oblique folds were formed in Jieguanting Formation, because of extrusion, the strata folded and uplifted, at the same time in Yudingzi Group, these folds superposed those earlier inclined and oblique folds.③At the end of Late Proterozoic, the studying area along with the Yangtze plate went to the evolution stage of stably passive continental margin, the Lower Sinian Duantouya Formation and the Jiudaoguai Formation are deposited extensively, and the Duantouya Formation and the Middle Proterozoic Jieguanting Formation emerged a clear angle unconformity.④During the Caledonian, a strong compressive folds and nappe structure occurred in the studying area, and the deformation of the intersection between NWW direction and the NE ductile shear was stronger, and produced some weak areas and extended downwards, which provided the good invasion channel for ultrabasic magma, and the ultrabasic rocks were formed, with the last shearing activities. The strong plastic deformation of the ultrabasic rocks has taken place. As the crust uplifting, the Cambrian-Devonian stratas are worn away.⑤In the Indo-China period, tectonic active took place in the region again, and caused the third shear of the NWW direction and NE ductile shear belts, the granite-porphyry, diabase dikes, and albite porphyry invaded.⑥After Indo-China movement (Yanshan-Himalayan), triangle area and the Yangtz plate subducted to the Qinling, and formed Qinling orogenic belt, which resulted differnet degree erosion between north strata and south strata, In the north of F18, Jiudaoguai Formation and the majority of the Carboniferous Lueyang Formation were denudated greater than the south significantly.
     (8) According to the " three factors and one orebody " principle, four gold and nickel mineralization prospect areas are pointed out. They are gold mineralization prospective areas in southeast structure altered ultrabasic rocks, nickel mineralization prospective areas in the southeast and northwest of graniteporphyry, gold and nickel mineralization prospective areas in Jiudaoguai.
     What is new?
     Firstly, two area ductile shear belts are determined in Jianchaling ore field:NWW ductile shear belt and NE ductile shear belt, the author studies the characteristics of geometry, kinematics,kinetics detailedly, and correlation between the two ductile shear belts, metamorphic facies, phase of deformation and structure stress field. And the author further discussed their control action to ultrabasic rocks, granite porphyry, albitophyre and gold and nickel deposits in the ore field.
     Secondly, the characteristics of ductile brittle shear belts and ore-controlling regulation in Jianchaling gold and nickel ore field are summed up. The gold-controling structure is the ductile brittle shear belts, which is near contact zone between the altered ultrabasic rocks and dolomitic mylonites, and formed the ore-controlling pattern like " gold necklace" around the ultrabasic rocks. Nickel ore-controlling structures are the ductile-brittle shear belts among the granite porphyry northwest and southeast direction trailing position, which the core of "a-type rotating porphyroclasts system" is granitic porphyry. At present, the main nickel ore bodies were found in the the northwestern "tail" of "rotating porphyroclasts system", the southeast "tail" was also found a very good nickel mineralization, with excellent mineralization conditions.
引文
[1]陈柏林,董法先.韧性剪切带型金矿成矿模式[J].地质论评,1999,45(2)186-192
    [2]陈柏林.韧性剪切带型脉状金矿床成矿深度研究的思考[J].矿物岩石地球化学通报,2000a,19(4):337-374
    [3]陈柏林.构造形变类型与金矿化类型的关系[J].世界地质,2000b,19(3):217-223
    [4]陈柏林.糜棱岩型金矿金元素丰度与构造变形的关系[J].矿床地质,2000c,19(1):11-25
    [5]陈柏林.构造变形类型与金矿化类型的关系[J].世界地质,2000d,19(3):217-239
    [6]陈柏林,杨农,吴淦国,等.甘肃北山南带韧性剪切带型金矿床构造控矿解析[J].矿床地质,2002,21:149-158
    [7]陈民扬,庞春勇.煎茶岭镍矿床成矿作用同位素地球化学[M].见:陈好寿主编同位素地球化学研究,杭州:浙江大学出版社,1994,56-81
    [8]陈进化.位错基础[M].上海:科技出版社,1984
    [9]蔡学林,杜元府,张洪梅.运用张性纤维状岩脉计算拉伸量的原理和方法[J].成都地质学院学报,1993,20(2):17-25
    [10]储雪蕾,孙敏,周美夫.化学地球动力学中的铂族元素地球化学[J].岩石学报,2001,17(1):1 12-122
    [11]陈毓川,王平安,秦克令,等.秦岭地区主要金属矿床成矿系列的划分及区域成矿规律探讨[J].矿床地质,1994,3(4):289-298
    [12]陈运平,赵崇斌,林舸.深部岩石力学性质及其在大陆构造变形过程研究中的作用[J].大地构造与成矿学,200832(3):276-284
    [13]顾德林,胡玲,张雪亭.山东沂水峨山口韧性剪切带糜棱岩类质量平衡分析[J].中国区域地质,1998,17(2):149-155
    [14]董法先,陈柏林,李秀珍,等.安徽界岭金矿及其外围成矿控矿构造与找矿方向[M].北京:地质出版杜,1993
    [15]冯华,吴闻人.陕西勉略宁三角区构造演化与成矿大背景[J].陕西地矿信息,1997,22(2):20-23
    [16]方维萱.南秦岭及邻区大陆动力成矿系统及成矿系列特征与找矿方向.西北地质科学[J].1999,20(2):1-14
    [17]郭春丽,吴福元.花岗岩定位机制研究进展[J].世界地质,2002,21(4):313-320
    [18]郭秀峰,张国伟,梁文天,等.南秦岭金池院与张家坝岩体磁组构特征和构造意义[J].地质论评,2009,55(3)435-443
    [19]黄德志,邱瑞龙,刘德良,等.安徽省嘉山管店一全椒龙王尖断裂的厘定和构造岩透射电镜分析及地质意义[J].地质论评,2000,46(1)58-64
    [20]胡建明.煎茶岭金矿床的控矿因素分析及找矿方向[J].矿产与地质,2002,16(1):17-21
    [21]胡建明,董广法.略阳县煎茶岭金矿矿体的空间展布规律及找矿方向[J].大地构造与成矿学,2002,26(1):37-45
    [22]胡玲.显微构造地质学概论.北京:地质出版社,1998.
    [23]何绍勋,段嘉瑞,周祟智,等.一种新的金矿化类型-剪切带型金矿[J].中国有色金属学报,1992,2(2):1-5
    [24]何永年,林传勇,史兰斌.构造岩石学基础[M].北京:地质出版社,1998
    [25]黄婉康,甘先平,单祖翔,等.陕西煎茶岭金矿区的岩石及成矿时代研究[J].地球化学,1996,25(2):150-156
    [26]季峻峰,孙承辕,郑晴.江西金山剪切带型金矿床中古金石英脉的成矿特征[J].地质论评,1994,40(4):361-367
    [27]嵇少丞,钟大赉,许志琴,等.流变学:构造地质学和地球动力学的支柱学科[J].大地构造与成矿学,2008,32(3):257-264.
    [28]骆华宝,乔德武.中国主要含镍岩体特征及其成因[J].岩石矿物学杂志,1993,12(4):312-324
    [29]刘景波,游振东,钟增球,等.韧性剪切带糜棱岩类质量平衡分析[J].地球科学,1993,18(6):757-765
    [30]廖俊红.煎茶岭金矿床地质特征及找矿前景分析[A].见:王相,王东生主编.陕西勉略阳火山岩带主要金属矿化类型及超大型矿床成矿远景探讨[C]..兰州:兰州大学出版社,1990,85-103
    [31]廖俊红.陕西略阳煎茶岭金矿床成矿规律及成矿模式[J].有色金属矿产与勘探,1999,8(1):21-28
    [32]刘家军,杨丹,柳振江,等.南秦岭大型钡成矿带中硫钒铜矿的特征及成因意义[J].矿物岩石,2008,27(3)44-50
    [33]刘继顺.韧性剪切带中金成矿研究的若干问题[J].地质论评,1996,42(2):123-128
    [34]李晋僧,曹宣铎,杨家录等.秦岭显生宙古海盆沉积和演化史[M].北京:地质出版社,1994,10-100
    [35]刘维顺.韧性剪切带中金成矿研究的若干问题地质论评[J].1996,42(2):123-128
    [36]马华东,贺卫东,涂其军.新疆东天山地区塔水河韧性剪切带特征[J].大地构造与成矿学,2008,32(1):1-10
    [37]马建秦,李朝阳,张复新.秦岭煎茶岭金矿床含金富砷黄铁矿增生环带研究[J].矿物学报,1999,19(2):139-147
    [38]庞春勇.煎茶岭蛇纹岩氢氧同位素组成特征及形成机制[J].矿产与地质,1993,7(1):65-74
    [39]庞奖励,裘愉卓,刘雁.论超基性岩在煎茶岭金矿床成矿过程中的作用[J].地质找矿论丛,1994,9(3):59-65
    [40]庞奖励,孙根年.陕西煎茶岭矿床的稀土元素地球化学行为[J].中国稀土学报,1999,17(4):359-364
    [41]曲国胜.剪切带型盒矿成因[J].大地构造与成矿学,1991,15(3):225-232
    [42]秦克令,何世平,宋述光.碧口地体同位素地质年代学及其意义[J].西北地质科学,1992a,13(2):97-110
    [43]秦克令等.陕西勉略宁地区渔洞子花岗绿岩地体地质特征及其含金性[J].西北地质科学,1992b,13(1):65-74
    [44]秦克令, 邵湘华, 何世平,等.西秦岭鱼洞子群的建立和时代归属[A].秦岭一大巴山地质论文集,北京:北京科学出版社,1990,167-175
    [45]祁思敬,李英等.秦岭泥盆系铅锌成矿带[M].北京:地质出版社,1993
    [46]祁思敬,李英.中国北方超大型热水沉积硫化物矿床成矿模式[J].矿物岩石地球化学通报,1997,16(3):155-159
    [47]祁思敬,李英南.秦岭晚古生代海底喷气-沉积成矿系统[J].地学前缘,1999,6(1):171-179
    [48]邱小平,胡世兴,王军,等.河北小营盘石英-碳酸盐型金矿床成矿作用[J].地质学报,1997,71(4):350-359
    [49]冉红彦,黄婉康,甘先平,等.蚀变超基性岩金(镍)矿床中的贵金属元素-以云南墨江金矿和陕西煎条岭金矿为例[J].地球化学,1996,25(5):520-528
    [50]任纪舜,姜春发,张正坤,等.中国大地构造及其演化[M].北京:科学出版社,1980
    [51]任文清,周鼎武.煎茶岭金、镍、铁矿床形成的构造岩浆作用[J].西北地质,1999a,32(2):19-24
    [52]任文清,周鼎武, 刘方杰.勉略宁三角地区构造演化与金属矿产成矿特征[J].西北地质科学,1999b,20(2):60-67
    [53]任小华.煎茶岭镍矿床成矿地质特征[A],见:王相,王东生.陕西勉略阳火山岩带主要金属矿化类型及超大型矿床成矿远景探讨[C].兰州:兰州大学出版社,1990,115-123
    [54]任小华.陕西煎茶岭金矿床地质特征及其成因意义[J].矿产与地质,2000,14(2):70-75
    [55]陕西省地质矿产局.陕西省区域地质志.地质出版社,1989
    [56]苏春乾,胡建民,李勇,等.南秦岭地区存在两种不同构造属性的耀岭河群[J].岩石矿物学杂志,2006,25(4)287-298
    [57]孙胜龙.虫皮沟韧性剪切带与金矿富集规律探讨[J].黄金,1990,11(7):6-10
    [58]师占义,洛长义,杨合群.中国主要含镍岩体(带)岩石类组构特征[J].西北地质科学,1992,13(1):1-16
    [59]汤中立,李文渊.金川铜镍硫化物(含铂)矿床成矿模式及地质对比[M].北京:地质出版社,1995,14-209
    [60]王东亮.陕西略阳煎茶岭金矿田地球化学找矿效果[J].有色金属矿产与勘查,1998,7(6):330-334
    [61]王根宝.陕西省勉略宁地区碧口岩群基底构造碰合带的发现及其地质意义[J].陕西地质科技情报,1995,20(1):13-26
    [62]王根宝,崔继岗,张升全,等.陕西勉略宁三角区基本地质组成及演化[J].西北地质科学,1996,17(2):11-17
    [63]魏刚锋,于凤池,白开寅.滩间山金矿田控矿构造特征[J].西安地质学院学报,1995,17(4):8-16
    [64]魏刚锋,聂江涛,辛红刚.铧厂沟金矿床北部控矿剪切带地质特征及金的富集规律[J].地球科学与环境学报,2005,27(4):38-4
    [65]魏刚峰,聂江涛,辛洪刚,等.新疆哈密库姆塔格沙垄北段韧性剪切带特征及其地 质意义[J].大地构造与成矿学,2007,31(1):21-30
    [66]王海元,段湘益.南秦岭中段中、上志留统金矿化特征及控制因素分析[J].矿产与地质,2005,19(4):388-393
    [67]王鸿祯,徐同彦,周正国.东秦岭古海域两侧大陆边缘区的构造发展[J].地质学报,1982,56(3)15-24
    [68]汪军谊,张复新.勉略宁地区区域地质背景、矿床类型及其成矿特点[J].西北地质科学,1999,20(2):68-75
    [69]汪军谊.秦岭勉略宁三角地块成矿地质背景成矿类型、成矿规律及找矿方向[D].西安:西北大学出版社,2001,1-57
    [70]王平安,陈毓川,裴荣富,等.秦岭造山带区域矿床成矿系列-构造-成矿旋回与演化[M].北京:地质出版社,1998,12-31
    [71]王瑞廷,赫英,王新.煎茶岭大型金矿床成矿机理探讨[J].西北地质科学,2000b,21(1):19-26
    [72]王瑞廷,赫英,刘民武.煎茶岭硫化镍矿床矿石地球化学特征[J].地球学报,2002a,23(6):535-540
    [73]王瑞廷.煎茶岭与金川镍矿床成矿作用比较研究,2002b,博士论文
    [74]王瑞廷,赫英,王东生,等.煎茶岭含钴硫化镍矿床成矿作用研究[J].西北大学学报(自然科学版),2003a,33(2):185-190
    [75]王瑞廷,赫英,王东生,等.略阳煎茶岭铜镍硫化物矿床Re-Os同位素年龄及其地质意义[J].地质论评,2003b,49(2):205-211
    [76]王瑞廷,毛景文,赫英,等.煎茶岭硫化镍矿床的铂族元素地球化学特征及其意义[J].岩石学报,2005a,21(1):219-226
    [77]王瑞廷,毛景文,任小华,等.煎茶岭硫化镍矿床成岩成矿作用的同位素地球化学证据[J].地球学报,2005b,26(6):513-519
    [78]王瑞廷,毛景文,任小华,等.煎茶岭硫化镍矿床矿石组分特征及其赋存状态[J].地球科学与环境学报,2005c,27(1):34-38
    [79]王瑞廷,毛景文,任小华,等.煎茶岭与金川硫化镍矿床的铂族元素地球化学特征对比及其意义[J].矿床地质,2005d,24(3):462-470
    [80]王瑞廷,王东生,李福让,等.煎茶岭大型金矿床地球化学特征、成矿地球动力学及找矿标志[J].地质学报,2009,83(11):1739-1751
    [81]王涛.试论花岗质深成岩体的复合定位机制及定位空间问题[J].地质论评,1999,45(2):142-150
    [82]王相等.秦岭造山与金属成矿[M].北京:冶金工业出版社,1996
    [83]王相,唐荣扬,李实,等.秦岭造山与金属成矿[M].北京:冶金工业出版社,1996,272-300
    [84]王学明,陈梦熊,李玫,等.陕西煎茶岭金矿金的赋存状态研究[J].地质与勘探,2002,38(6):34-38
    [85]王新,王瑞廷,赫英.煎茶岭与金川超大型镍矿中的伴生金及其比较分析[J].西北地质科学,2000,21(1):19-26.
    [86]王玉明.韧性剪切过程中金沉淀富集的新机制[J].地质论评,1998,44(6):643-648
    [87]王中刚,于学元,赵振华,等.稀土元素地球化学[M].北京:科学出版社,1989,5-94
    [88]王宗起,王涛,闫臻,等.秦岭晚古生代弧前增生的背驮型盆地体系[J].地质通报,2002,21(9)456-464
    [89]王宗起,闫全人,闫臻,等.秦岭造山带主要大地构造单元的新划分[J].地质学报,2009a,83(11):1527-1546
    [90]王宗起,闫臻,王涛,等.秦岭造山带主要疑难地层时代研究的新进展[J].地球学报,2009b,30(5):561-570
    [91]薛春纪,刘淑文,冯永忠,等.南秦岭旬阳盆地下古生界热水沉积成矿地球化学[J].地质通报,2005,24(10)927-934
    [92]夏林圻,夏祖春,马中平,等.南秦岭中段西乡群火山岩岩石成因[J].西北地质,2009,42(2):1-37
    [93]徐文忻,李蘅,黄斌.煎茶岭金矿床的铅同位素打靶研究[J].矿产与地质,2003,17(1):43-48
    [94]许志琴.地壳变形与显微构造[M].北京:地质出版社,1984
    [95]许志琴.东秦岭造山带的变形特征及构造演化[J].地质学报,1986,60(30)237-247
    [96]殷鸿福.秦岭晚海西一印支构造古地理发展史[M].见《秦岭造山带学术讨论会论文集》,西安:西北大学出版社,1991
    [97]袁洪林,吴福元,高山,等.东北地区新生代侵入体的锆石激光探针U-Pb年龄测定与稀土元素成分分析[J].科学通报,2003,48(14):1511-1520
    [98]闫全人,王宗起,闫臻,等.秦岭勉略构造混杂带康县-勉县段蛇绿岩块-铁镁质岩块的SHRIMP年代及其意义[J].地质论评,2007,53(6):755-764
    [99]袁学诚等.秦岭造山带的深部构造与构造演化[J].秦岭造山带学术讨论会论文集,西安:西北大学出版社,1991,166-311
    [100]游振东.造山带核部杂岩变质过程与构造解析-以东秦岭为例[M].武汉:中国地质大学出版社,1991,167-340
    [101]杨志华.秦岭造山带南北向构造及有关问题[J].地质论评,1997,43(1):10-16
    [102]闫臻,王宗起,王涛,等.秦岭造山带泥盆系形成构造环境:来自碎屑岩组成和地球化学方面的约束[J].岩石学报,2007,23(5):1023-1042
    [103]张本仁.秦巴区域地球化学文集[M].中国地质大学出版社,1990
    [104]张本仁主编.秦巴岩石圈构造及成矿规律地球化学研究[M].中国地质大学出版社,1994
    [105]张本仁,高山,张宏飞,等.秦岭造山带地球化学[M].北京:科学出版社,2002,30-45
    [106]张成立,张国伟,晏云翔,等.南秦岭勉略带北光头山花岗岩体群的成因及其构造意义[J].岩石学报,2005,21(3)711-720
    [107]郑崔勇,刘建党,袁波,等.与煎茶岭金矿有关超基性岩体地球化学特征[J].地质与勘探,200743(6):52-57
    [108]张复新,汪军谊.陕西煎茶岭超基性岩与金矿床成因关系[J].黄金地质,1999,5(2):14-20
    [109]张国伟,梅志超,李桃红.秦岭造山带南部被动大陆边缘[M].见张国伟等《秦110岭造山带的形成及其演化》,西安:西北大学出版社,1988,86-98
    [110]张国伟.秦岭造山带岩石圈构造演化基本特征[J].西北大学学报(自然科学版),1991,(2):77-87
    [111]张国伟,孟庆任,赖绍聪.秦岭造山带结构构造[J].中国科学(B辑),1995,25(9):994-1003
    [112]张国伟.秦岭造山带岩石圈主要构造岩石地层单元的构造性质极其大地构造意义[J],岩石学报,1995,11(2):101-114
    [113]张国伟,孟庆任,于在平,等.秦岭造山带的造山过程及动力学特征[J].中国科学(D辑),1996,26(3):193-200
    [114]张国伟,张本仁,袁学诚,等.秦岭造山带与大陆动力学[J].北京:科学出版社,2000,501-580
    [115]张国伟,张本仁,袁学城,等.秦岭造山带与大陆动力学[M].北京:科学出版社,2001,702-705
    [116]郑亚东,常志铭.岩石有限应变测量及人性剪切带[M].北京:地质出版社,1985
    [117]张正兵.秦岭勉略宁地区煎茶岭金矿床地质特征及成因研究[D].西安:西北大学,1998,57-69
    [118]赵振华.铕地球化学特征的控制因素[J].南京大学学报(地球科学),1993,15(3):271-279
    [119]张宗清,张国伟.秦岭变质地层年龄及其构造意义[J].中国科学(D辑),1996,26(3):216-222
    [120]Ballard J R, Palin J M, Williams I S, et al. Two ages of porphyry intrusion resolved for the supper-giant Chuquicamata copper deposit of northern Chilc by ELA-ICPMS and SHRIMP[J]. Geolgogy,2001,29:383-386
    [121]Bateman R. On role of deformation in the segregation. Ascent and final emplacement of granitoids[J]. Tectonophysics,1984,10:211-231
    [122]Bateman R. Aureole deformation by flattening around a diapir during in situ ballooning: the Cannibal Greek granlte[J].Geol.,1985,93:293-310
    [123]Bateman R. Cannibal Greek granite:post-tectonic "ballooning" pluton or pre-tectonic piercement diapir?; A discussion[J]. Geol.,1989,766-768
    [124]Bonnemaison M, Marcoux E. Aturiferous mineralizatioa in some shear zone:A three-stage model of metallogenesis[J]. Mineral Deposit,1990,25(2):96-104
    [125]Boullier A M. Rohert F. Palaeosismic eventsrecorded in Archean gold-quartz vein networks. J Struct. Geol.,1992,14:161-179
    [126]Boynton WV. Cosmochemistry of the rare earth element:meteorite studies. In: Henderson, Rare Earth Element Geochemistry. Amsterdam:Elsevier,1984
    [127]Bradley R, Hacker, Lothar Ratschbacher, et al. U-Pb zircon ages constrain the architecture of the ultrahigh-pressure Qinling-Dabie Orogen, China[J]. Earth and Planetary Science Letters,1985,161:215-230
    [128]Brown M. The generation, segregation, ascent and emplacement of granite magma:the migrnatite-to-crustally-derived granite connetion in thickened orogens[J]. Earth Science Reviews,1994,36:83-100
    [129]Brun J P, Gapais D, Cogne J P, et al. The Flamaniville Granite (northwest France):An unequivocal example of syntectonically expanding pluton[J]. Geological Journal,1991, 25:271-286
    [130]Cameron E M. Derivation of Gold by Oxidative Metamorphism of a Deep Ductile Shear Zone:Part 1. Conceptual Model [J]. Journal of Geochemical Exploration,1989, 31(2):135-14
    [131]Carter N L, Chriss T E, Griggs D T. Experimentally produced deformation lamellae and other quartz sand. Transaction[J]. American Geophysics Union,1961,66:2518-2534
    [132]Carter N L, Christie J M, Griggs D T. Experimental deformation and recrystallization of quartz of Geololgy,1964,72:687-733
    [133]Castro A. On granitoid complacement and related structures:A review:Geologiesche Rundschau.1987,76:101-124
    [134]Chai G, Naldrett A J. Characteristics of Ni-Cu-PGE mineralization and genesis of the Jinchuan deposit, Northwest China[J]. Econ. Geol.,1992,87:1475-1495
    [135]Clements J D, Mawer C K. Granitic magma transport by fracture propagation[J]. Tectonoghysics,1992,204:339-360
    [136]Dlernos R S. Brown M. Steachan R A. The relationship between granite and shear zone: magma generation, ascent and emplacement within a transpressional oruqen. [J]. Geol. Soc. London.,1992,149:487-490
    [137]Garuti G, Fershtater G, Bea F, et al. Platinum-group elements as petrological indicators in mafic-ultramafic complexes of the central and southern Urals:preliminary results. Tectonophysics,1997,276:181-194
    [138]Glazner A F. Plutonism oblique subduction and continental growth:An example from the Mesozoic of California[J]. Geology,1991,19:784-786
    [139]Guineberteau B, Bouchez J L, Vigneresse J L. The Mortagne granite pluton (France) emplaced by pul-apart along a shear zone. Structural and gravimetric arguments and regional implications [J]. Geological Soiety of America Bulletin.1987,99:763-770
    [140]Hom I, Rudnick R L, Mcdonough W F. Precise elemental and isotope ratio determination by simultaneous solution nebulization and laser ablation-ICPMS: Application to U-Pb geochronology[J]. Chemical Geology,2000,167:405
    [141]Hugon H. The Hemlo deposits-Gold mineralization with in a dextra shear zone, Summary of field work[J]. Ontario Geoel. Survey. Miscellaneous Paper.1985, 119:212-217
    [142]Hutton D H W. A tectonic model for the emplacement of the Main Donegal granite. NW Ireland[J]. Geological Society of London Journal.1982,139:615-631
    [143]Hutton D H W. Igneous emplacement in shear zone termination:The biotite granite at strontian. Scotland[J]. Geological Society of America Bulletin 1988,100:1392-1399
    [144]Hutton D H W, Dempster T J, Brown P E. A new mechanism of granite emplacement:Intrusion in active exrensional shear zones[J]. Nature.1990,343:452-455
    [145]Hutton D H W. Granite sheeted complexes:Evidence for the dyking ascent mechanism: Royal Society of Edinburgh transctions[J]. Earth Sciences,1992a,83:337-382
    [146]Hutton D H W, Reavy R J. Strike-slip tectonices and granite petrogenesis[J]. Tectoics, 1992b,11:960-967
    [147]John Price Hirth, Jens Lothe. Theory of dislocations(second edition), A wiley-Interscience New York. Chichester brishane toronto singapore[M].1982
    [148]Kerrich R. The formation of gold deposits with pardcukar refereace to Arhean greenstone belts and Yellowknife[J]. Contrib, Geol. NW Tevritories(Canada),1988, 3:37-62
    [149]Kosler J, Fonneland H, Sylvester P, et al. U-Pb dating fo detrital zircons for sediment provenance studies-a comparison of laser ablation ICPMS and SIMS techniques [J]. Chemical Geology,2002,182:605-618
    [150]Lorand J P. Abundance and distribution of Cu-Fe-Ni sulfides sulfur, copper and platinum-group elements in orogenic type spinellherzolite massifs of Ariege (Northeastern Pyrenees, France). Earth Planet Sci. Lett.,1989,93:50-64
    [151]Lothar Ratschbacher, Bradley R. Hacker, Andrew Calvert, et al. Tectonics of the Qinling (Central China):tectonostratigraphy, geochronology, and deformation history [J]. Tectonophysics,2003,366:1-53
    [152]Mapani B S E, Wilson C J L. Structural evolution and gold mineralization in the Scotchmans fault zone, Magdala Gold Mine, Stwell, Western Victoria, Econ. Geol.,1994, 89(3):566-583
    [153]Mercier R J. Stress in the lithosphere:inferences from stead-state flow of rocks[J]. Pure. Appl. Geophys,1977,115:199-226
    [154]M. Mattauer, P. H. Matte, J. Malavieille, et al. Tectonics of the Qinling Belt:build-up and evolution of eastern Asia[J]. Nature,1985,317:496-524
    [155]Naldrett A J, Duke M. Platinum metals in magmatic sulfide ores[J]. Science,1980, 208:1417-1424
    [156]Naldrett A J, Asia M, Krstic S, et al. The composition of minerabzation at the voisey's Bay Ni-Cu sulfide deposit, with special reference to Platinum-group-elements. Econ. Geol.,2000,95(4):845-865
    [157]Nicolas A and Poirier J P. Crystalline Plasticity and Solid State Flow in Metamorphic Rocks. John Wiley & Sons,1976
    [158]Parrish D K, Ross J V. Experimental deformation of anhydrite and early strain history of salt domes(abstr). Am. Geophys.Unio. Trans.1976,57:332
    [159]Paterson S R, Tobish O T. Rates of processes in magmatic arcs:Implications for the timing and nature of pluton emplacement and wall rock deformation [J]. Journal of Structural Geology,1992,14:291-300
    [160]Paterson S R, Fowler T K Jr. Re-examining pluton emplacement press[J]. Struct. Geol., 1993,115:191-206
    [161]Phillips G N. Geology and alteration in the Golden Mile. Kalgoorlie, Econ. Geol.,1986, 81:779-808
    [162]Pieher W S. Granites and yet more granites forty years on[J]. Geol. Rdsch.,1987, 76:51-59
    [163]Pitcher W S. The nature, ascent and emplacement of granite magma[J]. Geology Society of London, Journal,1979,136:617-662
    [164]Qing-Ren Meng, Guo-Wei Zhang. Geologic framework and tectonic evolution of the Qinling orogen, central China[J]. Tectonophysic,2000,323:183-196
    [165]Ramsay J G. Shear zone geometry:A review[J]. Struct. Geol.,1980,2:83-99
    [166]Ramsay J G. Emplacement kinematics of a granite diapir:Geological Socity of America Bulletin,1985,96:931-939
    [167]Roberts A G. Ore deposit mode #11:Archean lode gold deposits. Geo-science Canada[J].1987,14:37-52
    [168]Robert F, Brown A C. Arehean gold bearing quartz veins at the Sigma mine. Abifibi greenstone belt[J]. Quebec, Econ. Geol.,1986,81:578-616
    [169]Sanzhong Li, Timothy M. Kusky, Lu Wang, et al. Collision leading to multiple-stage large-scale extrusion in the Qinling orogen:Insights from the Mianlue suture [J]. Gondwana Research,2007,12:121-143
    [170]Sibson R H, Robert F, Poulsen K H. High-angle Everse Faults, Fluid-pressure Cycling, and Mesothermal Gold-Quartz Deposits[J]. Geology,1988,16:551-555
    [171]Sihson R H. Fault rccks and fault mechanism. Geol Soc Londoa,1977,133:191-213
    [172]Sihson R H, Robert F, Poulsen K H. High-angle reverse faults, fluids pressure cycling and meso-thermal gold deposits[J]. Geology,1988,16:551-555
    [173]Sylvester A G, Gerhard Ortel, Nelson C. A, Christie J.M. Papoose Flat pluton:A granite blister in the Mountains[J]. California.Geological Society of America Bulletin,1978, 89:1205-1219
    [174]Tobisch O T, Cruden A R. Fracture-controlled magma conduit in an obliquely convergent continental magmatic arc[J]. Geology,1995,23:941-944
    [175]Tullis J, Yund R A. Experimental deformation of westerly granite[J]. Journal of Geophysics Research,1977,82(36):5705-5718
    [176]Twiss R J. Theory and applicability of a recrystallized grain size paleopiezometer[J]. Pageoph,1977,115:227-244
    [177]Twiss R J. Variable entivity piezometric equations for dislocation density and subgrain diameter and their relevance to olivineand quartz; in mineral and rock deformation, laboratory studies[J]. Geophysical Monograph,1986,36:247-261
    [178]WANG Juan, LI Xin. Petrogenesis and geochemistry of the host monzogranite and mafic enclaves from the Triassic Wulong pluton in South Qinling, central China[J]. Chin ese Journal of Geochemistry,2009,28(4):432-439
    [179]W. G. Ernst and J. G. Liou. Contrasting plate-tectonic styles of the Qinling-Dabie-Sulu and Franciscan metamorphic belts[J]. Geology,1995,23:353-371

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700