焦炉加热火道温度模型的建立及焦炉控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文根据焦炭是高炉冶炼中不可缺少的基本条件之一,高炉炼铁不能没有焦炭,焦炭在高炉内起着发热剂、还原剂和料柱骨架作用,焦炭质量对高炉炼铁生产的技术经济指标和企业效益影响至关重要,指出改善焦炭质量,除与炼焦的煤质条件有关外,炼焦工艺对焦炭质量和炼焦能耗的影响不容忽视。炼焦生产工艺过程中的关键是焦炉控制,而焦炉控制的核心问题是如何控制焦炉火道的温度,火道温度与焦炭与焦炭质量及结焦时间等有密切关系,由于焦炉结构复杂及炼焦热源——燃料燃烧本身的复杂性,在炼焦生产实际中,对火道温度控制多靠人工经验或以全炉平均值,缺乏严格的科学依据。论文研究建立炼焦炉火道燃烧温度数学模型,以便科学的控制火道温度和结焦时间,保证焦炭质量和节省炼焦过程能耗,提高经济效益。
     本文应用现代控制理论,系统分析及机理建模相结合的方法,对焦炉加热火道进行了模型化的研究,并在前人对焦化热介模型所做的工作基础上,建立了整个焦化过程从燃料到燃烧,再从燃烧到炭化室内焦化沿高向上温度分布及横向上温度分布的全过程数学模型,并根据工业试验,做了仿真验证,结果表明,其精度满足工业要求。适用于计算机工业控制,并在此模型的基础上,对最优加热策略进行了过程研究,开发出一条优化加热策略曲线,此外,用辨识的方法,建立了全炉数学模型,在此基础上提出了一套完整的全炉控制策略和方案。
In this thesis, coke is one of the basic indispensability conditions of the in the high furnace smelt. There is impossible without coke in it, The coke rises to have fever, revivification and anticipate the pillar framework function in the high furnace, the coke quantity plays importance role to technique economic index sign and the business enterprise performances in progress of smelt iron, point out to improve the coke quantity, in addition to having something to do with the coal quality condition, It is no neglect that coke the craft to the coke quantity and coke consume influence. Coking stove control is of key in coke craft process. But how to control coking stove fire way temperature is core problem for it, a temperature of fire way has close of the coke quantity and knot burnt time etc, because of a complication structure stove and the cokehot source____The fuel combustion own complexity, in coking produce physically,about a temperature of fire way control depend on the artificial experience or with the average value of whole stove, Lacked strict science basis. The thesis research established coking stove fire way burnable temperature mathematics model, so as to control fire way temperature and coking time scenically, Guaranteeing the coke quantity and saving to coke process can consume, raise the economic performance.This text applied modern control theories, the system analysis and principles set up the method that mold combine, with heating fire way carried on the model research, and basis on people who they had studied coking Heated material model, and from coke room up to the temperature whole progress mathematics model and horizontal temperature distribute, According to industry experiment, did imitate the true verification, result show, its accuracy satisfies the industry request, and be applicable to the calculator industry control, furthermore, combine the foundation in this model, carried on the process to the superior heating strategy research, Develop an excellent turn the heating strategy curve, In addition, an optimal of heating strategy has further been developed based on the overall model as developed.
引文
[1]. Crraham, J.P. etal. Improved coke quality[J].Thery and Proc. AIME, 1999, Vol.04, pp66-76.
    [2]. Flockmans,C..Coal conditioning A mean to improve coke quality[J].2000, Proc. AIME, Vol. 40, pp49-54.
    [3]. Karpinski,J.M. etal. Temperature Fields in coking coal charges[J].Ironmaking proceedings—AIME, 1982,Vol.04, pp289-296.
    [4]. Kim, C.S. etal. Modelling study of preheating & carboni-gation of coal[J]. Ironmaking & steelmaking, 1979,Vol.2, pp49-58.
    [5]. David,M.. Math. modelling of the coking process[J]. Proc. Ironmaking Conf.1984, 43, 287-302.
    [6]. Tang, D.L. etal. Modelling and Control of the coke making process[J]. Report No.143, Purdue Lab.for Applide In dustrial Control, April 1984.
    [7]. Chermin, H.A.G and Van Krevelen, D.W.Fuel(1957).
    [8]. Mullin, W.J.and Berkowiz, AM, Chem.Soc.Div.Fuel Chem.,Preprints 1966, 10. (2), C110.
    [9]. Agroskin, A.A.. Thermal and electrical properties of Coal[J]. The state scientified technical publishing house for literature on ferrous and-ferrous metellumy, Mosocw, 1959.
    [10]. Badzioch, S.BCURA Bullitin, 1960, Vol.24, P485.
    [11]. Kirov, N.Y.BCURA Monthly Bullitn, 1965, Vol.29, p33.
    [12]. Van Krevele, D.W.. Coal Yypology-Chenistry-Physics Consitution[J]. Elsevier, Amsterdam, 1961, p418.
    [13]. Franklin, R.E.Coal Reswarch (BCURA)1946, Vol.5, p26.
    [14]. Van Krevelen,D.W.et al.J.Fuel 1987, Vol.36, p313.
    [15]. Ergun,S.et al Fuel 1959, Vol.38, p495.
    [16]. Meuster, M.and Ergun, S.Fuel 1980, Vol.39, p509.
    [17]. Tang,D.L.et al. "Modelling and Control of the Coke making process[A]. Chap.3,in Hierarchy Control for Energy savings in the steel industry, Report No,133,Purdue University, West Lafayette, 1982.
    [18]. Zinnatullin,M.G., etal.. The Thermophysical. Properties of Coal Charges in the Industrial Carboningation Process[J]. Coke and Chemistry(USSR),Vol. 1978,No.7, pp35-41.
    [19]. Taskiro,K.,etal.. Computer Analysis of Heat Transfer in Coke ovens[J]. Tech. Rep. Fuji Steel, 1969, Vol.17, pp353-365.
    [20]. Suga, Y.. Large Scale Coke Oven Battery[J]. Proc. Ironmaking, 1970, Vol.29, pp1-56.
    [21]. Yamada, T. etal.. Coke Quality and Heat Transfer Characteristics of a Coke[J]. J. Fuel Soc. Japan, 1997, Vol.56, pp36-43.
    [22]. Felske,J.D. etal.. Calculation of the Emissivity of Ulminous Flames[J]. Combustion Science and TEChnolong, 1973, Vol.7, pp25-31.
    [23]. Pries,E. etal.. Experience Given During The construction and star-up of the 7.5 meter coke ovens in Fossur-mer Trance[J]. Proc.AIME, 1976, Vol.35, pp501-512.
    [24]. Suzuki,G. etal.. Development of an Automatic Computer Control System for Coke Oven Operation[J]. Transactions of Iron and Steel inst. Of Japan, Vol. 18, pp308-316
    [25]. Thijssen, N.J.W.. Battery temperature an important Fatter for efficient coke oven operation[A]. The Coke Oven Managers Year-Book, The Coke Oven Manger's Association, Mexboxough, Yorkshire, England, pp230-238, 1978.
    [26]. Lawrence, R.D. Inland's No.11 Coke Battery Computer System for Data Acquisition and Control[J]. Iron and Steel Engineer, Aug, 1982.
    [27]. Determination of Coking Completions Thime[A]. Mitsubishi Chemical Industries Co.,Ltd.Jtd.JPn.Kokai Tokkyo JP58, VOl.141, p287, 1982.
    [28]. Merrick,D.. Mathematical Models of the Thermal Decomposition of Coal[J]. Fuel, 1983, Vol. 62, pp534-561.
    [29]. Lu,Y.Z. and T.j.Williams. A Discrete Dynamic Model of Steel Ingot Temperature Behavior and Soaking[A]. Presented at AICHE 1982 Williams, Modelling, Estimation And Control of the Society of America, Research, Triangle Park, 1983.
    [30]. Lu, Y.Z. and T.J.Williams. Modelling Estimationand Control of The Soaking Pit—An Example of the Development and Control of THE Soaking Pit—An Example of the Development and Application of Some Model Control Techniques to Industrial Processes[A]. Instrument Society of America Thiangle Park, 1993.
    [31]. Lu,Y.Z. and T.J.williams. Energy Saving and Productivity Increases with Computers—A Case Study of The steel Ingot Handling Process[J]. Computer in Industry, 1993, Vol. 4, p1.
    [32] 刘建兰等.焦炉加热计算机控制的工艺基础研究[J].炼焦化学.1984,N0.5.Pp12-17.
    [33] 黄奇帆等.焦炉加热微机最优控制系统[J].炼焦化学.1984,NO.5.pp18-23.
    [34] 汪元康等.焦炉加热微机最优控制系统特有外围结构设计[J].1984,NO.5.pp24-32.
    [35] IO.C.BaeuJ TbeB等.炼焦时传热的数学模型和装炉煤热物理参数的计算[J].国外炼焦与化学.1986,NO.3.pp3-7.
    [36] 绪方和洋.降低焦炉耗热量的方法[J].国外炼焦与化学.1986,NO.3.pp7-9.
    [37] 郑国舟.焦炉热平衡测定中的问题讨论[J].燃料与化工.1986,NO.2.pp11-15.
    [38] 张文.数理统计在焦炉生产管理上的应用[J].炼焦化学.1983,NO.6.pp5-11.
    [39] 金德荣,倪天祥.焦炉燃烧室温度的自动测量与调节[J].炼焦化学.1983,NO.5.pp70-72.
    [40] 中野盛等.焦炉加热控制系统的研制与操作状况[J].国外炼焦与化学.1986,NO.4.P22-25.
    [41] 杨星德.焦炉热平衡计算中的有关问题的商榷[J].炼焦化学.1983,NO.12.p77-82.
    [42] N.J.W.Thijssen等.炼焦最终温度对焦炉加热的影响[J].燃料与化工.1986,NO.2.P58-63.
    [43] 松本和俊.福山4号焦炉的燃烧管理计算机控制系统[J].国外炼焦与化工.1987,NO.5.p31-33.
    [44] R.Mumix.焦炉温度分布控制[J].国外炼焦与化工.1987,NO.3.P21-25.
    [45] T.Matueo等.炼焦自动控制技术的进展[J].国外燃料与化工.2000,NO.5.p6-15.
    [46] 焦炉加热的最佳方法和初步的初步操作结果[J].国外炼焦与化工.1988,NO.4.p30-32.
    [47] K.L.Chen等.焦炉加热闭路控制的发展和应用[J].国外炼焦与化工.1987,NO.6.P22-25.
    [48] 王蓉蓉.大型焦炉数学模型开发与研究[D].浙江大学.硕士论文.1987.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700