金属仿生功能微结构的激光制备与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
受自然界中生物体表面特殊功能和性能的启发,研究生物表面的微纳结构,并在人工材料表面进行仿生功能微结构的制备与性能研究是仿生学的研究热点之一。开展其研究,在工业、航空航天、军事、医疗和日常生活等领域具有重要的理论研究价值与广阔的应用前景。
     本文利用飞秒激光器和纳秒激光器,构造了仿生微结构表面制备实验系统,制备了一系列仿生金属微纳结构表面,对这些微纳结构表面开展了表面形成机理、表面润湿性能、表面陷光性能和表面生物相容性的研究,以期实现对仿生功能微纳结构制备和应用的指导。本文的主要研究内容和结论如下:
     1.构造了飞秒激光仿生微结构表面制备实验系统,在高真空环境下对不锈钢表面进行了飞秒激光微结构的制备与研究,考察了单脉冲和多脉冲激光作用下表面微结构的形成机理,并进行了大面积多尺度微纳结构的制备,在此基础上,确定了激光作用参数对表面形貌的影响规律。实验结果表明,单脉冲激光实现的烧蚀直径决定于材料的单脉冲能量阈值和所用激光的单脉冲能量,而多脉冲激光作用下形成特定微结构的能量阈值随着脉冲次数的增加而减小;激光能量密度较低时获得了典型的亚微米级激光诱导周期性表面结构(LIPSS),随激光能量密度的增强,依次形成微米级波纹和锥形钉,表面覆盖着LIPSS结构,从而组成了微米-亚微米级双尺度结构;对比扫描路径的起点和终点部位的微结构,证明高能量密度只能形成微米级粗糙结构而不能形成LIPSS结构。通过对激光作用参数进行调整可实现多种多尺度微纳结构表面,为仿生功能结构表面提供丰富的选择。
     2.基于润湿性能的几何分析方法,建立了多尺度微结构对润湿性能的影响模型。对经硅烷化处理后的飞秒激光微结构化不锈钢表面的润湿性能进行了检测,发现随着激光能量密度的增加,所获得微结构表面的超疏水性提高,尤其是在高能量密度激光下获得的类似荷叶表面乳突状双尺度结构的表面具有极高的表观接触角和极小的滚动角。润湿实验结果与本文建立的多尺度结构对润湿性能的影响模型的预测吻合得较好,为多尺度微纳结构超疏水功能表面的构筑和调控提供指导。
     3.提出了两次不同能量密度飞秒激光大面积交叉扫描的方法,在不锈钢表面获得了微米级锥状钉结合亚微米级颗粒的多尺度陷光结构;微结构表面对波长范围200-900nm的光波具有很好的吸收增强效果,XRD分析结果表明,不锈钢表面强陷光效果的原因是表面的微结构,而不是化学成分的改变;建立了多尺度微结构表面的陷光模型,并基于该模型分析了微结构的陷光机理。构造了纳秒激光微结构表面制备实验系统;在不锈钢表面进行了多脉冲微孔结构制备与光反射率测试,并确定了激光参数对微孔结构以及陷光效果的影响规律;优化设计了梅花型排列的微孔阵列陷光结构,实验结果表明其具有很好的陷光效果。金属基陷光微结构的制备与性能研究在光响应材料领域具有重要的研究价值和应用前景。
     4.对飞秒激光微结构化后的不锈钢表面进行了血液相容性研究,通过体外血小板粘附实验、动态凝血实验和溶血实验来评价微结构化超疏水表面的血液相容性。实验结果表明,材料表面微结构可以显著抑制血小板的粘附数量和激活比例,延长动态凝血时间,降低溶血率。本文还从微结构表面超疏水性能的角度对材料表面血液相容性的改善机理进行了研究。
     5.建立了表面微结构对细胞的接触导向模型,并采用了细胞培养实验对该模型进行了验证。实验结果表明:不锈钢表面的LIPSS结构具有明显的接触导向效果,细胞培养时间越长效果越明显,这与细胞接触导向模型的预测结果吻合得较好;另外发现微波纹结构还增加了细胞的粘附增殖速度。这种飞秒激光大面积扫描获得的微结构的周期远小于常见的细胞尺寸,可以用于实现各种细胞的运动控制和粘附增殖,为多尺度结构仿生微结构表面在生物医用材料中的应用提供了理论指导。
The surface of the organism in nature has a variety of special functions. Acquiring inspiration by investigating microstructure of living beings surface, and fabricating bionic functional microstructure are one of the hotspots of biomimics. The investigation has wide application prospect in several fields such as industrial, aerospace, military, medical and daily life.
     In this paper, the preparation experimental system of biomimetic microstructure has been constructed with femtosecond laser and nanosecond laser. Various microstructures have been fabricated on stainless steel using the experimental system. The formed mechanism, hydrophobicity, optical character, and biocompatibility of these topography on stainless steel surface have been studied to achieve preparation and application of bionic functional microstructure. The main content and conclusion of this thesis are as follows:
     1. The preparation experimental system of biomimetic microstructure was constructed with femtosecond laser. Preparation of biomimetic microstructure using laser on stainless steel surface in high vacuum was investigated. The formed mechanism of microstructure using single pulse and multiple pulses was studied. Large area multi-scale microstructure has been obtained by scanning with femtosecond laser. With these experiments, the effect of laser parameters on the microstructure was determined. The results of these experiments suggest that the single-pulse laser ablation diameter depends on single pulse energy and single pulse energy threshold. Multiple pulse experiment indicates that the energy threshold of specific microstructure decreases with the number of laser pulses increasing. With low laser fluence, we fabricated typical laser-induced periodic surface structures (LIPSS) on the submicron level. With laser fluence increasing, we fabricated periodic ripples and periodic cone-shaped spikes on the micron scale, both covered with LIPSS. These surface topography are micro- and submicron double-scale structures. By comparing topography at the starting point and that at the end point, it is obvious that microstructure of high laser fluence can only lead to roughness on the micron scale instead of LIPSS. This controllable multi-scale microstructure preparation and investigation provide abundant choise for bionic functional microstructure fabrication.
     2. Based on the geometry analysis method, an influence model of multi-scale microstructure on wettability was established. The wettability of the stainless steel surface, after microstructured with femtosecond laser flowed silanizing, was examined. The results suggest that with laser fluence increasing, the superhydrophobicity of the microtructured surface is enhanced, particularly the lotus-leaf-like papillary double-scale structure surface of high laser fluence has extremely high apparent contact angle (CA) and extremely low sliding angle (SA). The uniformity between the calculated value and the experimental result indicates that the influence model can be used to guide designing multi-scale superhydrophobic microstructure.
     3. Through a large area microstruture fabricating method comprising two scanning with different fluence femtosecond laser, a multi-scale light trapping structure with cone-shaped micro-spikes and submicro-particles was obtained. The microstructure surface has an extremly low reflectivity in the wavelength range of 200-900 nm. The XRD result suggests that strongly enhanced optical absorption of the stainless steel surfaces should be attributed to the micro- and nano-structures on the surfaces rather than the surfaces' chemical changes. We established an optical absorption model of multi-scale microstructure surface. Based on the model, the light trapping mechanism of the microstructure was analysed. The preparation experimental system of microstructure was constructed with nanosecond laser. The reflectivity of the microholes fabricated on the stainless steel surface using nanosecond laser was examined. The effect of laser parameters on the microstructure and light trapping function was determined. We designed a light trapping structure of microholes quincuncial distributing on the sample surface. The experimental result suggests that the structure surface has an extremly low reflectivity. The preparation and study of light trapping structure on metal have significant research value and application prospect in the field of optical response materials.
     4. Blood compatibility for stainless steel superhydrophobic surface microstructured using femtosecond laser was studied through the platelet adhesion experiment, dynamic coagulation and hemolysis test experiment. The results of these experiments suggest that the microstructures on the sample's surface can significantly decrease the number of adhered and activated platelets, extend the dynamic clotting time and decrease haemolysis ratio. In addition, we investigated the function of the microstructure to blood compatibility from the point of superhydrophobicity.
     5. We established a contact guidance model to reveal how the microstructure can influence cell growth and attachment. The model was validated by cell culture experiment. The results are in good agreement with the predictions, suggesting that the LIPSS have significant contact guidance effect, which was enhanced with extending of the cell cultured time. In addition, the LIPSS could increase the speed of the cells adhesion and proliferation. The period of the LIPSS fabricated using femtosecond laser is much smaller than the common cell size. Therefore, the microstructure can be used to implement a variety of cell adhesion, proliferation and motion control. The study provides a theoretical guidance for multi-scale biomimetic microstructure surface in biomedical applications.
引文
[1]Douglas T. A Bright Bio-inspired Future[J]. Science,2003,299:119-1193.
    [2]孙久荣,戴振东.非光滑表面仿生学(Ⅱ)[J].自然科学进展,2008,18:727-722.
    [3]汤勇,周明,韩志武,万珍平.表面功能结构制造研究进展[J].机械工程学报,2010,46:93-105.
    [4]Taton T A. Bio-Nanotechnology:Two-way traffic[J]. Nature Mater,2003,2:73-74.
    [5]江雷,冯琳著.仿生智能纳米界面材料[M].北京:化学工业出版社,2007.
    [6]Barthlott W, Neinhuis C. Purity of the sacred Lotus, or escape from contamination in biological surfaces[J]. Planta,1997,202:1-8.
    [7]Wagner P, FuErstner R, Barthlott W, Neinhuis C. Quantitative assessment to the structural basis of water repellency in natural and technical surfaces[J], J. Exp. Bot.,2003,54: 1295-1303.
    [8]Wagner P, Neinhuis C, Barthlott W. Wettability and contaminability of insect wings as a function of their surface sculptures[J]. Acta Zool.,1996,77:213-255.
    [9]Blossey R. Self-cleaning surfaces-virtual realities[J]. Nat. Mater.,2003,2:301-306.
    [10]王淑杰,任露泉,韩志武,邱兆美,周长海.典型植物叶表面非光滑形态的疏水防黏效应[J].农业工程学报,2005,21:16-19.
    [11]王淑杰,任露泉,韩志武,邱兆美.植物叶表面防粘特性的研究[J].农机化研究,2005,4:176-181.
    [12]Alexander O, Stephan H. How Plants Keep Dry:A Physicist's Point of View[J], Langmuir, 2004,20:2405-2408.
    [13]Feng L, Li S H, Li Y S, Li H J, Zhang L J, Zhai J, Song Y L, Liu B Q, Jiang L, Zhu D B. Super-hydrophobic surface:from natural to artificial [J]. Adv Mater,2002,14:1857-1860.
    [14]Gleiche M, Chi L F, Fuchs H. Nanoscopic channel lattices with controlled anisotropic wetting[J]. Nature,2000,403:173-175.
    [15]Higgins A M, Jones R A L. Anisotropic spinodal dewetting as a route to self-assembly of patterned surfaces[J]. Nature,2000,404:476-478.
    [16]Caponigro M A, Erilsen C H. Surface Film Locomotion by the Water Strider,Gerris remigis[J]. Am. Midland Nat.,1976,95:268-278.
    [17]Bowdan E. Walking and rowing in the water strider, Gerris remigis[J]. J. Comp. Physiol., 1978,123:43-49.
    [18]Hu D L, Chan B, Bush J W M. The hydrodynamics of water strider locomotion[J]. Nature, 2003,424:663-666.
    [19]Dickinson M. How to walk on water[J]. Nature,2003,424:621-622.
    [20]Gao X F, Jiang L. Water-repellent legs of water striders[J]. Nature,2004,432:36-36.
    [21]孙明霞,郑咏梅,梁爱萍.昆虫体表疏水性研究进展[J].中国科学院研究生院学报,2011,28:275-287.
    [22]高雪峰,江雷.天然超疏水生物表面研究的新进展[J].维普资讯,2006,35:559-564.
    [23]Kodama S, Horiuchi M, Kunii T, Kuroda K. Ultrablack nichel-phosphorus alloy optical absorber[J]. IEEE Trans Instrum Meas,1990,39:230-232.
    [24]Landy N, Sajuyigbe S, Mock J, Smith D, Padilla W. Perfect metamaterial absorber[J]. Physical Review Letters,2008,4:21-24.
    [25]Fox N P. Trapdetectors and their properties[J]. Metrologia,1991,28:197-202.
    [26]Ibn-Elhaj M. Schadt M, Optical polymer thin films with isotropic and anisotropic nano-corrugated surface topologies[J]. Nature,2001,410:796-799.
    [27]Divochiya. Superconducting nanowire photon-number resolving detector at telecommunica-tion wavelengths[J]. Nature Photonics,2008,2:302-306.
    [28]Xue Y B, Meng G, Zhang L. A comparison study of two types of solar air collector performance[J]. Journal of Shandon University, Engineering Science,2009,39:147-149.
    [29]Li Y. Biominetic surfaces for high performance optics[J]. Advanced Materials,2009,21: 1-4.
    [30]Chapham P B, Hutley M C. Reduction of lens reflecxion by the moth eye principle[J]. Nature,1973,244:281-282.
    [31]Bernhard C G, Miller W H. The insect corneal nipple array[J]. Acta Physiologica Scandinavica,1965,63:1-25.
    [32]Miller W H, Moller A R, Bernhard C G The corneal nipple array. In the funtional organization of the compound eye (ed. Bernhard C G). Oxford, Pergamon Press,1966,21-33.
    [33]Ding Y L, Liu H H, Fan T X. High efficient anti-reflection of ultra-black carbon materials tailoring the nano structure of butterfly compound eyes[J]. Journal of Shandong University (Engineering Science),2011,41:135-139.
    [34]Vukusic P, Sambles J R, Lawrence C R. Structurally assisted blackness in butterfly scales[J]. Proc. R. Soc. Lond. B.,2004,271:237-239.
    [35]任露泉,邱兆美,韩志武,关会英,邬立岩.绿带翠凤蝶翅面结构光变色机理的试验研究[J]Science in China (series E),2007,37:952-957.
    [36]韩志武,邬立岩,邱兆美,任露泉.紫斑环蝶鳞片的微结构及其结构色[J].科学通报,2008,53:2692-2696.
    [37]邱兆美,韩志武.蝴蝶鳞片微观结构与模型分析[J].农业机械学报,2009,40:193-196.
    [38]Zhao Q B, Fan T X, Ding J, Zhang D, Guo Q X, Kamada M. Super black and ultrathin amorphous carbon film inspired by anti-reflection architecture in butterfly wing[J]. Carbon, 2011,49:877-883.
    [39]陈立,韩东,江雷.仿生血管界面材料的研究与构筑[J].东南大学学报(医学版),2011, 30:224-227。
    [40]Klee D, Hocker H. Polymers for biomedical applications:improvement of the interface compatibility[J]. Biomedical Applications:Polymer Blends,1999,149:1-57.
    [41]Chen L, Han D, Jiang L. On improving blood compatibility:From bioinspired to synthetic design and fabrication of biointerfacial topography at micro/nano scales[J]. Colloids and Surfaces B:Biointerfaces,2011,85:2-7.
    [42]Mao Y D, Sun Q M, Wang X F, Ouyang Q, Han L, Jiang L. Han D. In vivo nanomechanical imaging of blood-vessel tissues directly in living mammals using atomic force microscopy[J]. Applied Physics Letters,2009,95:013704-013706.
    [43]Ye X, Shao Y L, Zhou M, Li J, Cai L. Research on micro-structure and hemo-compatibility of the artificial heart valve surface[J]. Applied Surface Science,2009,255:6686-6690.
    [44]Bico J, Marzolin C, Quere D, Europhys. Pearl drops[J]. Lett.,1999,47:220-226.
    [45]Oner D, McCarthy T J. Ultrahydrophobic surfaces, effects of topography length scales on wettability[J]. Langmuir,2000,16:7777-7782.
    [46]Jin M H, Feng L, Jiang L. Super-Hydrophobic PDMS Surface with Ultra-Low Adhesive Force[J]. Macromol. Rapid Commun.,2005,26:1805-1809.
    [47]Li B J, Zhou M, Yuan R, Cai L. Fabrication of titanium-based microstructured surfaces and study on their superhydrophobic stability[J]. J. Mater. Res.,2008,23:2491-2499.
    [48]Tadanaga K, Katata N, Minami T. Super-Water-Repellent Al2O3 Coating Films with High Transparency[J]. J. Am. Ceram. Soc.,1997,80:3213-3216.
    [49]Tadanaga K, Kitamuro K, Morinaga J, Kotani Y, Matsuda A, Minami T. Preparation of super-water-repellent alumina coating film with high transparency on poly (ethylene terephthalate)[J]. Chem. Lett.,2000,29:864-865.
    [50]Tadanaga K, Morinaga J, Matsuda A, Minami T. Superhydrophobic-superhydrophilic micropatterning on flowerlike alumina coating film by the sol-gel method[J]. Chem Mater, 2000,12:590-592.
    [51]Rao A V, Kulkami M M, Amalnerkar D P, Seth T. Superhydrophobic silica aerogels based on methyltrimethoxysilane precursor[J]. J. Non-Crystalline Solids,2003,330:187-195.
    [52]Nakajima A, Abe K, Hashimoto K, Watanable T. Preparation of hard super-hydrophobic films with visible light transmission [J]. Thin Solid Films,2000,376:140-143.
    [53]Shirtcliffe N J, Mchale G, Newton M I, Perry C C. Intrinsically Superhydrophobic Organosilica Sol-Gel Foams[J]. Langmuir,2003,19(14):5626-5631.
    [54]Veeramasuneni S, Drelich J, Miller J D, Yamauchi G. Hydrophobicity of Ion-plated PTFE Coatings[J]. Prog. Org. Coat.,1997,31:265-270.
    [55]Li H J, Wang X B, Song Y L, Liu Y Q, Li Q S, Jiang L, Zhu D B. Super-"amphiphobic" aligned carbon nanotube films[J]. Angew. Chem. Int. Ed.,2001,40:1743-1746.
    [56]Li S H, Li H J, Wang X, Song Y L, Liu Y, Jiang L, Zhu D B. Super-hydrophobicity of large-area honey comb-like aligned carbon nanotubes [J]. J. Phys. Chem. B,2002,106: 9274-9276.
    [57]Lau K K S, Bico J, Teo K B K, Chhowalla M, Amaratunga G A J, Milne W I, McKinley G H, Gleason K K. Superhydrophobic carbon nanotube forests[J]. Nano Letters,2003,3: 1701-1705.
    [58]Zhang X, Shi F, Yu X, Liu H, Fu Y, Wang Z Q, Jiang L, Li X Y. Polyelectrolyte Multilayer as Matrix for Electrochemical Deposition of Gold Clusters:Toward Super-Hydrophobic Surface [J]. J Am. Chem. Soc.,2004,126:3064-3065.
    [59]Lee W, Jin M Y, Yoo W C, Lee J K. Nanostructuring of a polymeric substrate with well-defined nanometer-scale topography and tailored surface wettability[J]. Langmuir,2004, 20:7665-7669.
    [60]Sun M H, Luo C X, Xu L P, Ji H, Ouyang Q, Yu D P, Chen Y. Artificial Lotus Leaf by Nanocasting [J]. Langmuir,2005,21:8978-8981.
    [61]Lee S M, Kwon T H. Mass-producible replication of highly hydrophobic surfaces from plant leaves[J]. Nanotechnology,2006,17:3189-3196.
    [62]尚广瑞,任露泉,杨晓东,丛茜.Cu-Zn合金仿生耦合表面的疏水性能[J].吉林大学学报(工学版),2007,37:1126-1131.
    [63]Gao J, Liu Y L, Xu H P, Wang Z Q, Zhang X. Mimicking biological structured surfaces by phase-separation micromolding[J]. Langmuir,2009,25:4365-4369.
    [64]Gao J, Liu Y L, Xu H P, Wang Z Q, Zhang X. Biostructure-like surfaces with thermally responsive wettability prepared by temperature-induced phase separation micromolding[J]. Langmuir,2010,26:9673-9676.
    [65]Acatay K, Simsek E, Ow-Yang C, Menceloglu Y Z. Tunable, Superhydrophobically Stable Polymeric Surfaces by Electrospinning[J]. Angew. Chem. Int. Ed.,2004,43:5210-5213.
    [66]Jiang L, Zhao Y, Zhai J. A Lotus-leaf-like Superhydrophobic Surface:A Porous Microsphere/Nanofiber Composite Film Prepared by Electrodynamics[J]. Angew. Chem. Int. Ed.,2004,43:4338-4341.
    [67]Ma M, Mao Y, Gupta M, Gleason K K, Rutledge G C. Superhydrophobic Fabrics Produced by Electrospinning and Chemical Vapor Deposition[J]. Macromolecules,2005,38: 9742-9748.
    [68]Tsujii K, Yamamoto T, Onda T, Shibuichi S. Super oil-repellent surfaces[J]. Angew. Chem. Int. Ed. Engl.,1997,36:1011-1012.
    [69]Qian B T, Shen Z Q. Fabrication of superhydrophobic surfaces by dislocation-selective chemical etching on aluminum, copper, and zinc substrates[J]. Langmuir,2005,21: 9007-9009.
    [70]Chen X H, Yang G B, Dong D, Kong L H, Yu L G, Chen J M, Zhang P Y. Direct growth of hydroxy cupric phosphate heptahydrate monocrystal with honeycomb-like porous structures on copper surface mimicking lotus leaf[J]. Cryst. Growth & Des.2009,9:2656-2661.
    [71]Chen X H, Kong L H, Dong D, Yang G B, Yu L G, Chen J M, Zhang P Y. Fabrication of functionalized copper compound hierarchical structure with bionic superhydrophobic properties[J]. J. Phys. Chem. C,2009,113:5369-5401.
    [72]Chen X H, Kong L H, Dong D, Yang G B, Yu L G, Chen J M, Zhang P Y. Synthesis and characterization of superhydrophobic functionalized Cu(OH)2nanotube arrays on copper foil[J]. Appl. Sur. Sci.2009,255:4015-4019.
    [73]Kong L H, Chen X H, Yang G B, Yu L G, Zhang P Y. Preparation and characterization of slice-like Cu2(OH)3NO3superhydrophobic structure on copper foil[J]. Appl.Surf. Sci.2008, 254:7255-7258.
    [74]Dong D, Chen X H, Xiao W T, Yang G B, Zhang P Y. Preparation and properties of electroless Ni-P-SiO2 composite coatings[J]. Appl. Sur. Sci.2009,255:7051-7055.
    [75]Yang G B, Yu L G, Chen X H, Zhang P Y. Hydrophobic surfaces of spin-assisted layer-by-layer assembled polyelectrolyte multilayers doped with copper nanoparticles and modified by fluoroalkylsilane[J], Appl. Sur. Sci.2009,255:4097-4101.
    [76]Genzer J, Efimenko K. Creating long-lived superhydrophobic polymer surfaces through mechanically assembled monolayers. Science,2000,290:2130-2133.
    [77]Ji J, Fu J H, Sheng J C. Fabrication of a Superhydrophobic Surface from the Amplified Exponential Growth of a Multilayer[J]. Adv. Mater.,2006,18:1441-1444.
    [78]Kietzig A M, Hatzikiriakos S G, Englezos P. Patterned Superhydrophobic Metallic Surfaces[J]. Langmuir,2009,25:4821-4827.
    [79]Zorba V, Stratakis E, Barberoglou M, Spanakis E, Tzanetakis P, Anastasiadis S H, Fotakis C. Biomimetic artificial surfaces quantitatively reproduce the water repellency of a lotus leaf[J]. Adv. Mater.2008,20:4049-4054.
    [80]Barberoglou M, Zorba V, Stratakis E, Spanakis E, Tzanetakis P, Anastasiadis S H, Fotakis C. Bio-inspired water repellent surfaces produced by ultrafast laser structuring of silicon[J]. Appl. Surf. Sci.,2009,255:5425-5429.
    [81]Bizi-Bandoki P, Benayouna S, Valette S, Beaugiraud B, Audouard E. Modifications of roughness and wettability properties of metals induced by femtosecond laser treatment[J], Applied Surface Science,2011,257:5213-5218.
    [82]Baldacchini T, James E Carey, Zhou M, Mazur E. Superhydrophobic Surfaces Prepared by Microstructuring of Silicon Using a Femtosecond Laser[J]. Langmuir,2006,22:4917-4919.
    [83]Spiegel M, Gerhards C, Huster F, Jooss W, Fath P, Bucher E. Industrially attractive front contact formation methods for mechanically V-textured multicrystalline silicon solar cells[J]. Solar Energy Materials and Solar Cells,2002,74:175-182.
    [84]Dobrzanski L A, Drygala A, Golombek K, Panek P, Bielanska E, Zieba P. Laser surface treatment of multicrystalline silicon for enhancing optical properties[J]. Journal of Materials Processing Technology,2008,201:291-296.
    [85]Ruby D S, Zaidi S H, Narayanan S, Damiani B M, Rohatgi A. Rie-texturing of multicrystalline silicon solar cells[J]. Solar Energy Materials & Solar Cells,2002,74: 133-137.
    [86]Zhu J T, Zhao L, Li W, Wang Y, Feng G J, Wang Z S. Great enhancement of infrared light absorption of silicon surface-structured by femtosecond laser pulses in N2 ambient[J]. Materials Letters,2006,60:2187-2189.
    [87]Paivasaari K, Kaakkunen J J J, Kuittinen M, Jaaskelainen T. Enhanced optical absorptance of metals using interferometric femtosecond ablation[J]. Optics Express,2007,15: 13838-13843.
    [88]Kaakkunen J J J, Paivasaari K, Kuittinen M, Jaaskelainen T. Morphology studies of the metal surfaces with enhanced absorption fabricated using interferometric femtosecond ablation[J]. Appl. Phys. A,2009,94:215-220.
    [89]Yang Y, Yang J J, Liang C Y, Wang H S, Ultra-broadband enhanced absorption of metal surfaces structured by femtosecond laser pulses[J], Optics Express,2008,16:11259-11265.
    [90]Vorobyev A Y, Guo C L. Femtosecond laser blackening of platinum[J]. Journal of Applied Physics,2008,104:053516-053516.
    [91]Vorobyev A Y, Guo C L. Femtosecond Laser Blackening of Metals[J].52nd IEEE International Midwest Symposium on Circuits and Systems,2009,905-908.
    [92]Vorobyev A Y, Guo C L. Optical and Wetting Properties of Femtosecond Laser Nanostructured Materials[J]. Journal of Nano Research,2011,14:57-67.
    [93]Guo C L, Vorobyev A Y. Black Metals Produced by Femtosecond Laser Pulses[J]. International Symposium on High Power Laser Ablation,2010,1278:838-842.
    [94]俞耀庭.生物医用材料[M].天津:天津大学出版社,2003.
    [95]Wheeler S L. Eight-year clinical retrospective study of titanium plasma-spraying and hydroxyapatite-coated cylinder implants[J]. Int J Oral Maxillofac Implants,1996,11: 340-350.
    [96]ZENG R C, DIETZEL W, WITTEL F, HORT N, BLAWERT C, Progress and challenge for magnesium alloys as biomaterials, Advanced Engineering Materials,2008,10(8):3-14.
    [97]Zeng R C, Dietzel W, Chen J, Huang W J, Wang J. Corrosion behavior of TiO2 coating on magnesium alloy AM60 in Hank's solution[J]. Key Engineering Materials,2008,373-374: 609-612.
    [98]Xin Y C, Liu C L, Zhang W J, Jiang J, Tang G Y, Tian X B, Paul K C. Electrochemical behavior Al2O3/Al coated surgical AZ91 magnesium alloy in simulated body fluids[J]. Electrochemistry Society,2008,155:178-182.
    [99]余凤丹,储成林,吉宏林,饶席,张文艳,董寅生,郭超,盛晓波,林萍华,朱剑豪.磁控溅射Zr-Ti薄膜的组织结构与血液相容性[J].稀有金属材料工程,2011,40:483-486.
    [100]张波,李虎,杨帮成,张兴栋.碱热处理钛表面的理化性能与生物活性的研究[J].中国口腔种植学杂志,2005,10:59-62.
    [101]朱明刚,邬鸿彦,孔令宜,常虹.Ti基表面多层超细HA涂层复合植体的制备[J].材料工程,1999,194:15-17.
    [102]刘敬肖,杨大智,史非,蔡英骥,陈吉华,王伟强,孔力,胡军,杨佩满.金属表面TiO2薄膜的溶胶-凝胶法制备及其血液相容性研究[J],中国生物医学工程学报,2002,21:398-403.
    [103]Song Y W, Shan D Y, Han E H. Electrodeposition of hydroxyapatite coating on AZ91D magnesium alloy for biomaterial application[J]. Materials Letter,2008,62:3276-3279.
    [104]Sun T L, Tan H, Han D, Fu Q, Jiang L. No platelet can adhere largely improved blood compatibility on nanostructured superhydrophobic surfaces[J]. Small,2005,1:959-963.
    [105]张贵,张德元,何伶俐,祁凤君.纳米结构Ti/TiN涂层对NiTi合金生物相容性的影响[J].现代生物医学进展,2009,9:2465-2468.
    [106]袁志庆,陈洪,汤建新,石璞,张继德,赵德坚,曾艳清,龚慧芳,付欣.超疏水聚丙烯表面的制备及血液相容性研究[J].功能材料,2007,38:1359-1362.
    [107]Zhou M, Yang J H, Ye X, Zheng A R, Li G, Cai L. Blood platelet's behavior on nanostructured superhydrophobic surface[J]. Journal of Nano Research,2008,2:129-136.
    [108]Fan H L, Chen P P, Qi R M, Zhai J, Wang J X, Chen L, Chen L, Sun Q M, Song Y L, Han D, Jiang L. Greatly improved blood compatibility by microscopic multiscale design of surface architectures[J]. Small,2009,5:2144-2148.
    [109]Harrison R G The cultivation of tissues in extraneous media as a method of morphogenetic study[J]. Anat Rec,1912.6:181-193.
    [110]Brunette D M, et al., Titanium in medicine:material science, surface science, engineering, biological responses and medical applications.2001, New York:Springer.
    [111]Craighead H G, James C D, Turner A M P. Chemical and topographical patterning for directed cell attachment J]. Current Opinion in Solid State & Materials Science,2001.5: 177-184.
    [112]Walboomers X F, Jansen J A. Cell and Tissue Behavior on Micro-Grooved Surfaces[J]. Odontology,2001,89:2-11.
    [113]Soboyejo W O, Nemetski B, Allameh S, Mercer C, Marcantonio N, Ricci J. On the Interactions between MC-3T3 cells and textured Ti6Al4V surfaces[J]. Journal of Biomedical Materials Research,2002.62:56-72.
    [114]Savarino L, et al. Biologic effects of surface roughness and fluorhydroxyapatite coating on osteointegration in external fixation systems:An in vivo experimental study[J]. Journal of Biomedical Materials Research Part A,2003,66:652-661.
    [115]Chen J, Mwenifumbo S, Langhammer C, McGovern J P, Li M, Beye A, Soboyejo W O. Cell/surface interactions and adhesion on Ti-6Al-4V:effects of surface texture[J]. Journal of Biomedical Materials Research Part B:Applied Biomaterials,2007.82:360-373.
    [116]Weiss P. Experiments on Cell and Axon Orientation Invitro-the Role of Colloidal Exudates in Tissue Organization[J]. Journal of Experimental Zoology,1945,100:353-386.
    [117]Chou L, Firth J D, Uitto V J, Brunette D M. Substratum surface topography alters cell shape and regulates fibronectin, mRNA level, mRNA stability, secretion and assembly in human fibroblasts. J. Cell. Sci.,1995,108:1563-1573.
    [118]Wojciak-Stothard B, Curtis A, Monaghan W, MacDonald K, Wilkinson C. Guidance and Activation of Murine Macrophages by Nanometric Scale Topography [J]. Experimental Cell Research,1996,223:426-435.
    [119]Teixeira A I, Abrams G A, Bertics P J, Murphy C J, Nealey P F. Epithelial contact guidance on well-defined micro- and nanostructured substrates[J]. Journal of Cell Science,2003,116: 1881-1892.
    [120]郑楠,杨苹,王起义,杨忠海,黄楠.Si-N-O薄膜表面微图形的制备及对内皮细胞黏附行为的影响[J].中国科学:技术科学,2010,40:21-28.
    [121]Kemkemer R, Jungbauer S, Kaufmann D, Gruler H. Cell Orientation by a Microgrooved Substrate Can Be Predicted by Automatic Control Theory [J]. Biophysical Journal,2006,90: 4701-4711.
    [122]Li P, Bakowsky U, Yu F Y, Loehbach C, Muecklich F, Lehr C M. Laser Ablation Patterning by Interference Induces Directional Cell Growth[J]. IEEE Transactions on Nanobioscience, 2003,2:138-145.
    [123]Duncana A C, Rouais F, Lazare S, Bordenave L, Baquey C. Effect of laser modified surface microtopochemistry on endothelial cell growth[J]. Colloids and Surfaces B: Biointerfaces,2007,54:150-159.
    [124]Rebollar E, Frischauf I, Olbrich M, Peterbauer T, Hering S, Preiner J, Hinterdorfer P, Romanin C, Heitz J. Proliferation of aligned mammalian cells on laser-nanostructured polystyrene[J]. Biomaterials,2008,29:1796-1806.
    [125]梁春永.钛合金表面图案化处理及生物活性化机理.天津大学博士生毕业论文.2008.
    [126]Yin M, Yuan Y, Liu C S, Wang J. Development of mussel adhesive polypeptide mimics coating for in-situ inducing re-endothelialization of intravascular stent devices[J]. Biomaterials,2009,30:2764-2773.
    [127]Shen Y, Wang G X, Chen L, Li H, Yu P, Bai M J, Zhang Q, Lee J, Yu Q S. Investigation of surface endothelialization on biomedical nitinol (NiTi) alloy:effects of surface micropatterning combined with plasma nanocoatings[J]. Acta Biomater,2009,5:3593-3604.
    [128]Sipe J E, Young J F, Preston J S, van Driel H M. Laser-induced periodic surface structure[J]. Phys. Rev. B,1983,27:1141-1154.
    [129]Young J F, Preston J S, van Driel H M, Sipe JE. Laser induced periodic surface structure. Ⅱ. Experiments on Ge,Si,Al,and brass[J]. Phys. Rev. B,1983,27:1155-1172.
    [130]Liu X, Du D, Mourou G. Laser ablation and micromachining with ultrashort laser pulses[J]. IEEE J. Quantum Electron,1997,33:1706-1716.
    [131]Hirayama Y, Obara M. Heat effects of metals ablated with femtosecond laser pulses[J]. Appl. Surf. Sci.,2002,197-198:741-745.
    [132]Shieh J M, Chen Z H, Dai B T, Wang Y C, Zaitsev A, Pan C L. Infrared Femtosecond Laser-induced Crystallization of Amorphous Silicon[J]. Appl. Phys. Lett.,2004,85: 1232-1234.
    [133]Morgner U, Kartner F X, Cho S H, Fujimoto J G, Ippen E P, Scheuer V, Angelow G, Tschudi T. Sub-two-cycle pulses from a Kerr-lens mode-locked Ti-sapphire laser[J]. Optics Letters.1999,6:411-413.
    [134]Haus H A. Waves and Fields in optoelectronics[M]. NJ:Prentice-Hall, Englewood Chiffs, 1984.
    [135]Ashcroft N W, Mermin N D. Solid state physics[M]. Holt, Rinehart, and Winston, New York,1976.
    [136]周明,刘立鹏,戴起勋,蔡兰.飞秒超快动力学过程及飞秒检测[J].激光与光电子学进展,2004,41:6-12.
    [137]Yu P Y, Cardona M. Fundamentals of semiconductors:physics and materials properties[M]. Springer, Berlin, New York,2001.
    [138]Schaffer C B, Brodeur A, Mazur E. Laser-induced breakdown and damage in bulk transparent materials using tightly-focused femtosecond laser pulses[J]. Measurement Science and Technology,2001,12:1784-1794.
    [139]Keldysh L V. Ionization in the field of a strong electromagentic wave[J]. Soviet Physics JETP,1965,20:1307-1314.
    [140]Stuart B C, Feit M D, Herman S, Rubenchik A M, Shore B W, Perry M D. Nanosecond-to-Femtosecond Laser-Induced Breakdown in Dielectrics[J]. Physical Review B-Condensed Matter,1996,53:1749-1761.
    [141]Prokhorov A, Konov V, Ursu I, Mihailescu I. Laser Heating of Metals[M]. Adam Hilger, Bristol,1990.
    [142]Anisimov S I, Kapeliov B L, Perelman T L. Electron-Emission from Surface of Metals Induced by Ultrashort Laser Pulses[J]. Zhurnal Eksperimentalnoi Ⅰ Teoreticheskoi Fiziki, 1974,66:776-781.
    [143]Kaganov M I, Lifshitz I M, Tanatarov L V. Relaxation between Electrons and the Crystalline Lattice[J]. Soviet Physics JETP,1957,4:173-178.
    [144]Allen P B. Theory of Thermal Relaxation of Electrons in Metals[J]. Physical Review Letters,1987,59:1460-1463.
    [145]Jiang L, Tsai H L. Improved two-temperature model and its application in ultrashort laser heating of metal films[J]. Journal of Heat Transfer-Transactions of the ASME,2005,127: 1167-1173.
    [146]Corkum P B, Brunel F, Sherman N K, Srinivasanrao T. Thermal Response of Metals to Ultrashort-Pulse Laser Excitation[J]. Physical Review Letters,1988,61:2886-2889.
    [147]Brorson S D, Kazeroonian A, Moodera J S, Face D W, Cheng T K, Ippen E P, Dresselhaus M. S, Dresselhaus G. Femtosecond Room-Temperature Measurement of the Electron-Phonon Coupling Constant-Lambda in Metallic Superconductors[J]. Physical Review Letters,1990, 64:2172-2175.
    [148]Wang X Y, Riffe D M, Lee Y S, Downer M C. Time-Resolved Electron-Temperature Measurement in a Highly Excited Gold Target Using Femtosecond Thermionic Emission[J]. Physical Review B,1994,50:8016-8019.
    [149]Chichkov B N, Momma C, Nolte S, von Alvensleben F, Tunnermann A. Femtosecond, picosecond and nanosecond laser ablation of solids[J]. Applied Physics A-Materials Science & Processing,1996,63:109-115.
    [150]Agranat M, Benditskii A, Gandelman G, Kondratenko P, Makshantsev B, Rukman G, Stepanov B. Inertialess metal glow produced by picosecond pulses[J]. Soviet Physics JETP, 1980,52:27-31.
    [151]Agranat M, Anisimov S I, Ashitkov S, Makshantsev B, Ovchinnikova I. Thermal radiation emitted by metals due to disturbance of an equilibrium between electrons and the lattice[J]. Soviet Physics Solid State,1987,29:1875-1880.
    [152]Nolte S, Momma C, Jacobs H, Tunnermann A, Chichkov B N, Wellegehausen B, Welling H. Ablation of metals by ultrashort laser pulses[J]. Journal of the Optical Society of America B-Optical Physics,1997,14:2716-2722.
    [153]Kanavin A P, Smetanin I V, Isakov V A, Afanasiev Y V, Chichkov B N, Wellegehausen B, Nolte S, Momma C, Tunnermann A. Heat transport in metals irradiated by ultrashort laser pulses[J]. Physical Review B,1998,57:14698-14703.
    [154]Abrikosov A. Fundamentals of the Theory of Metals[M]. North-Holland, Amsterdam, 1988.
    [155]Konig J, Nolte S, Tunnermann A. Plasma evolution during metal ablation with ultrashort laser pulses[J]. Optics Express,2005,13:10597-10607.
    [156]Jeschke H O, Garcia M E, Bennemann K H. Theory for the ultra-fast ablation of graphite films[J]. Phys. Rev. Lett.,2001,87:015003-015006.
    [157]Stuart B C, Feit M D, Herman S, Rubenchik A M, Shore B W, Perry M D. Optical ablation by high-power short-pulse lasers[J]. Journal of the Optical Society of America B-Optical Physics,1996,13:459-468.
    [158]Luft A, Franz U, Emsermann A, Kaspar J. A study of thermal and mechanical effects on materials induced by pulsed laser drilling[J]. Applied Physics A-Materials Science & Processing,1996,63:93-101.
    [159]Momma C, Chichkov B N, Nolte S, vonAlvensleben F, Tunnermann A, Welling H, Wellegehausen B. Short-pulse laser ablation of solid targets[J]. Optics Communications,1996, 129:134-142.
    [160]Baeuerle D. Laser Processing and Chemistry[M]. Springer, Berlin, Heidelberg,1996.
    [161]Sokolowski-Tinten K, Bialkowski J, Cacalleri A, von der Linde D. Observation of a transient insulating phase if metals and semiconductors during short-pulse laser ablation[J]. Appl. Surf. Sci.,1998,127-129:755-760.
    [162]Chimmalgi A, Grigoropoulos C P, Komvopoulos K. Surface nanostructuring by nanao-femtosecond laser-assisted scanning force microscopy[J]. J. Appl. Phys.,2005,97: 104319-104331.
    [163]van Driel H M, Sipe J E, Young J F. Laser-induced periodic surface structure on solids:a universal phenomenon[J]. Phys.Rev.Lett.,1982,49:1955-1958.
    [164]Bonch-Bruevich A M, Libenson M N, Makin V S, Trubaev V V. Surface electromagnetic waves in optics[J]. Opt. Eng.,1992,31:718-730.
    [165]Jia W, Peng Z N, Wang Z J, Ni X H, Wang C Y. The effect of femtosecond laser micromachining on the surface characteristics and subsurface microstructure of amorphous FeCuNbSiB alloy[J]. Applied Surface Science,2006,253:1299-1303.
    [166]Vorobyev AY, Guo C L. Femtosecond laser structuring of titanium implants[J]. Appl. Surf. Sci.,2007,253:7272-7280.
    [167]Varlamova O, Costache F, Reif J, Bestehorn M. Self-organized pattern formation upon femtosecond laser ablation by circularly polarized light [J]. Applied Surface Science,2006, 252:4702-4706.
    [168]Mannion P T, Magee J, Coyne E, O'Connor G M, Glynn T J. The effect of damage accumulation behaviour on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air[J]. Applied Surface Science,2004,233:275-287.
    [169]Liu J M. Simple technique for measurements of pulsed Gaussian-beam spot sizes[J]. Optics Letters,1982,7:196-198.
    [170]袁冬青,周明,蔡兰,沈坚.飞秒激光微加工AU膜[J].光谱学与光谱分析,2009,29:1209-1212.
    [171]Vorobyev A Y, Guo C L. Effects of nanostructure-covered femtosecond laser-induced periodic surface structures on optical absorptance of metals[J]. Appl. Phys. A,2007,86: 321-324.
    [172]Wang J, Guo C. Ultrafast dynamics of femtosecond laser-induced surface pattern formation on metals[J]. Appl. Phys. Lett.,2005,87:251914-251916.
    [173]Guo X D, Li R X, Hang Y, Xu Z Z, Yu B K, Ma H L, Lu B, Sun X W. Femtosecond laser-induced periodic surface structure on ZnO[J]. Mater. Lett.,2008,62:1769-1771.
    [174]Yoshimitsu Z, Nakajima A, Watanabe T, Hashimoto K. Effect of Surface Structure on the Hydrophobicity and Sliding Behavior of Water Droplets[J]. Langmuir,2002,18:5818-5822.
    [175]Young T. The Bakerian Lecture:Experiments and calculations relative to physical optics[C]. Phil. Trans. Roy. Soc. Lond,1804,94:1-16.
    [176]Adamson A W, Gast A P. Physical chemistry of surfaces (6thed)[M]. New York:John Wiley & Sons,1997.
    [177]Ramos S M M, Charlaix E, Benyagoub A. Contact angle hysteresis on nano-structured surfaces[J]. Surface Science,2003,540:355-362.
    [178]Miwa M, Nakajima A, Fujishima A, Hashimoto K, Watanabe T. Effects of the surface roughness on sliding angles of water droplets on superhydrophobic surfaces[J]. Langmuir, 2000,16:5754-5760.
    [179]Marmur A. The Lotus Effect:Superhydrophobicity and Metastability[J]. Langmuir,2004, 20:3517-3519.
    [180]Wolfram E, Faust R. Wetting, Spreading, and Adhesion[M]. London:Academic Press, 1978.
    [181]Roura P, Fort J. Effects of the surface roughness on sliding angles of water droplets on superhydrophobic surfaces[J]. Langmuir,2002,18:566-569.
    [182]Furmidge C G. The sliding of liquid drops on solid surfaces and a theory for spray retention[J]. J Colloid Sci.,1962,17:309-324.
    [183]Chen W, Fadeev A Y, Hsieh M C, et al. Ultrahydrophobic and ultralyophobic surfaces: Some comments and examples[J]. Langmuir,1999,15:3395-3399.
    [184]郑黎俊,鸟学东,楼增,吴旦.表面微细结构制备超疏水表面[J].科学通报,2004,49:1691-1699.
    [185]Aussillous P, Quere D. Liquid marbles[J]. Nature,2001,411:924-927.
    [186]Richard D, Clanet C, Quere D. Surface phenomena:Contact time of a bouncing drop[J]. Nature,2002,417:811-812.
    [187]Neelesh A, Patankar. Mimicking the Lotus Effect:Influence of Double Roughness Structures and Slender Pillars[J]. Langmuir,2004,20:8209-9213.
    [188]陈新华,孟庆祥.超疏水固体表面的形态特征[J].许昌学院学报,2005,24:49-57.
    [189]Wenzel R N. Resistance of solid surfaces to wetting by water[J]. Ind. Eng. Chem.,1936,28: 988-994.
    [190]Wenzel R N. Surface roughness and contact angle (letter)[J]. Phys. Colloid Chem.,1949, 53:1466-1467.
    [191]Cassie A B D, Baxter S. Wettability of porous surfaces[J]. Trans. Faraday Soc.,1944,40: 546-551.
    [192]Cassie A B D. Contact angles[J]. Discuss. Faraday Soc.,1948,3:11-16.
    [193]Li W, Amirfazli A. A thermodynamic approach for determining the contact angle hysteresis for superhydrophobic surfaces[J]. J. Collode Surface Sci.,2005,292:195-201.
    [194]Bico J, Thiele U, Quere D. Wetting of textured surface[J]. Colloids Surf. A,2002,206: 41-46.
    [195]He B, Neelesh A, Lee J. Mutiple equilibrium droplet shapes and design criterion for rough hydrophobic surface[J]. Langmuir,2003,19:4999-5003.
    [196]Lafuma A, Quere D. Superhydrophobic states[J]. Nature Materials,2003,2:457-460.
    [197]Neelesh A. Patankar. Transition between Superhydrophobic States on Rough Surfaces[J]. Langmuir,2004,20:7097-7102.
    [198]Shirtcliffe N J, McHale G, Newton M I, Perry C C. Wettingand wetting transitions on copper-based super-hydrophobic surfaces[J]. Langmuir,2005,21:937-943.
    [199]Nishino T, Meguro M, Nakamae K, Matsushita M, Ueda Y. The lowest surface free energy based on -CF3 alignment[J]. Langmuir,1999,15:4321-4323.
    [200]Y. Thmos. An Essay on the Cohesion of Fluids[J]. Philosophical Transactions of the Royal Society of London,1805,95:65-87.
    [201]Jiang L, Wang R, Yang B, Li T J, Tryk D A, Fujishima A, Hashimoto K, Zhu D B. Binary Cooperative Complementary Nanoscale Interfacial Materials[J]. Pure. Appl. Chem.,2000,72: 73-81.
    [202]Bico J, Tordeux C, Quere D. Rough wetting[J]. Europhysics Letters,2001,55:214-220.
    [203]Gogte S, Vorobieff P, Truesdell R, Mammoli A. Effective slip on textured superhydrophobic surfaces[J]. Physics of Fluids,2005,17:051701-051703.
    [204]Kim J, Kim C J. Nanostructured surfaces for dramatic reduction of flow resistance in droplet-based microfluidics[J]. Proceedings of the IEEE Conerence on MEMS, Las Vegas, NV,2002:479-482.
    [205]Anantharaju N, Panchagnula M, Kimsey W, Neti S, Tatic-Lucic S. Surface Topography Induced Ultrahydrophobic Behavior:Effect of Three-phase Contact Line Topology [C]. Proceedings of ASME International Mechanical Engineering Congress and Exhibition,2006.
    [206]Tom N. Krupenkin, J. Ashley Taylor, Tobias M. Schneider, Shu Yang. From Rolling Ball to Complete Wetting:The Dynamic Tuning of Liquids on Nanostructured Surfaces[J]. Langmuir, 2004,20:3824-3827.
    [207]Marmur A. Wetting on Hydrophobic Rough Surfaces:To Be Heterogeneous or Not To Be?[J]. Langmuir,2003,19:8343-8348.
    [208]Qu M N, Zhang B W, Song S Y, Chen L, Zhang J Y, Cao X P. Fabrication of Superhydrophobic Surfaces on Engineering Materials by a Solution-Immersion Process[J]. Adv. Funct. Mater.,2007,17:593-596.
    [209]Balu B, Breedveld V, Hess D W. Fabrication of 'roll-off' and 'sticky' superhydrophobic cellulose surfaces via plasma processing[J]. Langmuir,2008,24:4785-4790.
    [210]Gao L C, McCarthy T J. Contact angle hysteresis explained[J]. Langmuir,2006,22: 6234-6237.
    [211]Liu L J, Zhao J S, Zhang Y, Zhao F, Zhang Y B. Fabrication of superhydrophobic surface by hierarchical growth of lotus-leaf-like boehmite on aluminum foil[J]. Journal of Colloid and Interface Science,2011,358:277-283.
    [212]Teperik T V, Popov V V, Garcia de Abajo F J. Total resonant absorption of light by plasmons on the nanoporous surface of a metal[J]. Physics of the Solid State,2005,47: 172-175.
    [213]Murnane M M, Kapteyn H C, Gordon S P, Bokor J, Falcone R W. Efficient coupling of highintensity subpicosecond laser pulses into solids[J]. Appl. Phys. Lett.,1993,62: 1068-1070.
    [214]Coyle S, Netti M C, Baumberg J J, Ghanem M A, Birkin P R, Bartlett P N, Whittaker D M. Confined Plasmons in Metallic Nanocavities[J]. Phys. Rev. Lett.,2001,87:176801-176804.
    [215]Vorobyev A Y, Guo C L. Femtosecond laser nanostructuring of metals[J]. Opt. Express, 2006,14:2164-2169.
    [216]Her T H, Finlay R J, Wu C, Deliwala S, Mazur E. Microstructuring of silicon with femtosecond laser pulses[J]. Appl. Phys. Lett.,1998,73:1673-1675.
    [217]Huang Z, Carey J E, Liu M, Guo X, Mazur E, Campbell J C. Microstructured silicon photodetector[J]. Appl. Phys. Lett.,,200689:033506-033508.
    [218]Myers R A, Farrell R, Karger A M, Carey J E, Mazur E. Enhancing near-infrared avalanche photodiode performance by femtosecond laser microstructuring[J]. Appl. Opt.,2006,45: 8825-8831.
    [219]Vorobyev A Y, Guo C L. Enhanced absorptance of gold following multipulse femtosecond laser ablation[J]. Phys. Rev. B,2005,72:195422-195426.
    [220]Vorobyev A Y, Guo C L. Colorizing metals with femtosecond laser pulses[J]. Appl. Phys. Lett.,2008,92:41914-41914.
    [221]Oliveira V, Ausset S, Vilar R. Surface micro/nanostructuring of titanium under stationary and non-stationary femtosecond laser irradiation[J]. Applied Surface Science,2009,255: 7556-7560.
    [222]Wu B, Zhou M, Li J, Ye X, Li G, Cai L. Superhydrophobic surfaces fabricated by microstructuring of stainless steel using a femtosecond laser[J]. Applied Surface Science, 2009,256:61-66.
    [223]Sobnack M B, Tan W C, Wanstall N P, Preist T W, Sambles J R. Stationary Surface Plasmons on a Zero-Order Metal Grating[J]. Phys. Rev. Lett.,1998,80:5667-5670.
    [224]Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics[J]. Nature, 2003,424:824-830.
    [225]Mao C, Qiu Y Z, Sang H B, Mei H, Zhu A P, Shen J, Lin S C. Various approaches to modify biomaterial surfaces for improving hemocompatibility[J]. Advances in Colloid and Interface Science,2004,110:5-17.
    [226]Huang N, Yang P, Leng Y X, Chen J Y, Sun H, Wang J, Wang G J, Ding P D, Xi T F, Leng Y. Hemocompatibility of titanium oxide films[J]. Biomaterials,2003,24:2177-2187.
    [227]Perrenoud I A, Rangel E C, Mota R P, Durrant S F, da Cruz N C. Evaluation of Blood Compatibility of Plasma Deposited Heparin-like Films and SF66 Plasma Treated Surfaces[J]. Materials Research,2010,13:95-98.
    [228]Yu Y T. Bio-medical Materials[M]. Tianjin:Tianjin University Press,2000.
    [229]Armitage D A, Parker T L, Grant D M. Biocmpatibility and hemocompatibility of surface-modified NiTi alloys[J]. Biomed. Mater. Res. A,2003,66:129-137.
    [230]Liu Q, Cheng X N, Xu H X, Fei H X, Xu W R. Blood compatibility of 316L stainless steel and NiTi alloy vascular stent[J]. Journal of Clinical Rehabilitative Tissue Engineering Research,2008,12:735-738.
    [231]Glass-Brudzinski J, Perizzolo D, Brunette D M. Effects of substratum surface topography on the organization of cells and collagen fibers in collagen gel cultures[J]. Journal of Biomedical Materials Research,2002,61:608-618.
    [232]Houtchens G R, Foster M D, Desai T A, Morgan E F, Wong J Y. Combined effects of microtopography and cyclic strain on vascular smooth muscle cell orientation[J]. Journal of Biomechanics,2008,41:762-769.
    [233]den Braber E T, de Ruijter J E, Ginsel L A, von Recum A F, Jansen J A. Orientation of ECM protein deposition, fibroblast cytoskeleton, and attachment complex components on silicone microgrooved surfaces[J]. Journal of Biomedical Materials Research,1998,40: 291-300.
    [234]Sarkar S, Dadhania M, Rourke P, Desai T A, Wong J Y. Vascular tissue engineering: microtextured scaffold templates to control organization of vascular smooth muscle cells and extracellular matrix[J]. Acta Biomaterialia,2005,1:93-100.
    [235]Brunette D M, Chehroudi B. The effects of the surface topography of micromachined titanium substrata on cell behavior in vitro and in vivo[J]. Journal of Biomechanical Engineering,1999,121:49-57.
    [236]Glawe J D, Hill J B, Mills D K, Mc Shane M J. Influence of channel width on alignment of smooth muscle cells by high aspectratio microfabricated elastomeric cell culture scaffolds[J]. Journal of Biomedical Materials Research A,2005,75:106-114.
    [237]Meyle J, von Recum A F, Gibbesch B, Huttemann W, Schlagenhauf U, Schulte W. Fibroblast Shape Conformation to Surface Micromorphology[J]. Journal of Applied Biomaterials,1991,2:273-276.
    [238]Meyle J, Brich M, Miiller K, Nisch W, Hammerle H. Fibroblast adhesion and spreading on microstructured surfaces[J]. Journal of Dental Research,1998,77:1211-1211.
    [239]Meyle J, Gultig K, Wolburg H, von Recum A F. Fibroblast Anchorage to Microtextured Surfaces[J]. Journal of Biomedical Materials Research,1993,27:1553-1557.
    [240]Lu J, Rao M P, MacDonald N C, Khang D, Webster T J. Improved endothelial cell adhesion and proliferation on patterned titanium surfaces with rationally designed, micrometer to nanometer features[J]. Acta Biomaterialia,2008,4:192-201.
    [241]郝和平.医疗器械生物学评价标准实施指南[M].北京:中国标准出版社,2000.
    [242]Wei W J. Recent advances in platelet-material interactions[J]. Biomedical Engineering Foreign Medical Sciences,2004,27:22-26.
    [243]Imai Y, Nose Y. A new method for evaluation of antithrombogenicity of materials[J]. J. Biomed Mater Res.,1972,6:165-172.
    [244]郑傲然.超疏水性表面的制备及血液相容性研究.江苏大学硕十生毕业论文.2007:54-55.
    [245]Geng F, Shi P, Cheng F T. TiO2 film preparation and hemocompatibility of NiTi shape memory alloy [J]. The Chinese Journal of Nonferrous Metals,2004,14:1575-1579.
    [246]Brunette D M, et al., Titanium in medicine:material science, surface science, engineering, biological responses and medical applications. New York:Springer,2001.
    [247]Dunn G A, Brown AF. Alignment of Fibroblasts on Grooved Surfaces Described by a Simple Geometric Transformation[J]. Journal of Cell Science,1986,83:313-340.
    [248]Mwenifumbo S, Li M W, Chen J B, Beye A, Soboyejo W. Cell/surface interactions on laser micro-textured titanium-coated silicon surfaces[J]. Journal of Materials Science:Materials in Medicine,2007,18:9-23.
    [249]Provenzano P P, Inman D R, Eliceiri K W, Trier S M, Keely P J. Contact Guidance Mediated Three-Dimensional Cell Migration is Regulated by Rho/ROCK-Dependent Matrix Reorganization[J]. Biophysical Journal,2008,95:5374-5384.
    [250]Hacking S A, Zuraw M, Harvey E J, Tanzer M, Krygier J J, Bobyn J D. A physical vapor deposition method for controlled evaluation of biological response to biomaterial chemistry and topography [J]. Journal of Biomedical Materials Research Part A,2007,82:179-187.
    [251]Wang J H, Grood E S, Florer J, Wenstrup R. Alignment and Proliferation of MC3T3-E1 Osteoblasts in Microgrooved Silicone Substrate Subjected to Cyclic StretchingfJ]. Journal of Biomechanics,2000,33:729-735.
    [252]Bromberek B A, Enever P A J, Shreiber D I, Caldwell M D, Tranquillo R T. Macrophages influence a competition of contact guidance and chemotaxis for fibroblast alignment in a fibrin gel coculture assay [J]. Experimental Cell Research,2002,275:230-242.
    [253]Chehroudi B, Gould T R L, Brunette D M. Effects of a Grooved Titanium-Coated Implant Surface on Epithelial-Cell Behavior Invitro and Invivo[J]. Journal of Biomedical Materials Research,1989,23:1067-1085.
    [254]翟中和,王喜忠,丁明孝主编.细胞生物学[M].北京:高等教育出版社,2007.
    [255]Bailly M, Condeelis J. Cell motility:insights from the backstage[J]. Nature Cell Biology, 2002,4:292-294.
    [256]Zhou W, et al., The effect of surface roughness and wettability of nanostructured TiO2 film on TCA-8113 epithelial-like cells[J]. Surface & Coatings Technology,2006,200:6155-6160.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700