发电机组灰色预测可拓控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代电力系统的快速发展在带来巨大经济效益的同时,也使得电力系统的稳定问题日趋复杂和严重。作为提高电力系统稳定运行能力、改善电力系统稳定性的重要措施,发电机组励磁控制和调速控制得到了广泛应用。鉴于已有控制策略的缺点和局限性,开展新型的发电机组励磁和调速控制方法的研究仍具有重要和现实的意义。
     本文对电力系统稳定控制的研究现状进行了综述和分析。认为:由于电力系统具有维数高、工况时变、非线性强等特点,采用常规线性控制方法难以取得令人满意的控制效果,而各种基于现代控制理论的非线性控制方法算法复杂、实时性差,模糊控制和神经网络控制方法规则库或知识库设计复杂、工程实用性较差。灰色预测控制是一种事前控制方法,可拓控制方法不要求建立精确的数学模型,且实时性好,二者的有机结合将可能获得更好的控制效果。
     作为结合灰色预测和可拓控制方法的基础,简述了灰色预测的基本原理,针对灰色预测原始数据含负数的情况,采用一种原理简单且易于实现的数据变换方法对含负数的原始数据进行变换,算例表明了其有效性;简述了可拓方法的基本概念,在此基础上把自然界普遍存在的对偶性纳入物元的可拓性范畴,提出了基于物元对偶性的可拓方法——相似偶方法,并用实例证明了该方法可以将未知矛盾问题的求解转化为另一已知问题的求解,为复杂问题的解决提供了一条可能途径。
     为结合灰色预测方法和可拓控制技术的优点,本文提出了一种基于灰色预测的可拓控制(GPEC)方法,给出了灰色预测可拓控制器的设计过程,并应用论文提出的一种具有较高搜索速度和精度的首尾轮换交叉(HTAC)遗传算法对控制器的参数进行优化。线性系统、时滞系统和非线性系统仿真表明,与采用PID、可拓控制方式相比,GPEC控制方式可以改善系统的动态性能。
     本文将GPEC方法应用于发电机组励磁、调速、励磁调速综合控制器的设计。所设计的GPEC励磁控制器以发电机机端电压作为灰色预测环节的输入,连续采集5个数据进行灰色预测,输出作为可拓控制器的特征量。GPEC调速控制器的设计利用调速控制系统与励磁控制系统之间存在的对偶性,在已设计的GPEC励磁控制器的基础上,应用本文提出的相似偶方法直接进行,简化了设计过程。在设计励磁调速综合GPEC控制器时,针对传统可拓控制器无法应用于多变量系统的问题,提出了一种多输入-多输出可拓控制器,并基于此方法设计了综合控制器。
     本文采用时域仿真法对所设计的GPEC励磁、调速、励磁调速综合控制器的控制效果进行检验。分别以单机无穷大系统和多机电力系统为对象,使用适当的数学模型,研究所设计控制器在系统不同初始工况下对大、小扰动稳定性的影响。仿真结果表明:与常规控制方式相比,基于可拓控制策略的控制器具有较好的控制效果;加入灰色预测后,控制器的性能得到了进一步提高;无论对运行工况变化,还是对模型精确程度以及扰动大小,GPEC控制方式均具有较强的鲁棒性。
The rapid development of modern power system brings good economic returns, but at the same time, it makes the stability problem of power system more complicated and serious. As the important measures to improve stable operation ability and to enhance power system stability, excitation system controller and governor controller of generator unit have been widely used. In view of shortcomings and limitations of existing control methods, the study on new control strategy for generator unit is still important and realistic.
     By the reviewing and analyzing about the study status quo of power system stability control, it is achieved that the conventional linear control methods are disillusionary because of the excessive dimensions, diverse operating modes and intense nonlinearity of modern power system, all kinds of nonlinear control methods based on modern control theory are discouraging because of the complex algorithms and poor real-time operation, and fuzzy control and neural network control are not satisfied because the design of rules or knowledge base is complex and the engineering practicality are poor. Grey prediction control is a pre-control methods, and extension control is a real-time method which does not require accurate mathematical model. The organic integration of two methods will get better control effects.
     As a base combining grey prediction and extension control method, the basic principles of grey prediction are introduced in brief. For the original raw data containing negatives, a simple and easy-to-realize transform method is used, and an example shows the effectiveness of the method. The extension methods are introduced in brief. On this basis, the widespread duality in nature is brought into matter-element category and an extension method namely analogical-dual based on the duality of matter-element is produced. An example shows that the method can translate the solving of an unknown incompatible problem into the solution of another known problem, so as to provide a possible way to solve the complex problem.
     In order to combine the advantages of grey prediction method and extension control technology, a grey prediction-based extension control (GPEC) method is proposed. The controller design process is given. A modified genetic algorithm (GA) which can enhance the search speed and accuracy is applied to optimize the controller parameters. The simulation study respectively on linear system, time-lag system and nonlinear system indicate that GPEC control method can improve the dynamic performance compared with PID and extension control method.
     The GPEC method is applied to design excitation system controller, governing controller and integrated controller of generator set. The terminal voltage of generator is taken as the input of grey predictor of GPEC excitation controller, 5 data are gathered continuously to carry on grey prediction, and the output is taken as the characteristic variable of extension controller. With the duality which exists between governing control system and excitation control system, the GPEC governing controller is designed directly by using the proposed analogical-dual method, which simplified the design process. A multi-input multi-output extension controller is proposed in view of the shortcoming of traditional extension controller which is unable to apply in multi-variable system, and the controller integrating governing and excitation system is designed based on this method
     The time-domain simulation method is applied to examine the control effects of excitation, governing and integrated controller designed by GPEC method. A single-machine infinite-bus power system and a multi-machine system are taken as the object and suitable mathematical models are used to study the controller’s effects for large disturbance and small signal under different initial operating modes. The simulation results indicated that the extension controller has good control effect comparing with conventional method, controller's performance is further enhanced after joining the grey prediction and the GPEC control method always has strong robustness in operating condition, model precise degree and the perturbation size.
引文
1齐旭,曾德文,史大军,等.特高压直流输电对系统安全稳定影响研究.电网技术, 2006, 30(2):1~6.
    2董俊,束洪春,司大军,等.特高压远距离大容量云电送粤中的稳定问题研究.电网技术, 2006, 30(24):10~15.
    3于尔铿,韩放,谢开.电力市场.北京:中国电力出版社, 1998.
    4 Yakout Mansour. Competition and System Stability-The Reward and the Penalty. Proceedings of the IEEE, 2000, 88(2): 228~234.
    5何大愚.对于美国西部电力系统1996年7月2日大停电事故的初步认识.电网技术, 1996, 20(9):35~39.
    6薛禹胜.综合防御由偶然故障演化为电力灾难——北美“8.14”大停电的警示.电力系统自动化, 2003, 27(18):1~5.
    7周孝信,郑建超,沈国荣,等.从美加东北部电网大面积停电事故中吸取教训.电网技术, 2003, 27 (9):1~4.
    8胡学浩.美加联合电网大面积停电事故的反思和启示.电网技术, 2003, 27(9): 2~6.
    9杨开国.系统震荡造成全厂机组解列事故的处理.电力安全技术, 2007, 9(6): 52~53.
    10刘取.电力系统稳定性及发电机励磁控制.北京:中国电力出版社, 2007.
    11方思立,朱方.电力系统稳定器的原理及其应用.北京:中国电力出版社, 1996.
    12 D. C. Lee, R. E. Beaulieu, J. R. R. Service. Power System Stabilizer Using Speed and Electrical Power Input: Design and Field Experience. IEEE Trans. on Power Apparatus and Systems, 1981, 100(9): 4151~4157.
    13刘增煌,方思立.电力系统稳定器对电力系统动态稳定的作用及与其他控制方式的比较.电网技术, 1998, 22(3):4~10.
    14史洪德,范维维.二滩水电站PSS对抑制系统低频振荡的作用.水力发电, 2000, 5:20~23.
    15朱方,刘增煌,高光华.电力系统稳定器对三峡输电系统动态稳定的影响.电网技术, 2002, 26(8):44~47.
    16 YU Yao-nan. Electric Power System Dynamics. Newyork:Academic Press, 1983.
    17 F.R.Schleif, G.E.Martin, R.R.Angell. Damping of System Oscillations with Hydrogenerator Unit. IEEE Trans. on Power Apparatus and Systems, 1967, 86(4): 438~442.
    18 H.A.M.Moussa,Y.N.Yu. Improving Power System Damping through Supplementary Governor Control. IEEE PES, 1972:470~473.
    19郝玉山,王海风,韩祯祥,等.电力系统稳定器实现于调速系统之研究:可行性分析.电力系统自动化, 1992, 16(5):36~40.
    20郝玉山,王海风,韩祯祥,等.电力系统稳定器实现于调速系统之研究:多机系统中特性分析.电力系统自动化, 1993, 17(3):26~32.
    21窦春霞.组合电力系统稳定器GPSS的设计.电力系统及其自动化学报, 2000, 12(2):13~15.
    22董清,郝玉山,郝育黔,等.调速系统电力系统稳定器动模实验系统.华北电力大学学报, 1999, 26(2):49~54.
    23董清,高曙,侯子利,等.利用功角和转速的非线性最优调速附加控制提高汽轮发电机静态和暂态稳定性的研究.中国电机工程学报, 2001, 21(2):46~49.
    24王云,何利铨.模糊-线性最优HGPSS原理.贵州工业大学学报, 1998, 27(4): 62~66.
    25董清. T同步发电机调速系统附加HB∞B控制的研究. T华北电力大学工学博士学位论文, 2003.
    26王明东,刘宪林.调速器侧模糊PSS改善水电系统稳定性的仿真研究.电力自动化设备, 2003, 23(9): 36~39.
    27 Y. N. Yu, K. Vongsuriya, L. N. Wedman. Application of an Optimal Control Theory to a Power System. IEEE Trans. on Power Apparatus and Systems, 1970, 89(1): 55~62.
    28卢强,韩英铎,王仲鸿. T利用最优励磁控制提高远距离输电系统稳定性的研究. T大电机技术, 1980, 10(2): 35~43.
    29卢强,王仲鸿,韩英铎.快速汽门的最优控制措施及其在动态模拟系统上的试验研究.中国科学A辑, 1980, 23(4):409~419.
    30卢强,王仲鸿,韩英铎,等. T大型汽轮发电机组的最优综合控制及其在动态模拟系统上的试验研究.清华大学学报, 1981, 21(2):63~77.
    31卢强,王仲鸿,韩英铎.输电系统最优控制.北京:科学出版社, 1982.
    32 C. W. Talor, S. Lefebvre. HVDC Controls for System Dynamic Performance. IEEE Trans. on Power Systems, 1991, 6(2):743~752.
    33 A. T. Alexandridis, G. D. Galanos. Design of a Reduced Order Observer for Optimal Decentralized Control of HVDC Systems. IEEE Trans. on Power Systems. 1998, 3 (3): 963~969
    34罗春雷,孙洪波,徐国禹. UPFC动态建模与最优控制研究.电力系统自动化, 1997, 21(11):4~6.
    35颜伟,朱继忠,徐国禹. TUPFC线性最优控制方式的研究及其对暂态稳定性的改善. T中国电机工程学报, 2000, 20(1):45~49.
    36 M.Klein, L.X.Le, G.J.Rogers, etal. HB∞BDamping Controller Design in Large Power Systems. IEEE Trans. on Power Systems, 1995, 10(1):158~166.
    37田立军,郭雷,陈珩. HB∞B电力系统稳定器的设计.中国电机工程学报, 1999, 19(3):59~62.
    38杨洋,张建成.利用LMI技术设计多机系统TCSC鲁棒控制器.电力自动化设备, 2007, 27(5):105~109.
    39卢强,孙元章.电力系统非线性控制.北京:科学出版社,1993.
    40 Lu Qiang, Sun Yuanzhang, Xu Zheng, et a1. Decentralized Nonlinear Optimal Excitation Control. IEEE Trans. on Power Systems, 1996, 11(4):1957~1962.
    41 Sun Yusong, Sun Yuanzhang, Lu Qiang, et al. Nonlinear Decentralized Robust Governor Control for Hydroturbo-generator Sets of Multi-machine System. Proceedings of the World Congress on Intelligent Control and Automation (WCICA), 2000, 1:45~52.
    42 Lu QiangT, TSun Yusong, Sun Yuanzhang, et al. Nonlinear Decentralized Robust Governor Control for Hydro Turbine-generator Sets in Multi-machine Power Systems. International Journal of Electrical Power and Energy Systems, 2004, 26(5):333~339.
    43 M .J. Jin, W. Hu, S. W. Mei, et al. Nonlinear Coordinated Control of Excitation and Governor for Hydraulic Power Plants. IEE Proceedings: Generation, Transmission and Distribution, 2005, 152(4):544~548.
    44周双喜,汪兴盛.基于直接反馈线性化的非线性励磁控制器.中国电机工程学报, 1995, 15(4):281~288.
    45颜伟,吴文胜,华智明,等. SSSC非线性控制的直接反馈线性化方法.中国电机工程学报, 2003, 23(3):65~68.
    46 You-yi Wang, David J. Hill. Robust Nonlinear Coordinated Control of Power Systems. Automatic, 1996, 32(4):611~618.
    47李东海,姜学智,李立勤,等.逆系统方法在电力系统控制中的应用.电网技术, 1997, 21(7):10~12.
    48李春文,杜继宏,李鹏,等.基于逆系统方法的汽轮发电机组汽门开度的非线性控制.电子技术应用, 1998, 4:27~29.
    49张腾,戴先中,陈翔.基于逆系统方法的汽轮发电机综合控制器.电力系统自动化, 2001, 25(6):27~30.
    50葛友,李春文,孙政顺.逆系统方法在电力系统综合控制中的应用.中国电机工程学报, 2001, 21(4):6~10.
    51 M. H. Haque, P. Kumkratug. Application of Lyapunov Stability Criterion to Determine the Control Strategy of a STATCOM. IEE Proceedings: Generation, Transmission and Distribution, 2004, 151(3):415~420.
    52 Newton G. Bretas, Luis F. C. Alberto. Lyapunov Function for Power Systems with Transfer Conductances: Extension of the invariance principle. IEEE Trans. on Power Systems, 2003, 18(2):769~777.
    53常鲜戎,潘云江,万军,等.基于Lyapunov稳定性理论的发电机非线性励磁控制研究.电力系统自动化, 1994, l8(10):25~29.
    54 M. Januszewski, J. Machowski, J. W. Bialek. Application of the Direct Lyapunov Method to Improve Damping of Power Swings by Control of UPFC. IEE Proceedings: Generation, Transmission and Distribution, 2004, 151(2):252~260.
    55 L. D. Colvara, S. C. B. Araujo, E. B. Festraits. Stability Analysis of Power System Including Facts (TCSC) Effects by Direct Method Approach. International Journal of Electrical Power and Energy Systems, 2005, 27(4):264~274.
    56 Victor H. Casanova Alcalde, Abiezer A. Fernandes, Lelio R. Soares Jr. Electrical Power Systems Stabilization through Series Compensation by Using Variable Structure Control. Proceedings of the 2006 International Workshop on Variable Structure Systems(VSS'06), 2006:98~103.
    57 Wah-chun Chan, Yuan-yih Hsu. Optimal Control of Electric PowerGeneration Using Variable Structure Controllers. Electric Power Systems Research, 1983, 6(4): 269~278.
    58 V. G. Samarasinghe, N. C. Pahalawaththa. Stabilization of a Multimachine Power System Using Nonlinear Robust Variable Structure Control. Electric Power Systems Research, 1997, 43(4):11~17.
    59于占勋,刘瑞叶,陈学允.带等效控制项的非线性变结构附加励磁控制.电力系统自动化, 1999, 23(1):37~39.
    60 G.Ray, S. Dey, T. K. Bhattacharyya. Design of Variable Structure Controller Using Fuzzy PI Type Sliding Surface: An Application to Load-frequency Control Problem. International Journal of Emerging Electric Power Systems, 2006, 7(4):1~19.
    61 G.Ray, S. Dey, T. K. Bhattacharyya. Multi-area Load Frequency Control of Power Systems: A Decentralized Variable Structure Approach. Electric Power Components and Systems, 2005, 33(3):315~331.
    62 P. K. Dash, A. M. Sharaf, E. F. Hill. Adaptive Stabilizer for Thyristor Controlled Static VAR Compensators for Power System. IEEE Trans. on Power Systems, 1989, 4(2): 403~410.
    63 H. Youset, M. A. Simaan. Model Reference Adaptive Control for Large Scale Systems with Application to Power Systems. IEE Proceedings: Control Theory and Applications, 1991, 138(4):321~326.
    64 H. Jiang, J. F. Dorsey, Z. Qu, et al. Global Robust Adaptive Control of Power Systems. IEE Proceedings: Generation, Transmission and Distribution, 1994, 141(5): 429~436.
    65 A. Ghosh, G. Ledwich, O. P. Malik, et al. Power System Stabilizer Based on Adaptive Control Techniques. IEEE Trans. on Power Apparatus and Systems, 1984, 103(8): 1983~1989.
    66 N. C. Pahalawatha, G. S. Hope, O. P. Malik, et al. Real Time Implementation of MIMO Adaptive Power System Stabilizer. IEE Pro.: Generation, Transmission and Distribution, 1990, 137(3):186~194.
    67卢强,梅生伟,申铁龙,等.非线性HB∞B励磁控制器的递推设计.中国科学E辑, 2000, 30(1):70~78.
    68 Li Shu-rong, Sun Chu-xiao, Sun Yuanzhang, et al. Robust Excitation Controllers Design for Power Systems. Control Theory and Applications,1996, 13(6):482~488.
    69 Li G. J., Lie T. T., Soh C. B., et al. Design and Application of Decentralized Nonlinear Control for Stability Enhancement in Power Systems. Proceedings of the 1998 IEEE International Conference on Control Application, 1998:1358~1362.
    70 Mei Shengwei, Gui Xiaoyang, Shen Chen, etal. Dynamic Extending Nonlinear HBinfinity BControl and Its Application to Hydraulic Turbine Governor. Science in China, Series E: Technological Sciences, 2007, 50(5):618~635.
    71 Mei S., Shen T., Hu W., etal. Robust HBinfinity BControl of a Hamiltonian System with Uncertainty and Its Application to a Multi-machine Power System. IEE Proceedings: Control Theory and Applications, 2005, 152(2):202~210.
    72 Peng Xiao-tao, Cheng Shi-jie, Wen Jin-yu. Application of Nonlinear PID Controller in Superconducting Magnetic Energy Storage. International Journal of Control, Automation and Systems, 2005, 3(2):296~301.
    73邱宇,陈学允. T用于静止无功补偿器的非线性PID控制器. T中国电机工程学报, 2002, 22(11):41~44.
    74韩京清.自抗扰控制器及其应用.控制与决策, 1998, 13 (1):19~23.
    75 Zhang Cai, Zhou Xiao-xin. Auto-disturbances Rejection Control of TCSC. Control Engineering Practice, 1999, 7(2):195~199.
    76马幼捷,王新志,周雪松.基于微分几何理论和自抗扰控制技术的励磁控制器设计.电工电能新技术, 2007, 26(1):34~37.
    77 Yu Tao, Shen Shan-de, Li Donghai, etal. A Novel Coordinated Auto-disturbance-rejection Excitation and SVC Controller. IEEE Power Engineering Society General Meeting, 2005, v1:523~527.
    78李士勇.模糊控制-神经网络和智能控制论.哈尔滨:哈尔滨工业大学出版社, 1996.
    79 M. Sanaye-Pasand, O. P. Malik. A Fuzzy Logic Based PSS Using a standardized Rule Table. Electric Machines and Power Systems, 1999, 27:295~310.
    80 N. Nallathambi, P. N. Neelakantan. Fuzzy Logic Based Power System Stabilizer. An International Multi-Topic Conference, E-Tech 2004:68~73.
    81 A. Ajami, S. H. Hosseini, S. Khanmohammadi, et al. Voltage Stability Enhancement and Reactive Power Compensation of AC Transmission System by Fuzzy Controlled STATCOM. WSEAS Transactions on Circuits and Systems, 2004, 4(11): 1553~1560.
    82赵书强,丁峰,侯子利,等.自寻优模糊电力系统稳定器的设计.电工技术学报, 2004, 19(3):94~98.
    83 H. R. Najafi, A. Shoulaie, F. Robinson, et al. A New Self-tuning Robust PI Controller for HVDC Systems. Proceedings of the 39th International Universities Power Engineering Conference (UPEC), 2004, 2:698~703.
    84 B. Bouchiba. Coordinated Control Design of Generator Excitation and SVC for Transient Stability of Power System Using Adaptive Fuzzy ControlT.T Modelling, Measurement and Control, 2006, 79(3-4):31~45.
    85 Q. H. Wu, B. W. Hoggbw, et al. On-line Training of Neural Network Model and Controller for Turbogenerators. Proc. of International Forum on Applications of Neural Networks to Power Systems, 1991:232~238.
    86 Z. Y. Mohamed, K. Jain Praveen, E. A. Mohamed, et al. A Neuro-optimal Control Power System Stabilizer: A Comparative Study. Canadian Conference on Electrical and Computer Engineering, 2004, 1:55~60.
    87 A. Demiroren, H. L. Zeynelgil, N. S. Sengor. Automatic Generation Control for Power System with SMES by Using Neural Network Controller. Electric Power Components and Systems, 2003, 31(1):1~25.
    88 A. Demiroren, H. L. Zeynelgil, N. S. Sengor. Automatic Generation Control Using ANN Technique for Multi-area Power System with SMES Units. Electric Power Components and Systems, 2004, 32(2):193~213.
    89 D. K. Chaturvedi, O. P. Malik. Generalized Neuron-based Adaptive PSS for Multimachine Environment. IEEE Transactions on Power Systems, 2005, 20(1): 358~366.
    90 G. K. Venayagamoorthy, Ronald G. Harley. Two Separate Continually Online-trained Neurocontrollers for Excitation and Turbine Control of a Turbogenerator. IEEE Transactions on Industry Applications, 2002, 38(3):887~893.
    91 W. X. LiuT, TJ. Sarangapani, G. K. Venayagamoorthy, et al. Decentralized Neural Network-based Excitation Control of Large-scale Power Systems.International Journal of Control, Automation and Systems, 2007, 5(5):526~538.
    92 J. G. Ziegler, N. B. Nichols. Optimum Setting for Automatic Controllers. Trans. ASME, 1942, 64:759~768.
    93 Jinyu Wen, Shijie Cheng, O. P. Malik. A Synchronous Generator Fuzzy Excitation Controller Optimally Designed with a Genetic Algorithm. IEEE Trans. on Power Systems, 1998. 13(3):884~889.
    94 M. A. Abido. Coordinated Design of Power System Stabilizers and Static Phase Shifters Using Genetic Algorithm. Electric Machins and Power Systems, 1999, 27(10):1069~1084.
    95靳晓凌,赵建国,王海风.基于免疫网络理论的TCSC与PSS协调控制.天津大学学报, 2007, 40(9):1035~1040.
    96杨建宁,孙玉坤,成立,等.采用免疫搜索的电网电压非线性模型预测控制.江苏大学学报(自然科学版), 2008, 29(1):56~60.
    97 A. L. Elshafei, K. A. El-Metwally, A. A. Shaltout. A variable-structure Adaptive Fuzzy-logic Stabilizer for Single and Multi-machine Power Systems. Control Engineering Practice, 2005, 13(4):413~423.
    98 P. K. Dash, M. H. Naeem. A Fuzzy Variable Structure Controller for Transient Stability Enhancement of Flexible AC Transmission System. International Journal of Power and Energy Systems, 2006, 26(3):205~214.
    99 Yilu Liu, W. Sabry. A Variable-structure Genetic-fuzzy Controller for Large-scale Power Systems. Engineering Intelligent Systems, 2005, 13(1):9~13.
    100 Stella Morris, P. K. Dash, K. P. Basu. A Fuzzy Variable Structure Controller for STATCOM. Electric Power Systems Research, 2003, 65(1):23~34.
    101陆翔,戴先中,张腾,等.多目标励磁控制的神经网络逆系统方法.电力系统自动化, 2002, 26(12):35~39.
    102梁有伟,胡志坚,陈允平.基于神经网络逆系统的电力系统稳定器的研究.电工技术学报, 2004, 19(5):61~65,14.
    103刘瑞叶,王海超,马志波. T一种神经网络变结构电力系统稳定器的设计. T继电器, 2002, 30(8):33~35, 49.
    104 Chang Hong-Chan, Wang Mang-Hui. Neural Network Based Self-organizing Fuzzy Controller for Transient Stability of MultimachinePower Systems. IEEE Trans. on Energy Conversion, 1995,10(2):339~347.
    105 Chamni Jaipradidtham. Adaptive Neuro-Fuzzy SVC for Multimachine Hybrid Power System Stability Improvement with a Long of Double Circuit Transmission Lines. Lecture Notes in Computer Science, v 3498, n III, Advances in Neural Networks: Proceedings of Second International Symposium on Neural Networks, 2005:668~673
    106 M. A. Abido, Y. L. Abdel Magid. Hybrid Neuro-fuzzy Power System Stabilizer for Multimachine Power Systems. IEEE Trans. on Power Systems, 1998, 13(4): 1323~1330.
    107 O. P. Malik, A. Hariri. Power System Stabilizer Based on a Self-learning adaptive Network Fuzzy Inference System. Trans. of the Institute of Measurement and Control, 2002, 24(2):153~173.
    108 A. Hariri, O. P. Malik. A Fuzzy Logic Based Power System Stabilizer with Learning Ability. IEEE Trans. on Energy Conversion, 1996, 11(4):721~727.
    109 N. Hosseinzadeh, A. Kalam. A Rule-based Fuzzy Power System Stabilizer Tuned by a Neural Network. IEEE Trans. on Energy Conversion, 1999, 14(3):773~779.
    110 Y. W. Eng, S. Elangovan. A Neural Fuzzy Power System Stabilizer Based onα-level Sets. Journal of Intelligent and Fuzzy Systems, 1999, 7:223~238.
    111 Jinyu Wen, Shijie Cheng, O. P. Malik. A Synchronous Generator Fuzzy Excitation Controller Optimally Designed with a Genetic Algorithm. IEEE Trans. on Power Systems, 1998, 13(3):884~889.
    112 Ye Qi-Ge, Wang Chen-Hao, Wu Jie. Unified Power Flow Controller Based on Fuzzy Neural Network Source. Control Theory and Applications, 2005, 22(6): 925~930.
    113刘杨名,严正,胥国毅.免疫遗传算法在多机电力系统PSS参数优化中的运用.继电器, 2007, 35(7):19~23, 45.
    114 Adrian Andreoiu, Kankar Bhattacharya. Lyapunov's Method Based Genetic Algorithm for Multi-machine PSS Tuning. Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference, 2002, 2: 1495~1500.
    115 A. Andreoiu,T TK. Bhattacharya. Robust Tuning of Power System Stabilizers Using a Lyapunov Method Based Genetic Algorithm. IEE Proceedings:Generation, Transmission and Distribution, 2002, 149(5):585~592.
    116 Deng J.L. Control Problems of Grey System. System and Control Letters, 1982, 1(5):288~294.
    117邓聚龙.灰色控制系统(修订版).武汉:华中理工大学出版社, 1993, 9.
    118陈绵云.模态系统的去余控制.华中工学院学报, 1983,11(2):39~44.
    119何明.肾性高血压大鼠腹主动脉条的灰色去余控制.中国药理学通报, 1996, 12(4):372~374.
    120李莲英,张信昌.公众信息传递过程的灰色去余控制.南昌大学学报(理科版), 2006, 30(6):620~623.
    121李天云,全玉生,张宇辉,等.发电机的灰色去余控制.电力系统自动化, 1994, 18(7):27~32.
    122程飙.工业过程灰色控制.黄石学院学报, 1986, 1(1):11~23.
    123尹平林,陈绵云.水压灰色预测控制研究.华中理工大学学报, 1995, 23(Sup.I):71~74.
    124姚向东,张立军.灰色预测控制的设计及其应用.电子与自动化, 1998(4): 14~16.
    125闵大勇,陈绵云.在磁场定向控制的异步电机调速系统中应用灰色预测控制方案的研究.电气传动, 2001(4):10~13.
    126杨熔,易德生.灰色预测控制在可控硅直流调速系统中的实现.武汉理工大学学报(信息与管理工程版), 1991, 13(3):13~20.
    127毕效辉,黄继起,姚琼荟.纯滞后系统的灰色预测控制.西南科技大学学报, 1993, 8(3):23~29.
    128张淼,吴捷.基于灰色预测的有源滤波器预测控制技术.华南理工大学学报(自然科学版), 2005, 33(7):74~77.
    129胡兆庆,毛承雄,陆继明.基于灰色预测的发电机励磁控制系统.电力系统及其自动化学报, 2002, 14(1):30~33.
    130李江,孙海顺,程时杰,等.基于灰色系统理论的有源滤波器的预测控制.中国电机工程学报, 2002, 22(2):6~10.
    131肖智宏,周晖,朱启晨.基于灰色预测控制算法的发电机最优励磁控制.电网技术, 2006, 30(5):81~85.
    132崔召辉,刘宪林,王明东,等.灰色预测励磁控制同步发电机动态过程仿真.继电器, 2007, 35(6):34~37.
    133张曙红,陈绵云,宋业新.一种实用的灰色变结构速度控制器设计.华中科技大学学报, 2001, 29(9):28~30.
    134 Huann-Keng Chiang, Chih-Huang Tseng. Design and Implementation of a Grey Sliding Mode Controller for Synchronous Reluctance Motor Drive. Control Engineering Practice, 2004(12):155~163.
    135 Chien-Hsin Chou. A Variable Structure Controller Based on the Grey Prediction Technology. Proc. of the American Control Conference, 2001:1505~1506.
    136邹健,杨莹春,诸静.基于灰色模型的预测模糊策略及其应用研究.中国电机工程学报, 2002, 22(9):12~14.
    137姜波,陈绵云,汪秉文,等.不确定滞后系统的灰色预测神经元控制.系统工程与电子技术, 2004, 26(5):644~646.
    138 Han Pu, Wang Dong-Feng, Wang Ning-Ling, et al. Grey Fuzzy Sliding Mode Control for Uncertain Systems. Proceedings of 2004 International Conference on Machine Learning and Cybernetics, 2004, 2:733~737.
    139 Yo-Ping Huang, Chih-Hsin Huang. Real-valued Genetic Algorithms for Fuzzy Grey Prediction System. Fuzzy Sets and Systems, 1997, 87(3):265~276.
    140 Jyh-Horng Chou, Shinn-Horng Chen, Jin-Jeng Li. Application of the Taguchi-genetic Method to Design an Optimal Grey-fuzzy Controller of a Constant Turning Force System. Journal of Materials Processing Technology, 2000, 105(3): 333~343.
    141 T. L. Huang, W. S. Chang, C. C. Ding, et al. Grey Fuzzy Turning PID Controller Design for Multimachine Power Systems. Proceeding of 11PthP International Conference on Intelligent Systems on Emerging Technologies, 2002:1370~1375.
    142 Chian-Chuang Ding, King-Tan Lee, Chee-Ming Tsai, et al. Optimal Design for Power System Dynamic Stabilizer by Grey Prediction PID Control. Proceeding of IEEE International Conference on Industrial Technology, Thailand, 2002:279~284.
    143 Li Chien-Ying, Huang Tsong-Liang. Optimal Design of the Grey Prediction PID Controller for Power System Stabilizers by Evolutionary Programming. Proceeding of IEEE International Conference on Networking, Sensing and Control, Taiwan, 2004:1370~1375.
    144 Cai Wen, Chien Weizang. The Extension Set and Non-compatible Problems. Advances in Applied Mathematics and Mechanics in China. Beijing: International Academic Publishers, 1990:1~21.
    145 Li Jian, Wang Shienyu. Primary Research on Extension Control. Information and Systems, International Academic Publishers, 1991, 1:392~396.
    146王行愚,李健.论可拓控制.控制理论与应用, 1994, 11(1):125~128.
    147潘东,金以慧.可拓控制的探索与研究.控制理论与应用,1996,13(3):305~311.
    148王万良,吴刚.分层多变量可拓控制器及其应用.广东工业大学学报, 1999, 16(4):102~105.
    149张永,吴晓蓓,徐志良,等.一类多变量自校正系统的可拓控制.南京理工大学学报(自然科学版) , 2002, 26(5):486~489.
    150何斌,朱学锋.可拓自适应混杂控制.控制理论与应用, 2005, 22(2):165~170.
    151姜万录,孙慢,陈南.电液伺服系统的可拓控制策略研究.机床与液压, 2005, 1:94~97.
    152管凤旭,王科俊.基于倒立摆系统的可拓控制策略研究.哈尔滨工业大学学报, 2006, 38(7):1146~1149.
    153蔡文.可拓工程方法.北京:科学出版社, 1999.
    154刘思峰,郭天榜,党耀国,等.灰色系统理论及其应用.北京:科学出版社, 2000.
    155 C. C. Wong, C. C. Chen. Design of Fuzzy Control Systems with a Switching Grey Prediction. Fuzzy Systems Proceedings, IEEE World Congress on Computational Intelligence, 1998, 1:567~572.
    156何雄君,孙国正,邵吉林.基于归一化映射规则的一般灰预测模型NGM(1,1).华中师范大学学报(自然科学版), 2002, 36(3):284~287.
    157邱关源.电路(第四版).北京:高等教育出版社,1999.
    158刘宪林.基于同步机和水系统详细模型的电力系统小扰动稳定研究.哈尔滨工业大学工学博士学位论文, 2002, 3.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700