智能逆系统理论及其在感应电机解耦控制中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非线性系统控制在控制科学中占有重要的地位。20世纪80年代以来,逆系统控制在非线性控制领域得到蓬勃发展。它通过引入α-阶积分逆和伪线性系统等概念,建立起比较完整的设计理论。但该方法要求被控对象的数学模型精确已知,而这在实际工程应用中是难以实现的。尤其是针对一些复杂系统,很难求出其解析逆系统。这都成为了逆系统的实际应用的“瓶颈”。
     本文主要利用神经网络、支持向量机等智能机器学习方法不依赖精确数学模型的特点,结合逆系统理论,给出了智能逆系统控制方法和一些重要的结论。
     首先,在广义逆系统控制中,控制器必须与复合伪线性系统的传递函数相互配合才能使整个控制系统达到满意的动态控制效果。传统广义逆系统控制系统在改变复合系统期望传递函数时,必须重新辨识广义逆系统。本文提出了一种新的广义逆系统,并证明了该广义逆系统的存在性。改变反馈系统的参数即可任意配置复合伪线性系统的极点,通过调节控制器参数和广义逆系统的反馈环节参数即可改善整个控制系统的动态性能,并应用于感应电机解耦控制中,获得良好的控制效果。
     为提高逆系统的鲁棒性,结合区间分析理论,在传统自组织映射的基础上,提出了权值为区间数的区间自组织模型和相应的学习算法,分别对区间权值的上、下界进行训练,并证明了该算法的收敛性。结合VQTAM方法对动态信息的存储能力,建立非线性系统的逆模型,增强了控制系统处理不确定性的能力。
     针对良好非线性模型及其线性化补偿器问题,证明两者在一定约束条件下存在的惟一性。在此基础上,提出一种利用神经网络优化新的目标函数而得到辨识模型的新方法。为提高系统鲁棒性,减小模型误差和外部扰动等不确定性,针对补偿后的伪线性系统设计非线性内模控制系统,使得整个控制系统能精确的跟踪参考信号。
     逆系统控制的关键在于构建的逆系统模型的推广能力。本文给出一种基于最小二乘支持向量机在线算法的α-阶逆控制方法。通过引入系统控制误差的ε不敏感函数,利用LS-SVM增量-枝剪学习算法,对逆系统控制器实施在线学习,增强了伪线性复合系统的精确性和鲁棒性。并在LS-SVM的核函数为局部Lipschitz的前提下,证明了控制器是有限增益稳定的,并给出Gaussian核函数对任一变量的局部Lipschitz性的充分条件。
     最后,在感应电机矢量控制基础上,对其进行逆系统控制解耦性能、抗扰动性能和鲁棒性方面的仿真实验,证实了新型广义逆系统控制的有效性。针对利用单一神经网络难以实现感应电机大范围内的线性化解耦问题,结合多模型理论和新型广义逆系统,给出了感应电机神经网络多模型广义逆系统解耦控制方法。通过建立多个子广义逆系统、设计与子系统匹配的控制器和制定适当的定切换规则,实现了感应电机转速和磁链在大范围内的动态解耦控制。
Nonlinear system control plays an important role in the control science. Inverse system control gets flourish development in nonlinear control since 1980s.It has established perfect design theory by introducing some definitions such asα-th order inverse, pseudo linear system and so on. But the exact mathematical model is required in the inverse system control and the model is hardly satisfied in engineering. It is hard to get the analytical inverse, especially to some complicated systems. These are the bottlenecks in the inverse system theory.
     Combining with intelligent machine learning methods, as neural networks and support vector machines which are independent on mathematical model, intelligent inverse system control method and some significant results are proposed in this thesis.
     Firstly, the whole control system can exhibit satisfactory dynamic result only by perfect matching the controller and composite pseudo linear system in the generalized inverse control. The traditional generalized inverse must be re-identified with the variation of the expected transfer function. A new type of generalized inverse system is proposed here and its existence is proved. The poles of the pseudo linear system can be assigned via altering the parameters of the feedback part arbitrarily. The dynamic performance of the control system can be improved by regulating the parameters of controller and feedback part. By using this method, induction motor decoupling control can obtain good results.
     To improve the robustness of inverse, interval self-organizing maps and its learning algorithm is proposed based on interval analysis theory and traditional self-organizing map. The upper and lower boundaries of interval weights are trained and the convergence of the map is proved by combining the capability of VQTAM in storing the information of dynamic system, the nonlinear inverse model is built to deal with uncertainty.
     The uniqueness of the nicely nonlinear model and its linearizing compensator is proved under some constraints. A new model identification method is proposed by minimizing a novel objective function using neural networks. A nonlinear internal control system is designed on the compensated pseudo-linear system to improve the robustness and reduce the uncertainty including model error and external disturbance. The whole control system can track the reference signal accurately.
     The key of inverse control is the generalization of the inverse system. An a th-order inverse control method based on least square support vector machines(LS-SVM) on-line algorithm is presented. The inverse execute online learning with incremental and decremental algorithm by introducingεinsensitive function which enhances the accuracy and robustness of the pseudo linear system. The finite gain stability is ensured if the kernel function of LS-SVM is local Lipschitz, and the sufficient condition of local Lipschitz of Gaussian kernel function to any variable is given.
     At last, the validity of new type of generalized inverse control is proved via simulations of decoupling performance, disturbance-rejection performance and robustness based on vector control. While it is hard to achieve decoupling control on induction motor in a wide range using single neural networks. A multi-model decoupling method is proposed using multi-model theory and the new type of generalized inverse. The rotor flux and rotor speed of induction motor can be decoupled in a wide range by constructing several sub-generalized inverse, designing relevant controller and formulating proper switching rules.
引文
[1]Hassan K.Khalil. Nonlinear Systems.3rded.Prentice Hall,2002.
    [2]李春文,冯元琨.多变量非线性系统的逆控制方法.清华大学出版社,1991.
    [3]戴先中.多变量非线性系统的神经网络逆控制方法.科学出版社,2005.
    [4]R.W.Brockett,M.D.Mesarovic.The Reproduction of Multivariable Systems. J.Math. Anal. Appl.1965,11:548-563.
    [5]R.W.Brockett.Poles,Zeros and Feedback:State Space Interpretation. IEEE Transactions on Automatic Control.1965,10:129-135.
    [6]L.M.Silverman.Propertics and Application of Inverse Systems. IEEE Transactions on Automatic Control.1968,14:436-437.
    [7]L.M.Silverman.Inversion of Multivariable Linear Systems. IEEE Transactions on Automatic Control.1969,14:210-216.
    [8]M.K.Sain,J.L.Massey.Invertibility of Linear Timeinvariant Dynamical System. IEEE Transactions on Automatic Control.1969,14:141-149.
    [9]W.A.Porter.An Algorithm for Inverting Linear Dynamic Systems. IEEE Transactions on Automatic Control.1969:14:702:704.
    [10]P.J.Monlan.Stable Inversion of Linear Systems. IEEE Transactions on Automatic Control.1977,22:74-78.
    [11]S.N.Singh.Function Reproducibility of Multivariable Nonlinear Systems. IEEE Transactions on Automatic Control.1982,27:270-272.
    [12]S.N.Singh.Invertibility of Observable Multivariable Nonlinear Systems. IEEE Transactions on Automatic Control.1982,27:481-489.
    [13]S.N.Singh.Reproducibility in Nonlinear System Using Dynamic Comparsations and Output Feedback. IEEE Transactions on Automatic Control.1982,27:955-958.
    [14]S.N.Singh.Invertibility of Multivariable Parabolic Distributed Parameter System. IEEE Transactions on Automatic Control.1982,27:276-279.
    [15]李铁钧.一类非线性系统的可逆性.控制理论与应用.1984,创刊号:87-97.
    [16]Chun-wen Li,Yuan-kun Feng.Functional Reproducibility of General Multivariable Non-linear Systems.Int.J.Control.1987,45(1):255-268.
    [17]M.D.Di Benedetto,P.Lucibello.Inversion of Nonlinear Time-varying Systems. IEEE Transactions on Automatic Control.1993,38(8):1259-1264.
    [18]P.L.Falb,W.A.Wolovish.Decoupling in the Design and Synthesis of Multivariable Control Systems. IEEE Transactions on Automatic Control,1967,12:651-659
    [19]E.G.Gilbert.The Decoupling of Multivariable Sysems by State Variable Feedback. SIAM J.Control.1969,7:50-64.
    [20]L.M.Silverman,H.J.Payne.Input-output Structure of Linear System with Application to the Decoupling Problem. SIAM J.Control.1971,9:199-233.
    [21]W.A.Porter.Decoupling of and Inverse for Time Varying Linear Systems. IEEE Transactions on Automatic Control.1971,14:378-380.
    [22]E.Freund.Design of Time-variable Multivariable System by Decoupling and by the Inverse. IEEE Transactions on Automatic Control.1973,16:183-185.
    [23]W.M.Wonham,A.S.Morse.Decoupling and Pole-assignment in Linear Multivariable Systems,a Geometric Approach. SIAM J.Control.1970,8:1-18.
    [24]Chun-wen Li,Yuan-kun Feng.Decoupling Theory of General Multivariable Analytic Non-linear Systems.Int.J.Control.1987,45(4):1147-1160.
    [25]吴热冰,李春文.一般非线性系统的构造性逆系统方法.控制理论与应用.2003,20(3):345-350.
    [26]蔡自兴,徐光祜.人工智能及其应用.清华大学出版社,2003.
    [27]林尧瑞,马少平.人工智能导论.清华大学出版社,1989.
    [28]蔡自兴.智能控制——基础与应用.国防工业出版社,1998.
    [29]王俊普.智能控制.中国科学技术大学出版社,1996.
    [30]Nello Cristianini.John Shawe-Taylor.An Introduction to Support Vector Machines and Other Kernel-based Learning Methods.李国正,王猛,曾华军.电子工业出版社,2004.
    [31]V.N. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag,1995.
    [32]Smola A.J,Bernhard Scholkopf.A Tutorial on Support Vector Regression.Statistics and Computing.2004,14:199-222.
    [33]Suykens J.A.K.Support Vector Machines:A Nonlinear Modeling and Control Perspective.European Journal of Control.2001,7(2-3):311-327.
    [34]Suykens J.A.K,Vandewalle J. Least Squares Support Vector Machine Classifiers. Neural Processing Latters.1999,9(3):293-300.
    [35]Suykens J.A.K,Vandewalle J.Training Multilayer Perceptron Classifiers Based on A Modified Support Vector Method.IEEE Transaction on Neural Networks.1999,10(4): 907-912.
    [36]张学工.关于统计学习理论与支持向量机.自动化学报.2000,26(1):32-42.
    [37]Narendra K S, Parthasarathy K. Identification and Control of Dynamical Systems Using Neural Networks. IEEE Transactions on Neural Networks,1990,1(1):4-27.
    [38]Siegelmann.Hava T,Horne.Bill G,Giles.C.Lee.Computational Capabilities of Recurrent Neural Networks.IEEE Transaction on Systems,Man,and Cybernetics.1997, 27(2):208-215.
    [39]D.T.Pham,S.J.Oh.Identification of Plant Inverse Dynamics Using Neural Networks. Artificial Intelligence Engineering.1999,13:309-320.
    [40]阎平凡,张长水.人工神经网络与模拟进化计算.清华大学出版社,2005.
    [41]Teuvo Kohonen. Self-Organizing Maps 3rd Edition.Springer,2001.
    [42]戴先中,何丹,张腾,等.非线性MIMO系统线性化解耦的一种新方法(Ⅰ)—连续时间系统.控制与决策.1999,14(5):403-406.
    [43]何丹,戴先中,张兴华,阮建山.非线性MIMO系统线性化解耦的一种新方法(Ⅱ)—离散时间系统.控制与决策.1999,14(6):631-635.
    [44]陈小红,侯春海,钱积新.逆系统方法的径向基函数网络实现.控制与决策.1998,13(2):146-150.
    [45]陈小红,钱积新.RBFN逆控制系统综合设计方法.浙江大学学报(工学版).2000,34(2):126-129.
    [46]何丹,戴先中,王勤.神经网络广义逆系统.控制理论与应用.2002,19(1):34-40.
    [47]陈庆伟,吕朝霞,胡维礼,吴宏鑫.基于逆系统方法的非线性内模控制.自动化学报.2002,28(5):715-721.
    [48]顾宇杰,涂源钊.基于逆系统方法的非线性系统内模控制.控制理论与应用.2003,22(10):14-17.
    [49]周涌,陈庆伟,吴晓蓓,胡维礼.基于动态神经网络解耦线性化的内模控制.南京理工大学学报.2004,28(6):566-570.
    [50]刘坤.非线性系统的神经网络逆模型控制.南京工程学院学报.2004,2(3):40-45.
    [51]戴先中,陈珩等.神经网络逆系统及其在电力系统控制中的应用.电力系统自动化.2001,3:11-17.
    [52]葛友,李春文,孙政顺.逆系统方法在电力系统综合控制中的应用.中国电机工程学报.2001,21(4):1-4.
    [53]梁有伟,胡志坚,陈允平.基于神经网络逆系统的电力系统稳定器的研究.电工技术学报.2004,19(5):61-65.
    [54]戴先中,张兴华,刘国海,张磊.感应电机的神经网络逆系统线性化解耦控制.中国电机工程学报,2004,24(1):112-117.
    [55]刘贤兴,胡育文.永磁同步电机的神经网络逆动态解耦控制.中国电机工程学报,2007,27(27):72-76
    [56]孙玉坤,费德成,朱熀秋.基于α阶逆系统五自由度无轴承永磁电机解耦控制.中国电机T程学报.2006,26(1):120-126.
    [57]张怡哲,邓建华.逆系统方法在飞行控制律设计中的工程应用.西北工业大学学报.2006,24(1):35-39.
    [58]严德崑.大型空气重介流化床逆系统控制与仿真.自动化学报.2002,28(5):854-858.
    [59]J.C.Principe,Ludong Wang,Mark A.Motter.Local Dynamic Modeling with Self-Organizing Maps and Applications to Nonlinear System Identification and Control.Proceedings of the IEEE.1998,86(11):2240-2258.
    [60]Guilherme A.Barreto,Aluizio F.R.Araujo.Identification and Control of Dynamical Systems Using the Self-Organizing Map, IEEE Transaction on Neural Networks, 2004,15(5):1244-1259
    [61]Guilherme A.Barreto,Aluizio F.R.Araujo.Temporal Associative Memory and Function Approximation with the Self-organizing Map. Proceedings of the 2002 12th IEEE Workshop on Neural Networks for Signal Processing.2002:109-118.
    [62]G. Gauwenberghs and T. Poggio, Incremental and Decremental Support Vector Machine Learning. Proceedings of Neural Information Process System.2000,13: 668-674.
    [63]J.H.Ma,J.Theiler,S.Perkins.Accurate On-line Support Vector Regression.Neural Computation.2003,15:2683-2703.
    [64]Hui Wang, Daoying Pi,Youxian Sun.Online SVM Regression Algorithm-based Adaptive Inverse Control.Neurocomputing.2007,70:952-959.
    [65]宋夫华,李平.支持向量机α阶逆系统控制—离散非线性系统.浙江大学学报(工学版).2006,40(12):2098-2102.
    [66]宋夫华,李平.支持向量机α阶逆系统控制—连续非线性系统.浙江大学学报(工学版).2007,41(3):386-389.
    [67]何俊峰,张曾科.基于支持向量机的逆系统离散控制方法.清华大学学报(自然科学版).2005,45(1):100-102.
    [68]宋夫华,李平.基于支持向量机α阶逆系统方法的非线性内模控制.自动化学报.2007,33(7):778-781.
    [69]陈伯时.电力拖动自动控制系统.2版.机械工业出版社,1997.
    [70]戴先中,刘国海,张兴华.交流传动神经网络逆控制.机械工业出版社,2007.
    [71]曹建荣,虞烈,谢友柏.感应电动机的解耦控制与矢量控制的解耦性质.西安交通大学学报.2000,34(6):71-75.
    [72]刘广生,刘泮石,王文杰.同步发电机非线性励磁控制的逆系统方法.控制与决策.1993,8(6):456-460.
    [73]曹建荣,虞烈,魏泽国,王勉华.基于逆系统理论的感应电动机解耦控制的研究.电工技术学报.1999,14(1):7-11.
    [74]张兴华,戴先中.基于逆系统方法的感应电机调速控制系统.控制与决策.2000,15(6):708-711.
    [75]张兴华,牛兴林,林锦国.基于EKF的感应电机无速度传感器逆解耦控制.系统仿真学报.2006,18(4):982-985.
    [76]戴先中,刘国海.两变频调速电机系统的神经网络逆同步控制.自动化学报,2005,31(6):890-900.
    [77]杨立永,李正熙,李华德,王久和.感应电动机调速系统的自适应逆控制,控制理论与应用.2007,24(1):95-98.
    [78]朱广泽,邓智泉,王晓琳.无轴承异步电机解耦控制策略.电机与控制学报.2007,11(6):573-577.
    [79]陈传璋,金福临,朱学炎,欧阳广中.数学分析(下册).高等教育出版社,1999.
    [80]R.H.Nielsen.Theory of the Backpropogation Neural Network.IJCNN.1989:2593-2605.
    [81]Kolmogorov.On the Presentation of Continuous Function of Many Variables by Superposition of Continuous Functions of One Variable and Condition. Dokl.Akad. Naauk.1957,114:953-956
    [82]张立明.人工神经网络的模型及其应用.复旦大学出版社,1993.
    [83]彭瑞,岳继光.区间分析及其在控制理论中的应用.控制与决策,2006,21(11):1201-1207.
    [84]王德人,张连生,邓乃杨.非线性方程的区间算法.上海科学技术出版社,1987.
    [85]J.C.Principe,et al. Modeling and Inverse Controller Design for an Unmanned Aerial Vehicle Based on the Self-Organizing Map, IEEE Transaction on Neural Networks, 2006,17(2):445-460.
    [86]Zhenping Lo,Yaoqi Yu,Behnam Bavarian.Analysis of the Convergence Properties of Topology Preserving Neural Networks, IEEE Transaction on Neural Networks.1993, 4(2):207-220.
    [87]Siming Lin Jennie Si.Weight Convergence and Weight Density of the Multi-dimensional SOFM Algorithm.Proceedings of the American Control Conference.1997:2404-2408.
    [88]肖建,杜申华.关于良好非线性模型鲁棒稳定性的初步探讨.铁道学报.1996,18(2):17-21.
    [89]Guido O.Guardabassi. Robust Absolute Stability of A Class of SISO Control Systems.Int.J. Robust Nonlinear Control.2004,14:999-1017.
    [90]Guido O.Guardabassi, Xiao Jian. Constrained Least Squares Identification of Deterministic Nicely Nonlinear Models. Proceeding of IFAC 12th world Congress. 1993,3:507:510.
    [91]Guido O. Guardabassi, Sergio M. Savaresi. Approximate Linearization via Feedback-An Overview. Automatica.2001,37(1):1-15.
    [92]周涌.非线性系统的神经网络内模控制研究.南京理工大学博十论文.2003.
    [93]Shawe-Talor J, Cristianini N. Kernel Methods for Pattern Analysis. Cambri-dge University Press,2005.
    [94]李晓理.多模型自适应控制.科学出版社,2001.
    [95]Rui Xu, Donald Wunsch Ⅱ.Survy of Clustering Algorithms. IEEE Transaction on Neural Networks.2005,16(3):645-678.
    [96]陆可,肖建.基于单滤波器多模型算法的异步电动机参数自适应转速估计.电工技术学报.2009,24(1):70-75.
    [97]Magill D T. Optimal Adaptive Estimation of Sampled Stochastic Processes. IEEE Transaction on Automatic Control.1965,10(4):434-439.
    [98]Narendra K S,Balakrishnan J.Adaptive Control Using Multiple Models.IEEE Transaction on Automatic Control.1997,42(2):171-187.
    [99]Narendra K S,Cheng Xiang.Adaptive Control of Discrete-time Systems Using Multiple Models.IEEE Transaction on Automatic Control.2000,45(9):1669-1686.
    [100]李晓理,王伟,孙维.多模型自适应控制.控制与决策.2000,15(4):390-394.
    [101]李晓理,王伟.基于局部化技术的多模型自适应控制.自动化学报.2000,26(4):523-528.
    [102]Li X R.Multiple-models Estimation with Variable Structure.IEEE Transaction on Automatic Control.1996,41(4):478-493.
    [103]冯纯伯,费树岷.非线性控制系统分析与设计.第二版.电子工业出版社,1998.
    [104]肖建,于龙,白裔峰.支持向量回归中核函数和超参数选择方法综述.西南交通大学学报.2008,43(3):297-303.
    [105]Scholkopf B, Mika S, Burges C J C. Input Space versus Feature Space in Kernel-Based Methods. IEEE Transactions on Neural Networks,1999,10(5):1000-1016.
    [106]Bernhard Scholkopf,Christopher J.C.Burges,Smola A.J.Advance in Kernel Method. MIT Press,1998.
    [107]Nguyen D, Ho T B. A Bottom-up Method for Simplifying Support Vector Solutions. IEEE Transactions on Neural Network,2006,17(3):792-796.
    [108]Wismer D.A,Chattergy R非线性最优化引论.邓乃扬,刘宝光等译.北京工业学院出版社,1987.
    [109]Bryan P.Rynne,Martub A.Youngson.Linear Function Analysis.Springer,2005.
    [110]飞思科技产品研发中心.神经网络理论与MATLAB7实现.电子工业出版社,2005.
    [111]Oliver Nelles.Nonlinear System Identification.Springer-Verlag,2001.
    [112]郑大钟.线性系统理论.第二版.清华大学出版社,2002.
    [113]宋夫华.支持向量机逆系统方法及其应用研究.浙江大学博十论文.2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700