用户名: 密码: 验证码:
锌电解阳极泥锰铅银分离的技术与理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电解锌阳极泥是生产电解锌过程中产生的渣泥,是一种富含锰、铅、银等金属的二次资源。电解锌阳极泥作为氧化剂返回浸出作业可以实现锰资源的综合利用,但目前对于其中的铅银资源尚无行之有效的回收技术。本文在研究电解锌阳极泥物理化学性质的基础上,开发了“浮选-磁选-重选”联合选矿技术,实现了锰铅银矿物的分离富集与综合回收。通过对该矿浆体系进行系统深入的热力学分析,明确了锌阳极泥矿浆体系的电化学性质、组成元素的赋存状态及浮选剂的存在形式,并结合红外光谱分析、量子化学计算等研究手段,探讨了该矿浆体系中巯基捕收剂与矿物表面的作用机制。论文的主要研究内容与创新成果如下:
     (1)锌阳极泥的物理化学性质与锰铅银矿物综合回收技术
     锌阳极泥中含锰铅银等主要有价元素,其中锰主要以隐钾锰矿(KMn8O16)存在,铅以铅矾(PbSO4)存在,银以氯银矿(AgCl)、氧化银(Ag203)和一硝代八氧化七银(Ag7NO11)存在,锌阳极泥的矿浆为pH值低于5的酸性矿浆,矿浆中Mn2+的浓度为5.8×10-2mol.L-1。
     巯基捕收剂对银矿物具有良好的选择性捕收作用,硫化浮选法无法实现锌阳极泥中的铅矾的富集。采用“浮选-磁选-重选”联合流程方案,可以实现电解锌阳极泥中锰铅银矿物的分离与富集。对于锰、铅、银品位分别为37.48%、21.54%和1628g/t的电解锌阳极泥,采用该技术,获得了含银48515g/t的浮选银精矿,含铅60.89%的铅精矿和含锰50.17%的锰精矿,铅在铅精矿和银精矿中的总回收率为84.78%,银在铅精矿和银精矿中的总回收率为74.71%,锰回收率达到91.86%。
     (2)锌阳极泥矿浆体系的热力学分析
     根据热力学数据计算绘制了各种体系的Eh-pH图,以此作为基础讨论锌阳极泥的背景矿浆电位及其对铅、银矿物赋存状态、巯基捕收剂存在形式、硫化-黄药浮选铅矾等的影响。热力学研究结果表明,锌阳极泥矿浆的电位受MnO2、Mn2+离子浓度和矿浆pH的控制,形成强氧化电位。在锌阳极泥背景矿浆电位下,铅的热力学稳定存在化合物为硫酸铅,银的热力学稳定存在化合物为单质Ag、Ag2O和AgCl等;矿浆中硫的热力学稳定产物不是S2-和SH-组分,而是S042-组分,因此,硫化钠和硫氢化钠会被氧化成S042-组分,不能实现对硫酸铅矿物表面的硫化改性;黄药、黑药、乙硫氮的热力学稳定产物分别为双黄药、双黑药和双乙硫氮,加入到锌阳极泥矿浆中的巯基捕收剂会被氧化为相应的二聚物。
     (3)锌阳极泥矿浆中铅银矿物的浮选行为
     硫酸铅与氯化银纯矿物浮选试验表明,以黄药和黑药为捕收剂,在pH3-7范围内,氯化银、硫酸铅可浮性良好,有二氧化锰存在体系氯化银仍保持较好的可浮性,但硫酸铅的浮选受到抑制。
     双黄药和双黑药对氯化银有较强的捕收能力,而对硫酸铅捕收能力较差。红外光谱分析表明,在用硫酸调浆的pH=4的酸条件下,戊基双黄药和戊基双黑药在氯化银矿物表面发生明显吸附,而难以在硫酸铅表面吸附。
     (4)锌阳极泥矿浆中含银矿物表面选择性吸附巯基捕收剂二聚氧化物的机理研究
     根据元素的离子化势能和电子亲和能数据和半经验量子力学方法中的PM6计算了Mn4+、Pb2+、Ag+及巯基捕收剂二聚氧化物的前线轨道HOMO和LUMO的能量。比较Mn4+、Pb2+、Ag+电子空隙的最低未占分子轨道LUMO的能量与巯基捕收剂二聚氧化物的最高占据分子轨道HOMO的能量发现,巯基捕收剂二聚氧化物的HOMO的能量与Ag+的LUMO的能量非常接近,表明巯基捕收剂二聚氧化物与Ag+之间容易发生共价性配位健化学吸附。
     采用Materials Studio软件的Adsorption Locater模块计算了氯化银、氧化银、硫酸铅、隐钾锰矿等四种矿物晶体吸附质与双黄药、双黑药、双乙硫氮分子、水分子、氢氧根离子、氯离子、硫酸根离子等吸附剂的作用能变化,结果表明,双黄药、双黑药、双乙硫氮分子等巯基捕收剂二聚氧化物无法吸附在隐钾锰矿表面,可以吸附在硫酸铅、氯化银、氧化银矿物表面,但在有硫酸根存在的条件下,上述巯基捕收剂二聚氧化物在氯化银、氧化银矿物表面仍然能发生吸附,而硫酸铅矿物表面对硫酸根离子的吸附比对上述巯基捕收剂二聚物的吸附强得多,表明双黄药、双黑药、双乙硫氮等巯基捕收剂二聚氧化物对含银矿物存在选择性吸附作用。
Zinc anode slime, a kind of residue produced in the process of zinc electrowinning, is a secondary resource abundant in manganese, lead and silver etc. The present method treating this residue in zinc ectrowinning plants is to return it to the leaching operation as an oxidant. It works well in reuse of manganese by not changing Mn(IV) to Mn(II), but fails to recycle lead and silver efficiently as early as possible. And there is no feasible and efficient technology till now which has done well in both of these two aspects. In this thesis, a combined beneficiation technology, including flotation, magnetic separation and gravity separation, to realize the separation of manganese, lead and silver, was developed based on the physicochemical property research. The electrochemical atmosphere background produced by Mn(IV) and Mn2+in the acidic pulp of this residue and its influence on the occurrence of lead, silver as well as thiol collectors were determined with a themodynamic method. The interaction mechanism of the of thiol collectors with lead and silver minerals in the pulp was investigated by means of infrared spectroscopic analysis, quantum chemical calculation and other research methods. The main research contents and innovations are as follows:
     (1) Physicochemical properties of zinc anode slime and technology for comprehensive recovery of manganese, lead and silver minerals.
     Zinc anode slime contains such major valuable elements as manganese, lead and silver, of which the main existing forms of metalliferous minerals are cryptomelane (KMn8O16) for Mn, anglesite (PbSO4) for Pb, and kerargyrite (AgCl), silver oxide (Ag2O3) and silver oxy-salt of nitrate (Ag7NO11) for Ag. The pulp of zinc anode slime is weakly acid, with pH below5, and the concentration of Mn2+is5.8×10-2mol.L-1.
     Thiol collectors could only recover silver minerals from zinc anode slime. Flotation by xanthate after sulfidation could not recover anglesite from zinc anode slime. The combined flowsheet of "flotation-magnetic separation-gravity separation" performed very well to separate minerals of manganese, lead and silver respectively. By applying this technology, a silver concentrate with high silver grade,48515g/t, an anglesite concentrate containing lead60.89%, and a manganese concentrate with50.17%manganese could be obtained from zinc anode slime with grade of manganese, lead and silver being37.48%,21.54%and1628g/t, respectively. The total recovery of lead and silver in the lead and silver concentrates reached84.78%and74.71%respectively, and the manganese recovery is91.86%.
     (2)Thermodynamic analysis of the pulp system of zinc anode mud
     The Eh-pH diagrams for different systems have been drawn according to the themodynamically calculated data, based on which the background pulp potential of zinc anode slime and its influence on the occurrence of lead and silver components, the existing state of thiol collectors as well as the flotation of anglesite by xanthate after sulfidation, have been discussed. The results indicate that the pulp potential of zinc anode slime is mainly controlled by the MnO2, the concentration of Mn2+and the pH in the pulp, thus forming a strong oxidation atmosphere which called the background pulp potential of zinc anode slime. In this strong oxidation background pulp potential, lead mainly occurred as anglesite, silver can occurred as Ag, Ag2O, AgCl, AgO, Ag2O3, etc. The themodynamically stable products of sulfur in the pulp is not S2-, HS-, or S0, but SO42-, demonstrating that the sulfidation of anglesite by Na2S or NaHS cannot be achieved; The thermodynamically stable products of thiol collectors in zinc anode slime pulp are their corresponding oxidized dipolymers.
     (3) The flotation behavior of lead and silver minerals in the pulp of zinc anode slime
     Microflotation tests for pure minerals of anglesite and kerargyrite indicated that these two minerals have good floatability with thiol collectors such as xanthate and aerofloat, on the pH range of3-7. In the presence of MnO2, the floatability of kerargyrite maintains well but that of anglesite turns worse. Dixanthogen and bis-aerofloat have strong collecting ability to kerargyrite comparing with worse collecting ability to anglesite in the presence of SO42-. The infrared spectrum tests verified the selective adsorption of dixanthogen and bis-aerofloat on the surface of kerargyrite in the presence of SO42-.
     (4) Mechanism of the selective adsorption of thiol collector oxidized dipolymers on the surface of silver containing minerals in zinc anode slime.
     The highest occupied molecular orbit (HOMO) energy and the lowest unoccupied molecular orbit (LUMO) energy of Mn4+、Pb2+、Ag+have been calculated according to the ionization potential and electron affinity of element. The HOMO and LUMO energy of thiol collector oxidized dipolymers have been also calculated according to PM6in semiempirical quantum mechanics method. It's clearly shown by comparing the LUMO energy of Mn4+、Pb2+、Ag+with the HOMO energy of thiol collector oxidized dipolymers that the latter was close to the LUMO energy of Ag+, indicating that the covalent coordinated chemisorption of those thiol collector oxidized dipolymers on Ag+is prone to happen.
     The changes of interaction energy between four kinds of mineral crystals (kerargyrite, silver oxide, anglesite and cryptomelane) and a variety of adsorbents (dixanthogen, bis-aerofloat, bis-diethyl dithiocarbamate, H2O, OH-, Cl-, SO42-) have been calculated by Material Studio(Adsorption Locater module). The results indicate that thiol collector oxidized dipolymers could not be adsorbed on the surface of cryptomelane. These thiol collector oxidized dipolymers could be adsorbed on the surface of anglesite, kerargyrite and silver oxide in the absence of SO42-. With the existence of SO42-, these collectors could only be adsorbed on the surface of silver minerals, due to the competive adsorption of SO42-on the surface of anglesite.
引文
[1]Jorgen D. Corrosion resistant austenitic stainless steel containing 0.1 to 0.3 percent manganese. U.S.A:4222773,1980-9-16
    [2]James A D, Joseph A D, John J. T. Duplex stainless steel with high manganese. U.S.A patent:4828630,1989-5-9
    [3]Clinton E S. Electric arc welding of manganese. U.S.A patent:2320675,1943-6-1
    [4]Doeko S, Leonardus A H. Magnetic head having a core of Mn-Zn-Co ferrous ferrite. U.S.A patent.:4719148,1988-1-12
    [5]Sanai S, Kojima H. Mn--Al--C Alloys for anisotropic permanent magnets. U.S.A patent:4443276,1984-4-17
    [6]Robert D, Williams D R Bright, Vernon V Y, Jorome L M. Manganese-containing antibiotic agents. U.S.A patent.:4654334,1987-3-31
    [7]Choi C S, Lee M E, Baek S H, Son Y S, Jun J H, Ko Y S. Fe-Mn vibration damping alloy steel and a method for making the same. U.S.A patent:5634990, 1997-6-3
    [8]Ramachandran R. Preparation and characterization of manganous manganic oxide (Mn3O4)(J). Journal of materials science. Materials in electronics,2002,13(5): 257-262
    [9]Sutou Y, Omori T, Wang J J, Kainuma R, Ishida K. Characteristics of Cu-Al-Mn-based shape memory alloys and their applications. Materials Science and Engineering A,2004,378(1-2):278-282
    [10]Nartey V K, Binder L, Huber A. Production and characterisation of titanium doped electrolytic manganese dioxide for use in rechargeable alkaline zinc/manganese dioxide batteries. Journal of Power Sources,2000,87(1-2): 205-211
    [11]Madhuchhanda M, Devi N B, Srinivasa R K, Rath P C, Paramguru R K. Oxidation of sphalerite in hydrochloric acid medium in the presence of manganese dioxide. Transactions of the Institution of Mining and Metallurgy. Section C. Mineral Processing and Extractive Metallurgy,2000,199:150-155
    [12]Kobayashi M, Kobayashi H. Application of transient response method to the study of heterogeneous catalysis:Ⅰ. Nature of catalytically active oxygen on manganese dioxide for the oxidation of carbon monoxide at low temperatures. Journal of Catalysis,1972,27(1):100-107
    [13]Alex Goldman, Alfred M. Laing. Coprecipitation methods and manufacture of soft ferrite materials and cores. U.S.A patent:4097392,1978-6-27
    [14]Mavlyankariev S A, Rhee D S. Removal of Heavy Metal Ions from Aqueous Solution by Manganese Dioxide-Coated Polypropylene Granules:An Implication of Rainwater Runoff Treatment. Materials Science Forum,2007,544-545: 131-134
    [15]张兵,陈奇,王德强,陆剑英.MnO/MnO2对磷酸盐低熔玻璃性能的影响.硅酸盐学报,2008,36(4):535-539
    [16]巨建涛,梁林旺,张朝晖,杨双平,高建民,石自新.高炉喷吹煤粉添加助燃剂的研究.钢铁研究,2008,36(3):36-39
    [17]成岳,刘属兴,夏光华,崔占东.铁—锰系列无钴黑釉的研制.中国陶瓷工业,2000,8(1):11-15
    [18]郑付兴,王玄玉,宋黎,王晓阳.氧化剂对红磷烟幕抗10.6μm激光性能的影响研究.含能材料,2007,15(2):155-157
    [19]Mao cai-xia, Yang guang-tao, Qiao yong-kang. Size-Dependent Toxicity of Dioxide Manganese Particles on DNA. Asian Journal of Ecotoxicology,2008, 3(5):438-442
    [20]兰家泉.玉米生产施用锰渣混配肥的肥效试验.中国锰业,2006,24(2):43-44
    [21]曾军,陈鹤,罗运军,罗巨涛,王胜鹏.增效剂在涤纶膨胀型阻燃涂层中的应用.印染,2009,5:34-37
    [22]王尔贤.中国的锰矿资源.电池工业,2007,12(3):184-188
    [23]严旺生.中国锰矿资源与富锰渣产业的发展.中国锰业,2008,26(1):7-11
    [24]张泾生,周光华.我国锰矿资源及选矿进展评述.中国锰业,2006,24(1):1-5
    [25]姚敬劬.我国优质富锰矿资源短缺的应对策略.中国矿业,2005,14(5):1-3,44
    [26]林平,陈方正.我国锰矿资源的需求态势和利用策略.中国市场,2007,(10):20-22
    [27]李良,丘克强,陈启元.中国废干电池处理技术研究现状与存在问题.有色金属,2003,55(2):122-126
    [28]Wilburn D R, Buckingham D A. Apparent Consumption vsTotal onsumption—A Lead-Acid Battery Case Study. Scientific Investigations Report 2006-5155, U.S. Department of the Interior,U.S. Geological Survey.
    [29]丁树芬.铅基多元合金在化工防腐工程中的应用与实践.云南化工,2002,29(6):38-40
    [30]杨峰,田文怀,苏永安.电缆用铅防护套管的显微组织.理化检验-物理分册,2006,42(12):599-601
    [31]孟厂寿,锡焊料的新进展.世界有色金属,1996,9:46-47.
    [32]王恒章.四元合金阳极板在湿法炼锌中的应用.有色冶炼,2001,30(6):18-20
    [33]宋加.涂镀层钢板技术发展.中国冶金,2002,3:10-14
    [34]09年中国铅产品消费结构行业市场调研及投资咨询研究报告,报告编号:306867,2010年1月
    [35]奚牲.海外铅锌资源开发现状及其利用.资源再生,2009,(7):22-24
    [36]吴荣庆,张燕如,张安宁.铅锌资源供需形势分析及市场前景预测.江苏地质,2007,31(1):59-63
    [37]Wingert P C, Leung C H. The development of silver-based cadmium-free contact materials. Components, Hybrids, and Manufacturing Technology,1989, 12(1):16-20
    [38]Terrence A D, Swallow P J. Silver electrical contact materials. U.S.A patent: 3893821,1975-7-8
    [39]Ross Bayes, Basking Ridge, Henry B. Aull. Silver brazing alloys. U.S.A patent:2729558,1956-1-3
    [40]李国欣.20世纪上海航天器电源技术的进展.上海航天,2002(3):42-48
    [41]刘丹敏,肖卫强,胡言槽,李尔东,周美玲,刘维鹏,左铁镛.高温超导银基带的织构控制.2003,第八届全国X射线衍射学术会议
    [42]曹建华,杨小勇,王捷,于溯源.钯-银复合膜在高温气冷堆氦气净化中的应用初探.原子能科学技术,2008,42(3):248-252
    [43]Lin Yun-Chiang, Jean Jau-Ho. Constrained Sintering of Silver Circuit Paste. Journal of the American Ceramic Society,2004,87(2):187-191
    [44]刘钟馨.低维金/银纳米材料的制备、光学性质及生物应用探索[博士学位论文].长春:中国科学院长春光学精密机械与物理研究所,2006
    [45]Catherine J M, Anand M G, Simona E H and Christopher J O. One-Dimensional Colloidal Gold and Silver Nanostructures. Inorginic. Chemistry,2006,45 (19): 7544-7554
    [46]Taleb A, Petit C, Pileni M P. Optical Properties of Self-Assembled 2D and 3D Superlattices of Silver Nanoparticles. Journal of Physical Chemistry B,1998, 102 (12):2214-2220
    [47]Chen S H, Carroll D L. Synthesis and Characterization of Truncated Triangular Silver Nanoplates. Nano Letters,2002,2 (9):1003-1007
    [48]Chang C, Pitt C H, Alexander G B. Electroless silver plating of oxide particles in aqueous solution. Journal of Materials Science,1993,28 (19):5207-5210
    [49]Jiang S Q, Newton E, Yuen C W N, Kan C W. Chemical silver plating and its application to textile fabric design. Journal of Applied Polymer Science,2005, 96(3):916-926
    [50]Shiraishi Y, Toshima N. Colloidal silver catalysts for oxidation of ethylene. Journal of Molecular Catalysis A:Chemical,1999,141(1-3):187-192
    [51]Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances,2009,27(1):76-83
    [52]夏金兰,王春,刘新星.抗菌剂及其抗菌机理.中南大学学报(自然科学版),2004,35(1):31-38
    [53]周瑾,李晶,吴燕芬.载银无机抗菌剂的制备及其性能研究.电子科技大学学报,2003,32(6):745-748
    [54]Ohashi S, Saku S, Yamamoto K. Antibacterial activity of silver inorganic agent YDA filler. Journal of Oral Rehabilitation,2004,31(4):364-367
    [55]唐慧琴.注银热解碳抗菌性和部分生物相容性研究[硕士学位论文].天津师范大学,2007
    [56]宁远涛,赵怀志.银.长沙:中南大学出版社,2005
    [57]朱裕生,刘亚玲,宋国耀.我国银矿床的时空分布及演化规律.矿床地质,2002,21(增刊):326-329
    [58]熊道陵,罗序燕,陈湘,贺治国.从废感光材料中制备硝酸银的新方法.化工进展,2004,23(12):1338-1341
    [59]吴晓峰,熊昆永,赵琳,边中修,李希迎.从胶片生产废料中回收银.化工环保,2000,20(1):32-35
    [60]魏剑英,韩周祥,赵玛,程青民.从废感光胶片中回收银.化工环保,2006,26(2):133-135
    [61]夏士朋.从废胶片中回收银和片基材料的新方法.化学世界,2002,43(9):502
    [62]马美玲,杨胜科.甲醛还原法回收废定影液中的银.贵金属,2005,26(3):12-14
    [63]张敏宏,蒋绍洋,史建公,赵桂良,尹国海,张毅,石勤智,刘志坚.废银催化剂中银的回收技术进展.中外能源,2010,15(1):90-97
    [64]Thomas W P, Jennifer J P. Sources of silver in the environment. Environmental Toxicology and Chemistry.1998,17(4):539-546
    [65]关之飘.新兴锰矿区福利矿段锰矿洗选试验.中国锰业,1998,16(1):23-25
    [66]杨念钦.桃江锰矿选矿分析.矿业快报.2002,8:16-17
    [67]陈惠仙.改进型跳汰机选收锰矿的实践.选矿机械,1989,3:30-34
    [68]张永伟,任柏林,陈德经,唐志华.勉略阳小型氧化锰矿选矿厂工艺流程研究.中国锰业,2002,20(1):1-3
    [69]Oberteuffer J. Magnetic separation:A review of principles, devices, and applications. IEEE Transactions on Magnetics,1974,10(2):223-238
    [70]师伟红,杨波,刘守信,杜淑华,田锋.云南铁锰矿选矿试验.矿冶工程,2007,16(1):30-34
    [71]封志敏,宁顺明,余宗华.磁化还原焙烧工艺处理贫锰铁矿的研究.矿冶工程,2009,29(3):65-68
    [72]傅文章,刘亚川.广西下雷碳酸锰矿强磁选工艺技术研究.中国锰业,2000,18(3):14-16
    [73]张永来.城口碳酸锰矿石选矿试验研究.金属矿山,1998,3:20-22.
    [74]谓鸿燕.2CQGS—330×1600磁选机选别湘锰碳酸锰矿石的试验研究.中国锰业,1994,12(2):38-42
    [75]王兆元.SQC湿式强磁选机回收低品位碳酸锰的试验研究.江西有色金属,1997,11(4):26-2831
    [76]张一敏.碳酸锰细泥强化浮选研究.1997,15(4):26-29
    [77]傅文章.广西下雷碳酸锰矿浮选工艺技术基础研究.矿产综合利用,1994,6:1-6
    [78]胡贤斌.酸渣捕收剂浮选遵义铜罗井锰矿工业试验.中国锰业,1995,13(4):22.24
    [79]刘承宪,邱子明.疏水选择性絮凝分离微细粒菱锰矿的机理探讨.中国锰业,1995,13(5):14-17
    [80]张一敏.高磷锰矿磁选一反浮选试验研究.中国锰业,1994,12(1):27-31
    [81]许定胜,杨康,方勇.高磷软锰矿磁选-微生物脱磷工艺.中国锰业,2009,27(3):21-23
    [82]毛钜凡.菱锰矿的磁选焙烧脱磷研究.中国锰业,1992,10(2):105-109
    [83]张永伟.高磷锰矿微波辐射一强磁选联合工艺试验研究.中国锰业,2005,23(4):18-20
    [84]齐艳霞.河北某低品位锰银矿的选矿工艺研究.矿产保护与利用,1997,5:35-37
    [85]张东方,田学达,欧阳国强,李熠.银锰矿中锰的铁屑还原浸出工艺研究.湿法冶金,2007,26(2):80-83
    [86]孙达,牛福生,李玉红,高志明.提高某银锰矿选银回收率的试验研究.金属矿山,2008,3:98-102
    [87]吴文伟.采用选冶联合工艺富集氧化型银锰矿中的银[J].有色金属:选矿部分,2003,55(5):22-24
    [88]薛玉兰,叶秉瑞.黑药在方铅矿浮选过程中的分布与浮选效果:药剂分布流程.中南工业大学学报,1996,27(4):410-414
    [89]林美群,魏宗武,莫伟,陈庆发.广西某难选铅锌矿石铅锌分离试验研究.金属矿山,2007,376(10):72-74
    [90]王淀佐,顾帼华,刘如意.方铅矿-石灰-乙硫氮体系电化学调控浮选.中国有色金属学报,1998,8(2):322-326
    [91]张会文.乙硫氮浮选铅及铅锌分离的研究[J].广东有色金属学报,1996,6(2):89-93
    [92]魏宗武,陈晔.黄药体系中白铅矿的浮选行为研究.江西有色金属,2008,22(1):19-21
    [93]Onal G, Bulut G, Gul A. Kangal O. Perek K T. Arslan F. Flotation of Aladagv oxide lead-zinc ores. Minerals Engineering,2005,18(2):279-282
    [94]谭欣,李长根.以CF为捕收剂氧化铅锌矿浮选新方法.有色金属,2002,54(4):86-94
    [95]赵景云,朱建光.BHA浮选硫酸铅试验.有色金属:选矿部分,1992,1:26-29
    [96]Fuerstenau M C, Olivas S A, Herrera-Urbina R, Han K N. The surface characteristics and flotation behavior of anglesite and cerussite. International Journal of Mineral Processing,1987,20(1-2):73-85
    [97]Rashchi F, Dashti A, Arabpour-Yazdi M, Abdizadeh H. Anglesite flotation:a study for lead recovery from zinc leach residue. Minerals Engineering,2005, (18):205-212
    [98]Fuerstenau D W, Sotillo F, Valdivieso A. Sulfidization and flotation behavior of anglesite, cerussite and galena. In:Proceedings, XV Int. Miner. Process. Congress, Cannes, France,1985:74-86.
    [99]Dashti A, Rashchi F. Estimation of reagent consumption in lead flotation of zinc leach residue. Canadian Metallurgical Quarterly.2005,44(4):483-488
    [100]Rao G V, Schneider F U, Hoberg H. Recovery of anglesite fines from hydrometallurgical leach residue. Aufbereit Tech.1987,28(5):247-254.
    [101]Wojtowicz J, Kwarcinska B. Flotation of lead compounds from the cake after leaching of the roasted zinc blende. Rudy i Metale Niezelazne.1996,42(3): 110-114.
    [102]Inoue T; Tomii K, Katoh K. A study on the treatment of tetallurgical wastes containing heavy metals. Ⅲ. Flotation of Lead Sulphate in the Red Residue of a Hydrometallurgical Zinc Smelter. Annu Rep Eng Res Inst,1981,40:159-164.
    [103]Derek E, Michael J, Michael E. Recovery of metal values from zinc plant residues. US patent 5348713
    [104]Rao S R, Finch J A. Processing of metallurgical residues by flotation bench scale studies on two industrial products. Waste Management.2006,26: 504-508.
    [105]宋丽丽.某含银金矿石选矿技术研究[博士学位论文].阜新:辽宁工程技术大学,2008
    [106]王壁善,郭惠兰.国外银生产现状与回收技术.见:第一届全国有色金属矿伴生银利用研讨会论文集,1990:109-114
    [107]谢雪飞,罗升.高碱条件下综合回收伴生银的研究与实践.矿冶工程,2002,22(1):58-60
    [108]刘望.提高铅精矿中伴生银回收率的研究.矿产保护与利用,2001,3:33-35
    [109]陈会全.大红山铜矿伴生金银综合回收技术试验研究.云南冶金,2005,34(3):24-26
    [110]童雄,闫森.强化有色金属矿石选矿回收伴生银的国内外研究.国外金属矿选矿,1999,36(12):13-18,35
    [111]向平,钮因健,冯其明,欧乐明,黄鑫.东坪含汞银矿提高银回收率的研究.金属矿山,2005,增刊:407-410
    [112]孙水裕,刘如意.广东革高砷硫化银锑矿石的浮选试验研究.矿产综合利用,2000(6):1-6
    [113]邵传兵,程亮.含砷铜银精矿浸出研究.甘肃冶金,2006,28(3):38-40
    [114]牛福生,梁银英,吴根.河北某地低品位银锰矿选矿工艺研.矿冶工程,2008,28(2):53-55
    [115]ZHANG Xiao-yun, TIAN Xue-da, ZHANG Dong-fang. Separation of silver from silver-manganese ore with cellulose as reductant. Transactions of Nonferrous Metals Society of China,2006,16(3):705-708
    [116]黄开国,王秋风.从锌浸出渣中浮选回收银.中南工业大学学报(自然科学版),1997,6:530-532.
    [117]周围华,薛玉兰,蒋玉仁,何伯泉.湿法炼锌浸出渣中回收银的研究及实践.矿产综合利用,2001(1):23-26.
    [118]刘子龙,秦晓鹏.湿法炼锌浸渣中回收银的浮选试验研究与生产实践.有色矿冶,2010,269(1):21-23
    [119]倪恒发,张小虎,张全胜.从锌浸出渣中浮选回收银的实践.资源再生,2008,2:28-29.
    [120]谢大元.锌挥发窑渣选银试验研究[博士学位论文]长沙:中南大学,2004
    [121]陈顺,窦传龙,匡立春,张伟.湿法炼锌工业挥发窑废渣资源化综合循环利用.2009,2009年锌加压浸出工艺与装备国产化及液态铅渣直接还原专题研讨会
    [122]Robert S. Salter, Roy S. Boorman, Ross D. Recovery of lead and silver from minerals and process residues. U.S. A patent:4372782,1983.
    [123]Pourbaix M. Atlas D. Equilibres Electrochimiques. Journal of the Electrochemical Society.1964,111(1):14C-15C
    [124]Pourbaix M. Atlas of electrochemical equilibria in aqueous solutions.2d English ed. Houston, National Association of Corrosion Engineers.1974
    [125]Naoto T. Atlas of Eh-pH diagrams. Intercomparison of thermodynamic databases. Geological Survey of Japan Open File Report,2005,5
    [126]Dennis W, Barnum. Potential-pH diagrams. Journal of Chemical Education, 1982,59(10):809.
    [127]Denny A. Jones. Principles and Prevention of Corrosion,2nd edition, Prentice Hall, Upper Saddle River,1996:50-52
    [128]Brookins, Douglas G. Eh-PH diagrams for geochemistry. Berlin and New York, Springer-Verlag,1998
    [129]Douglas G. Brookins. Platinoid element Eh-pH diagrams in the systems M-O-H-S with geochemical applications. Chemical Geology.1987,64(1-2): 17-24.
    [130]Brookins D G. Eh-pH diagrams for elements from Z=40 to Z=52:Application to the Oklo natural reactor, Gabon[J]. Chemical Geology.1978,23 (1-4):325-342
    [131]Ernest Peters. Direct Leaching of sulfides:Chemistry and applications[J]. Metallurgical and Materials Transactions B. Volume 7, Number 4,505-517
    [132]冯其明,许时,陈荩.硫化矿物浮选电化学[J].有色金属(选矿部分).,1990,3
    [133]郑听,冯其明.金浮选电化学原理及应用[J].矿冶工程,1995,15(4):32-36.
    [134]胡岳华.浮选溶液化学.长沙,湖南科学技术出版社,1988
    [135]Pourbaix M, Pourbaix A. Potential-pH equilibrium diagrams for the system S-H2O from 25 to 150℃:Influence of access of oxygen in sulphide solutions. Geochimica et Cosmochimica Acta,1992,56(8):3157-3178
    [136]覃文庆.硫化矿物颗粒间的电化学行为和电位调控浮选技术[博士学位论文].中南大学,2000.
    [137]张芹,胡岳化,顾帼华,聂珍媛.磁黄铁矿自诱导浮选电化学的研究.有色金属(选矿部分),2004,2:4-6.
    [138]邱显扬,夏启斌.镍黄铁矿浮选中的电化学作用.广东有色金属学报,2000,10(2):79-83
    [139]孙伟.高碱石灰介质中电位调控浮选技术原理与应用[博士学位论文].中南大学,长沙,2001.
    [140]黎全.大厂100(105)号锡石多金属矿选矿关键技术研究及应用[硕士学位论文].长沙:中南大学,2007.
    [141]邱廷省,袁运波.高冰镍氧化抑制浮选行为研究.南方冶金学院学报,1999,20(1):21-24
    [142]朱英.高硫煤电化学调浆浮选脱硫研究[硕士学位论文].北京:北京化工大学,2000.
    [143]尹冰一.低品位硫化镍矿中主要硫化矿的浮选行为及电化学研究[硕士学位论文].长沙:中南大学,2009.
    [144]程俐俐.含铁闪锌矿的难选铅锌硫化矿电位调控浮选工艺原理与应用[硕士学位论文].赣州:江西理工大学,2008.
    [145]崔立凤.磁场条件下硫化铜矿浮选电化学过程及机理研究[硕士学位论文].赣州:江西理工大学,2009.
    [146]王淀佐.矿物浮选与浮选剂.长沙:中南工业大学出版社,1986.
    [147]Tossell J A, Vaughan D J. Theoretical Studies of Xanthates, Dixanthogen, Metal Xanthates, and Related Compounds. Journal of colloid and interface science 1993,155(1):98-107
    [148]夏启斌,李忠,邱显扬,戴子林.浮选剂苯甲羟肟酸的量子化学研究.矿冶工程,2004,24(1):30-33.
    [149]汪凤珍,龙翔云,王淀佐.硫化矿物浮选剂电子结构与浮选性能相关的量子化学研究.有色金属,1992,44(1):35-40.
    [150]张剑峰,胡岳华,徐兢,王淀佐.苯氧乙酸类浮选抑制剂性能的量子化学计算.中国有色金属学报,2004,14(8):1437-1441
    [151]杨刚,杨高文,徐桦,侯文华.巯基苯并类浮选剂的浮选作用机理及其分 子设计.化学学报,2004,62(2):153-159
    [152]Edelbro R, Sandstrom A, Paul J. Full potential caculations on the electron bandstructure of Sphalerite, Pyrite and Chalcopyrite. Applied surface science, 2003,206(1-4):300-313.
    [153]周泳,洪汉烈,边秋娟,殷莉.磷灰石矿物表面化学特性的量子化学计算.地球科学,2006,31(2):171-174
    [154]洪汉烈,肖睿娟,闵新民.雄黄矿物表面氧化过程的量子化学计算.矿物学报,2004,24(1):95-98.
    [155]Porento M, Hirva P. A theoretical study on the interaction of sulfhydryl surfactants with a covellite(001)surface. Surface science,2004,555(1-3): 75-82.
    [156]Porento M, Hirva P. The adsorption interaction of anionic sulfhydryl collectors on different PbS(100)surface site. Surface science.2003,539(1-3):137-144
    [157]Porento M, Hirva P. Theoretical studies on the interaction of anionic collectors with Cu+, Cu2+, Zn2+ and Pb2+ ions. Theoretical Chemistry. Accounts,2002, 107(4):200-205.
    [158]Porento M, Hirva P. Effect of copper atoms on the adsorption of ethyl xanthate on a sphalerite surface. Surface Science,2005,576(1-3):98-106
    [159]Yekeler H, Yekeler M. Reactivities of some thiol collectors and their interactions with Ag+ ion by molecular modeling. Applied surface science, 2004,236(1-4):435-443
    [160]王丽娟,刘够生,宋兴福,于建国.十二烷基吗啉选择性吸附氯化钠的分子模拟.物理化学学报,2009(5):963-969.
    [161]王福良,孙传尧.黄药捕收剂浮选未活化孔雀石行为的分子力学分析.矿冶工程,2008,17(2):1-5。。
    [162]王福良,罗思岗,孙传尧.利用分子力学分析黄药浮选未活化菱锌矿的浮选行为.有色金属(选矿部分),2008(4):43-47
    [163]王福良,孙传尧.利用分子力学分析黄药捕收剂浮选未活化白铅矿的浮选行为.国外金属矿选矿,2008,45(6):25-27,31
    [164]壬淼生,郑团,周继刚.锌阳极泥制取碳酸锰的研究.广东有色金属学报,1997,7(2):125-130
    [165]向平,冯其明,钮因健,刘伟琪.硫化铅还原硫酸浸出锌电解阳极泥中二氧化锰的试验研究.湖南有色金属,2010,26(1):19-23
    [166]Lupi C, Pilone D. New lead alloy anodes and organic depolariser utilization in zinc electrowinning. Hydrometallurgy,1997,44(3):347-358
    [167]Lai Yan-qing, Jiang Liang-xing, Li Jie, Zhong Shui-ping, Lu Xiao-jun, Peng Hong-jian, Liu Ye-xiang. A novel porous Pb-Ag anode for energy-saving in zinc electrowinning:Part II:Preparation and pilot plant tests of large size anode. Hydrometallurgy,2010,102(1-4):81-86
    [168]徐金法.电积锌阳极材质的发展.有色金属,1995(1):39-41
    [169]朱军,刘漫博,陈超,赵亮.电锌阳极板材料的研究现状.有色矿冶,2007,23(6):36-38
    [170]Garson A L. Electrowinning of zinc. U.S.A patent.2848399,1958
    [171]赵永,蒋开喜,王德全,郭亚会.添加锌电解阳极泥对ZnS浸出过程的影响.东北大学学报:自然科学版,2006,27(1):61-64
    [172]Nijjer S, Thonstad J, Haarberg G M. Oxidation of manganese(Ⅱ) and reduction of manganese dioxide in sulphuric acid. Electrochimica Acta, 2000,46(2-3):395-399
    [173]袁庆云.湿法炼锌中补锰新方法的研究.有色矿冶,2005,21(6):30-32.
    [174]段宏志,张昱深.降低阴极锌含铅量研究.甘肃冶金,2003,25(S1):82-83
    [175]郭天立.锰在锌电解中的作用.有色冶炼,2000,29(2):15-17
    [176]廖云军梅光贵刘荣义.锌电解过程中减少锰离子贫化及对阳极泥返回利用的研究.中国锰业,1999,17(1):30-33
    [177]唐守层.锰离子浓度对锌电积过程的影响.湖南有色金属,2009,25(2):28-30
    [178]刘洪波,罗宏贵.电解锌中MnO2的形成机理及其形态对阴极锌质量的影响.贵州科学,1998,16(4):266-271
    [179]梅光贵,钟竹前,刘勇刚,彭小苏.锌电解中铅银阳极的电化学行为.中南工业大学学报,1998,29(4):337-340
    [180]关亚君.锌阳极泥过量对电锌酸浸影响的理论探讨与改进实践.湖南有色金属,2006,22(3):25-27.
    [181]彭小苏.锌电解阳极电积MnO2的研究.有色金属(冶炼部分),2001,3:2-4
    [182]重有色金属冶炼设计手册,铅锌铋卷。北京,冶金工业出版社,1995,417
    [183]黄开国,王秋风.从锌浸出渣中浮选回收银.中南工业大学学报(自然科学版),1997,6:530-532.
    [184]张万生.锌浸出渣浮选银生产实践.湖南有色金属,2000,1:86-90
    [185]倪恒发,张小虎,张全胜.从锌浸出渣中浮选回收银的实践.资源再生,2008,2:28-29.
    [186]沈慧庭,覃华,黄晓毅,包玺琳.某含锰冶金渣中锰和铅的综合回收研究. 金属矿山,2009,6:171-175
    [187]向平,冯其明,刘伟琪,刘朗明,朱北平,钮因健.SO2还原浸出锌电解阳极泥中MnO2的试验研究.矿冶工程2010,30(8):168-170
    [188]Ha B Y, Ryong K D. Recovery of manganese from electrolytic zinc anodic slime and from scrap dry cells. Kumsok Pyomyon Choli,1986,19(1):13-19.
    [189]Ho L M, Sub O T, Bok K C. Recovery of manganese dioxide from zinc refinery slimes[J].Hwahak Konghak,1986,24(6):513-19
    [190]http://baike.baidu.com/view/30071.htm
    [191]http://baike.baidu.com/view/761396.htm
    [192]http://baike.baidu.com/view/415786.htm
    [193]http://baike.baidu.com/view/6857.htm
    [194]http://zhidao.baidu.com/question/193195346.htm
    [195]http://zhidao.baidu.com/question/193195346.htm
    [196]John A. Dean. Lange's Handbook of Chemistry, fifteenth Version [M]. McGraw-Hill, Inc.1998
    [197]邹晓勇,宋志红,陈民仁,匡远亮,贾绍才.离子交换法从硫酸锌溶液中吸附氯的研究.广州化工,2009,37(8):145-147
    [198]陈念贻.键参数函数及其应用.北京:科学出版社,1976.
    [199]Douglas B E, McDaniel D H, Alexander J J. Concepts and Models of Inorganic Chemistry, New York, John Wiley,1993,
    [200]王淀佐,林强,蒋玉仁.选矿与冶金药剂分子设计.长沙,中南工业大学出版社,1996
    [201]Koopans T. Physical,1993
    [202]Moore C E. Ionization Potentials and Ionization Limits Drived from the Analyses of Optical Spectra. NSRDS-NBS34,1970
    [203]Henninger S K, Schmidt F P, Nunez T, Henning. H M. Monte Carlo Investigations of the Water Adsorption Behavior in MF1 Type Zeolites for different Si/Al Ratios with Regard to Heat Storage Applications._Adsorption,2005,11(1):361—366

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700