量子点系统量子关联和几何相点接触探测的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二十世纪之初,在试图对微观世界的物理现象进行描述时,人们发现已经完善的经典力学理论在解释微观实验现象时变得十分荒谬。人们逐渐意识到微观世界的运行规律和经典的宏观世界是截然不同的,在不断的尝试中量子力学诞生了。在百年的发展中量子力学展示出了巨大的力量,并在物理学的不同领域硕果累累。二十世纪末,在经典信息论和量子理论的结合中产生了一个新兴学科—量子信息论。
     在对量子体系的探测过程中由于探测器件和量子系统的作用使得量子系统成为一个开放系统,在获得体系量子信息的同时系统的能量和相干性也将受到耗散。本论文以量子点系统的点接触探测作为研究对象,研究探测电流输出和系统的纠缠及量子关联的关系,以及探测对体系的几何相位的影响并提出一种几何相位的探测方案。
     第一章和第二章是本论文的第一部分。在这一部分中,我们首先对量子力学和量子信息学中的物理概念和历史进行介绍,之后我们对论文中用到的物理概念和方法进行简要的说明。在介绍量子点概念及其描述方法后,我们对本论文中所用到的处理量子点接触系统的Bloch速率方程方法和粗粒噪声进行说明。在这一部分的最后我们介绍研究点接触探测过程中用到的negativity,量子discord和混态几何相位概念和计算方法。
     第三章是本论文的第二部分。在这部分中我们提出一个通过点接触探测过程读取量子点系统中的纠缠和量子discord信息的方案。在介绍了模型的主方程和探测器的输出电流后,我们利用数值方法研究体系和电流以及纠缠和量子discord演化动力学。通过对体系动力学的模拟,我们发现探测器的输出电流和体系的纠缠及量子discord具有相似的演化性质。因此利用这个模型,可以通过探测电流的极大值点来确定系统具有最大纠缠和量子discord的时刻。同时,分析了探测器对体系的纠缠和量子discord的耗散作用。最后我们利用输出电流的粗粒噪声分析探测方案的实际可行性。
     第四章是本论文的第三部分。在这一章中我们分析受单电子晶体管结构的点接触探测器作用下的一个内部存在库仑相互作用的双量子点比特系统的几何相位性质。在这个模型中点接触探测器是作为环境引入的。在给出系统的速率方程描述之后,我们分析了探测过程和体系内的库仑相互作用对子系统几何相位的影响。我们发现探测器对量子比特系统几何相位的影响是通过其中心量子点的电子占据情况来作用的。而库仑相互作用对子系统几何相位的影响表现在两个方面。一方面库仑相互作用使两个比特都获得能量的增加,从而各自演化获得的几何相位增加。另一方面库仑相互作用造成的两个电子之间的弱”碰撞”,使得两个子系统的几何相位受到一定的破坏。
     在第五章中,我们通过点接触探测电流和系统内部状态之间的关系,在弱退相干近似下得到了一个通过电流函数积分形式表示系统几何相位的方案。不同于几何相位的干涉测量方式,点接触探测不会破坏系统的几何相位。电流积分表示中的参数是能够通过实验确定的。我们通过对探测电流的粗粒噪声以及信噪比的分析说明探测方案的实际可行性。结果表明,在弱探测下探测电流函数积分在较短时间内能够比较准确的反映出系统的几何相位,同时探测电流的信噪比也是较大的。
     最后,我们给出了本文的总结和展望。
At the beginning of the20th century, people who tried to explain the microscopic physical phenomena, found that the results they got were absurd when they attempted to interpret the output of microscopic experiments with consummate classic theory of physics.People found that the rules of microscopic world are quite different from the classical counterparts gradually. In order to understand the microscopic world, the quantum mechanics was born. With more than100years of development, quantum theory shows great power, and fruitful in many different scientific areas. At the end of20th century, combining quantum theory with classic information theory the quantum information emerges.
     In the process of detecting the quantum system, because of the interaction between quantum system and the detector, the system is open. While we try to extract the quantum information of the system, the quantum system will suffer from dissipations of energy and coherence simultaneously. In this thesis we choose the process of point detection of quantum dots system as our topic. We find out the connection between the current through the quantum point contact detectors and the entanglement, quantum discord dynamics of the system. Furthermore, we study the influence of the detection on the geometrical phases of the system, and the method to measuring geometrical phase with a quantum point contact device.
     In chap.1and chap.2, we introduce the histories and concepts of quantum mechanics, quantum information, measurement, quantum open system and quantum noise. Then we introduce the methods and other physical concepts that will be used in this dissertation. After the introduction of the concept of quantum dot and the method to depict it, we introduce the rate equation method of the point detect systems and Shot noise. At the end of this part we introduce the conceptions of negativity, quantum discord, geometrical phase of a mixed state system and the method to calculating them.
     In chap.3we propose a scheme to read out the entanglement and quantum discord infor-mation by measuring the current through the detector. After introducing the rate equation of the model and the current though the detector, we numerically calculate the dynamics of entanglement, quantum discord and the current of the system. We find that the behaviors of the current and the entanglement,quantum discord of the system are similar. In this model, the time points of when the system gets to its maximal entanglement states can be deter-mined by the summits of the current. In addition, the dissipative effect of detection on the entanglement and quantum discord of the system has been analyzed. Finally, we study the feasibility of the detecting scheme via the shot noise of the current through the detector.
     In chap.4. We analyze the geometrical phases of a system which is composed of two double quantum dot bits and a single electronic transistor as a detector. There is Coulomb interaction between the two electrons in each qubit. In this model the quantum point detector is viewed as an environment. After introducing the rate equation of the system we analyze the geometrical phases which are influenced by the detection and the Coulomb interaction between the two qubits. We find that the detector influence the geometrical phase via oc-cupation of the quantum by an electron in it. And the influence of Coulomb interaction has two effects. One is the Coulomb interaction makes both qubits have more energy and enlarge the geometrical phase through the development. The other one is the weak "collision" of the two electrons in each qubit demolishs the geometrical phases weakly.
     In chap.5, by using the relation between the current through quantum point detector and the state of the system, we proposed a scheme to express the geometrical phase of the system by a time integral form of the function of the current under the approximation of weak decoherence. Different from the interferometry measurement scheme of the geometrical phase, the point detect method does not damage the geometrical phase of the system. The parameters of the integral form can be determined by experiment. We studied the feasibility of the scheme by analyzing the shot noise and the Signal-to-noise ratio of the current. As a result the integral form of the function of current can depict the geometrical phase of the system under weak measurement within a short time interval. Meanwhile the signal-to-noise ratio of the current is good.
     Finally, the conclusions and discussion are given.
引文
[1]周世勋,量子力学教程[M].高等教育出版社,北京,1979.
    [2]宋鹤山,量子力学(第二版)[M].大连理工大学出版社,大连,2006.
    [3]张永德,量子力学(第二版)[M].科学出版社,北京,2008.
    [4]Walter Greiner, Berndt Miiller, Quantum Mechanics Symmetries(second edition) [M]. Springer-Verlag Berlin Heidelberg New York,1994.
    [5]曾谨言,量子力学卷I[M].科学出版社,北京,1990;曾谨言,量子力学卷Ⅱ[M].科学出版社,北京,1993.
    [6]L.I.席夫著,李淑娴,陈崇光译,方励之校,量子力学[M].人民教育出版社,北京,1982.
    [7]Dirac P A M, The Principles of Quantum Mechanics[M]. Oxford University Press,Oxford,1930.
    [8]D.F.Walls, G.J.Milburn, Quantum Optics[M]. Springer-Verlag Berlin Heidelberg New York,1994.
    [9]Marian O.Scully and M.Suhail Zubairy, Quantum Optics[M]. Cambridge University Press,1997.
    [10]Gerald D.Mahan, Many-Particle Pgysics[M]. Plenum Press, New York,1981.
    [11]E.L.Wolf, Principles of Electron Tunneling Spectroscopy[M]. Oxford University Press New York Clarendon Press, Oxford,1985.
    [12]张先蔚,量子统计力学(第二版)M].科学出版社,北京,2008.
    [13]Einstein A, Podolsky B, Rosen N, Can quantum mechanical description of Physical reality be considered complete? [J]. Phys.Rev.,1935,47:777-780.
    [14]Borh N,Can quantum mechanical description of Physical reality be considered complete? [J].Phys.Rev.,1935,48:696-702.
    [15]Bohm D, A Suggested Interpretation of the Quantum Theory in Terms of "Hidden" Variables [J]. Phys.Rev.,1952,85:166-193.
    [16]Bell J, On the Problem of Hidden Varialbles in Quantum Mechanics [J]. Rev.Mod.Phys.,1996,38:477-452.
    [17]Feynman R P,Simulating physics with computers [J]. Int.J.Theor.Phys.1982,21:467-488.
    [18]Feynman R P.Quantum Mechanical Computers[J]. Found.Phys.1986,16:507-531.
    [19]Deutsch D, Quantum Theory, the Church Turing Principle and the Universal Quantum Com-puter[J]. Proc.R.Soc.A.1985,400:97-117.
    [20]Shor P W, Algorithms for quantum computation:Discrete logarithms and factoring,1994 Proc.35th Annual symposium on the Foundations of Computer Science,124.
    [21]Grover L K, Quantum Mechanics Helps in Searching for a Needle in a Haystack[J].Phys.Rev.Lett.1997,79:325-328.
    [22]李承祖,黄明球,陈平形,梁林梅,量子通信和量子计算[M].国防科技大学出版社,长沙,2000.
    [23]张永德,量子信息物理原理[M].科学出版社,2006.
    [24]Michael A.Nielsen, Isaac L.Chuang,Quantum Computation and Quantum Informa-tion[M].Cambrigde University Press.2000.
    [25]Vladimir B. Braginsky and Farid Ya. Khalili, Quantum Measurement[M]. Cambridge University Press,1992.
    [20]John Archibald Wheeler and Wojciech Hubert Zurek, Quantum Theory and Measure-ment[M].Princeton University Press, Princeton, New Jersy.1983.
    [27]Mikio Namiki and Saverio Pascazio, Quantum theory of measurement based on the many-Hilbert-space approach[J].Physics Reports.1993;232,No.6:301-411.
    [28]Micheal B. Mensky, Continuous Quantum measurement and Pathintegrals[M]. IOP Publishing Ltd.1993.
    [29]Luders G, Uber die Zustandsanderung durch den Meβprozeβ[J]. Ann. Phys.1951,8:322-328.
    [30]von Neumann.J,Mathematical Foundations of Quantum Mechanics[M]. Princeton University Press, Princeton,1955.
    [31]G.Puentess, N.Hermosa and J.P.Torres, Weak Measurements with Orbital-Angular-Momentum Pointer States[J].Phys.Rev.Lett.2012,109:040401.
    [32]Y.Aharonov,D.Z.Albert and L.Vaidman, How the Result of a Measurement of a Component of the Spin of a Spin-1/2 Particle Can Turn Out to be 100[J].Phys.Rev.Lett.1988,60:1351.
    [33]K.J.Resch and A.M.Steinberg.Exacting Joint Weak Values with Local, Singel-Particle Measure-ments[J]. Phys.Rev.Lett.2004,92:130402.
    [34]I.M.Duck,P.M.Stevenson and E.C.G.Sudarshan, The sense in which a "weak measurement" of a spin-1/2 particle's spin component yields a value 100[J].Phys.Rev.D.1989,40:2112.
    [35]V.B.Braginsky and V.P.Mitrofanov, Systems with Small Dissipation[M].University of Chicago Press, Chicago,1995.
    [36]V.B.Braginsky,Yu.I.Vorontsov and F.Ya.Khalili,Quantum singularities of a ponderomotive meter of electromagnetic energy[J].Sov.Phys.-JETP,1977,4G,705-706.
    [37]W.Unruh,Analysis of quantum-nondemolition measurement [J].Phys. Rev. D.1978,18:1764-1772.
    [38]M. D. Levenson, R. M. Shelby, M. Reid, and D. F. Walls,Quantum Nondemolition Detection of Optical Quadrature Amplitudes[J].Phys. Rev. Lett.1986,57:2473-2476.
    [39]李正中,固体理论[M].高等教育出版社.北京,2002.12.
    [40]A.Lopez,Non-Markovian Irreversible Behavior in a Simple Model[J].Phys.Rev.A.1970.2:525-534.
    [41]M.D.Kostin,On the Schrodinger-Langevin Equation[J].J.Chem.Phys.1972,57:3589.
    [42]I.M.Besieris,Kinetic equations for the quantized motion of a particle in a randomly perturbed potential field[J].J.Math.Phys.1973,14:1829-1836.
    [43]U.Weiss,Quantum dissipative systems, Volume2 of Series in modern condensed matter physics[M].World Scientific,Singapore,1999.
    [44]N.G.Von Kampen,A Cumulant expansion for stochastic linear differential equations I and II[J]. Physica,1974,74:215-247.
    [45]P.Pechukas,U.Weiss,Quantum dynamics of open system[J],Chemical Physics.Special Issue,2001,268:1-3.
    [46]N.Zwanzig,Ensemble Method in the Theory of Irreversibility[J].J.Chem.Phys,1960,33:1338-1341.
    [47]P.Zanardi.Dissipation and decoherence in a quantum register[J].Phys.Rev.A,1998,57:3276-3284.
    [48]Hua-Tang Tan,Wei-Min Zhang,Non-Markovian dynamics of an open quantum system with ini-tial system-reservior correlations:A nanocavity coupled to a coupled-resonator optical waveg-uide[J].Phys.Rev.A,2011,83:032102.
    [49]A.Royer,Cumulant Expansions and Pressure Broadening as an Example of Relaxation[J].Phys.Rev.A,1972,6:1741-1760.
    [50]G.S.Agarwal,Master Equation Approach for Spontaneous Emission[J].Phys.Rev.A,1970,2:2038-2046.
    [51]S.Nakajima,On Quantum Theory of Transport Phenomenon[J].Prog.Theor.Phys,1958,20:948-959.
    [52]H.Grabert,P.Schramm,G.L.Ingold,Quantum Brown Motion:The Functional Integral Approach[J].Phys.Rep,1988,168:115-207.
    [53]S.Chaturvedi,F.Shibata,Time-convolutionless projection operator formalism for elimination of fast variable applications to Brownian motion[J].Z.Phys.B,1977,35:297-305.
    [54]B. L. Hu, Juan Pablo Paz, and Yuhong Zhang,Quantum Brownian motion in a general environ-ment:Exact master equation with nonlocal dissipation and colored noise[J].Phys. Rev. D,1992,45. 2843-2861.
    [55]Jφrgen Rammer, Quantum Field Theory of Non-equilibrium States[M].Cambridge University Press,2007.
    [56]Gerald D.Mahan,Many-Particle Physics (third edition)[M].Kluwer Academic/Plenum Publish-ers,New York,2000.
    [57]H.Haug,A.-P.Jauho,Quantum Kinetics in Transport and Optics of Semiconductors [M].Springer-Verlag Berlin Heidelberg New York,1996.
    [58]Supriyo Datta,Electronic Transport in Mesoscopic Systems[M].Cambridge University Press,1995.
    [59]Ashok Das.Field Theory:A Path Integral Approach(second edition) [M]. World Scientific Publishing Co.Pte.Ltd,2006.
    [60]A.O.Caldeira,A.J.Leggett,Path Integral Approach to Quantum Brownian Motion[J].Physica.A.1983,121:587-616.
    [61]A.O.Caldeira,A.J.Leggett,Quantum Tunnelling in a Dissipative System[J].Ann.Phys.1983,147:374-456.
    [62]R.P.Feynman,F.L.Vernon,Jr,The theory of a General Quantum System Interacting with a Linear Dissipative System[J].Ann.Phys.1963,24:118-173.
    [63]Yoshitaka Tanimura and Ryogo Kubo,Two-Time Correlation Function of a System Coupled to a Heat Bath with a Gaussian-Markoman Interaction[J].J.Phys.Soc.Jpn.1989,58,No.4:1199-1206.
    [64]Ting Yu,Lajos Dissi,Nicolas Gisin and Walter T.Strunz,Non-Markovian quantum-state diffu-sion:Perturbation approach[J].Phys.Rev.A.1999.60:94-103.
    [65]Esteban A.Calzetta and Bei-Lok B.Hu,Nonequilibrium Quantum Field Theory[M].Cambridge Uni-versity Press,2008.
    [66]H.P.Breuer and F.Petruccione,The Theory of Open Quantum Systems[M]. Oxford University Press,Oxford,2002.
    [67]C.W.Gardiner and P.Zoller,Quantum Noise[M].Springer-Verlag Berlin Heidelberg New York,2000.
    [68]Gorini.V,Frigerio.A,Verri.M,Kossakowski.A and Sudarshan.E.C.G,Properties of quantum Marko-vian master equations[J].Rep.Math.Phys.1978.13:149-173.
    [69]Lindblad.G,Completely positive maps and entropy inequalities[J].Commun.Math.Phys.1975,40:147-151.
    [70]Lindblad.G,On the generator of quantum dynamical semigroups[J].Commun.Math.Phys,1976,48,119-130.
    [71]S.A.Gurvitz and Ya.S.Prager,Microscopic derivation of rate equations for quantum trans-port [J],Phys.Rev.B.1996,53:15932.
    [72]T. H. Stoof and Yu. V. Nazarov.Time-dependent resonant tunneling via two discrete states[J].Phys.Rev.B.1996,53:1050.
    [73]Yuli V. Nazarov,Quantum interference, tunnel junctions and resonant tunneling interferometer [J].Physica.B.1993,187:57-69.
    [74]C.Cohen-Tannoudji,J.Dupont-Roc and G.Grynberg,Atom-Photon Interactions:Basic Processes and Applications[M].Wiley,New York,1992.
    [75]Glenn T. Evansa,A generalized Redfield equation with initial spin-lattice correlation[J].Mol.Phys,1976,31:1337-1343.
    [76]P. Gaspard and M. Nagaoka.Slippage of initial conditions for the Redfield master equation[J].J. Chem. Phys.1999,111:5668-5675.
    [77]D. O. Soares-Pinto, M. H. Y. Moussa, J. Maziero, E. R. deAzevedo, T. J. Bonagamba, R. M. Serra, and L. C. Celeri,Equivalence between Redfield- and master-equation approaches for a time-dependent quantum system and coherence control[J].Phys. Rev. A.2011,83:062336.
    [78]Mohamad Toutounji,Mixed quantum-classical Redfield master equation[J].J. Chem. Phys.2005,123: 244102.
    [79]H. Nyquist,Thermal Agitation of Electric Charge in Conductors[J].Phys. Rev.1928,32:110-113.
    [80]J. B. Johnson.Thermal Agitation of Electricity in Conductor[J].Phys. Rev.1928,32:97-109.
    [81]Herbert B. Callen and Theodore A. Welton,Irreversibility and Generalized Noise[J].Phys. Rev. 1951,83:34-40.
    [82]A. Einstein, Uber die von der molekularkinetischen theorie der wame geforderte bewegung von in ruhenden flusigkeiten suspendierten teilchen[J].Ann.d.Phys.1905,17:549-560.
    [83]G. W. Ford, M. Kac, and P. Mazur,Statistical Mechanics of Assemblies of Coupled Oscillators[J].J. Math. Phys.1965,6:504-515.
    [84]W. Schottky,Uber spontane Stromschwankungen in verschiedenen elektrizitasleitern[J].Ann. d. Phys.1918,57:541-567.
    [85]M. Buttiker,Scattering theory of current and intensity noise correlations in conductors and wave guides[J].Phys. Rev. B.1992,46:12485-12507.
    [86]A. Pretre, H. Thomas and M. Buttiker,Dynamic admittance of mesoscopic conductors:Discrete-potential model[J].Phys. Rev. B.1996,54:8130-8143.
    [87]M. H. Pedersen,S. A. van Langen and M. Buttiker,Charge fluctuations in quantum point contacts and chaotic cavities in the presence of transport[J].Phys. Rev. B.1998,57:1838-1846.
    [88]Y. Naveh, D. V. Averin, and K. K. Likharev,Effect of Screening on Shot Noise in Diffusive Meso-scopic Conductors[J].Phys. Rev. Lett.1997,79:3482-3485.
    [89]K. E. Nagaev,Long-range Coulomb interaction and frequency dependence of shot noise in meso-scopic diffusive contacts[J].Phys. Rev. B.1998,57:4628-4634.
    [90]Y. Naveh, D. V. Averin, and K. K. Likharev,Noise properties and ac conductance of mesoscopic diffusive conductors with screening[J].Phys. Rev. B.1999,59:2848-2860.
    [91]Yehuda Naveh,Direct determination of the electron-electron mean free path in diffusive mesoscopic samples using shot noise[J].Phys. Rev. B.1998,58:R13387-R13390.
    [92]M. Biittiker,Role of scattering amplitudes in frequency-dependent current fluctuations in small conductors[J].Phys. Rev. B.1992,45:3807-3810.
    [93]Ya. M. Blanter, F. W. J. Hekking and M. Buttiker,Interaction Constants and Dynamic Conductance of a Gated Wire[J].Phys. Rev. Lett.1998,81:1925-1928.
    [94]Markus Buttiker and Andrew M. Martin,Charge relaxation and dephasing in Coulomb-coupled conductors[J].Phys. Rev. B.2000,61:2737-2741.
    [95]G. E. Blonder, M. Tinkham, and T. M. Klapwijk,Transition from metallic to tunneling regimes in superconducting microconstrictions:Excess current, charge imbalance, and supercurrent conver-sion[J].Phys. Rev. B.1982,25:4515-4532.
    [96]J. B. Johnson,The Schottky Effect in Low Frequency Circuits[J].Phys. Rev.1925,26:71-85.
    [97]W. Schottky,Small-Shot Effect and Flicker Effect[J].Phys. Rev.1926,28:74-103.
    [98]Richard F. Voss,Linearity of 1/f Noise Mechanisms[J].Phys. Rev. Lett.1978,40:913-916.
    [99]C. L. Kane,Telegraph Noise and Fractional Statistics in the Quantum Hall Effect[J].Phys. Rev. Lett.2003,90:226802
    [100]K. S. Ralls and R. A. Buhrman,Defect Interactions and Noise in Metallic Nanoconstric-tions[J].Phys. Rev. Lett.1988,60:2434-2437.
    [101]G. E. Uhlenbeck and L. S. Ornstein,On the Theory of the Brownian Motion[J].Phys. Rev.1930, 36:823-841.
    [102]Ming Chen Wang and G. E. Uhlenbeck,On the Theory of the Brownian Motion II[J].Rev. Mod. Phys.1945,17,323-342.
    [103]D.C.K.MacDonald,Spontaneous fluctuations [J]. Rep. Prog. Phys.1949,12:56-82.
    [104]D. K. C. MacDonald,On the Theory of Electrical Fluctuations[J].Proc. R. Soc.1948,195:225-230.
    [105]L P Kouwenhoven, D G Austing and S Tarucha,Few-electron quantum dots[J].Rep. Prog. Phys. 2001,64:701-736.
    [106]R. Hanson,L. P. Kouwenhoven,J. R. Petta,S. Tarucha and L. M. K. Vandersypen,Spins in few-electron quantum dots[J].Rev. Mod. Phys.2007,79,1217-1265.
    [107]Lucjan Jacak, Pawel Hawrylak, Arkadiusz Wojs,Quantum Dots[M].Springer-Verlag Berlin Heidel-berg,1998.
    [108]黄昆,韩汝琦,固体物理学[M].高等教育出版社,北京,1988.
    [109]Lok C. Lew Yan Voon. Morten Willatzen, The k·p Method:Electronic Properties of Semicon-ductors [M]. Springer-Verlag Berlin Heidelberg,2009.
    [110]D. Sprinzak, E. Buks, M. Heiblum, and H. Shtrikman,Controlled Dephasing of Electrons via a Phase Sensitive Detector[J].Phys. Rev. Lett.2000,84:5820-5823.
    [111]I. L. Aleiner, Ned S. Wingreen, and Yigal Meir,Dephasing and the Orthogonality Catastrophe in Tunneling through a Quantum Dot:The "Which Path?" Interferometer[J].Phys. Rev. Lett.1997, 79:3740-3743.
    [112]G. Hackenbroich, B. Rosenow, and H. A. Weidenmuller,Quantum Zeno Effect and Parametric Resonance in Mesoscopic Physics[J].Phys. Rev. Lett.1998,81:5896-5899.
    [113]Alexander N. Korotkov,Continuous quantum measurement of a double dot[J].Phys. Rev. B.1999, 60:5737-5742.
    [114]S. A. Gurvitz and Ya. S. Prager,Microscopic derivation of rate equations for quantum trans-port[J].Phys. Rev. B.1996,53:15932-15943.
    [115]S. A. Gurvitz,Measurements with a noninvasive detector and dephasing mechanism[J].Phys. Rev. B.1997,56:15215-15223.
    [116]S. A. Gurvitz,Rate equations for quantum transport in multidot systems[J].Phys. Rev. B.1998, 57:6602-6611.
    [117]J. Bardeen,Tunnelling from a Many-Particle Point of View[J].Phys. Rev. Lett.1961,6:57-59.
    [118]M. H. Cohen, L. M. Falicov, and J. C. Phillips,Superconductive Tunneling[J].Phys. Rev. Lett.1962, 8:316-318.
    [119]Walter A. Harrison,Tunneling from an Independent-Particle Point of View[J].Phys. Rev.1961,123: 85-89.
    [120]Richard E. Prange,Tunneling from a Many-Particle Point of View[J].Phys. Rev.1963.131: 1083-1086.
    [121]A.Bohm,A.Mostafazadeh,H.Koizumi,Q.Niu and J.Zwanziger,The Geometric Phase in Quantum Systems:Foundations in Molecular and Condensed Matter Physics[M].Springer-Verlag Berlin Hei-delberg,2003.
    [122]Shi-Liang Zhu,Scaling of Geometric Phases Close to the Quantum Phase Transition in the XY Spin Chain[J].Phys. Rev. Lett.2006,96:077206.
    [123]Angelo C. M. Carollo and Jiannis K. Pachos,Geometric Phases and Criticality in Spin-Chain Systems[J].Phys. Rev. Lett.2005,95:157203.
    [124]Wang Xiang-Bin and Matsumoto Keiji,Nonadiabatic Conditional Geometric Phase Shift with NMR[J].Phys. Rev. Lett.2001,87:097901.
    [125]Giuseppe Falci, Rosario Fazio, G. Massimo Palma, Jens Siewert and Vlatko Vedral,Detection of geometric phases in superconducting nanocircuits[J].Nature.2000,407:355-358.
    [126]L.-M. Duan, J. I. Cirac and P. Zoller,Geometric Manipulation of Trapped Ions for Quantum Computation [J]. Science,2001.292,No.5522:1695-1697.
    [127]Jonathan A. Jones, Vlatko Vedral, Artur Ekert and Giuseppe Castagnoli,Geometric quantum computation using nuclear magnetic resonance[J].Nature(London),2000,403,869-871.
    [128]Karl-Peter Marzlin and Barry C. Sanders,Inconsistency in the Application of the Adiabatic The-orem[J].Phys. Rev. Lett.2004,93:160408.
    [129]D. M. Tong, K. Singh, L. C. Kwek, and C. H. Oh,Quantitative Conditions Do Not Guarantee the Validity of the Adiabatic Approximation[J].Phys. Rev. Lett.2005,95:110407.
    [130]R. MacKenzie, E. Marcotte, and H. Paquette.Perturbative approach to the adiabatic approxima-tion[J].Phys. Rev. A.2006,73:042104.
    [131]T. Vertesia and R. Englman.Perturbative analysis of possible failures in the traditional adiabatic conditions[J].Phys.Lett.A.2006,353:11-18.
    [132]Solomon Duki, H. Mathur and Onuttom Narayan,Comment I on "Inconsistency in the Application of the Adiabatic Theorem" [J].Phys. Rev. Lett.2006,97:128901.
    [133]Jie Ma, Yongping Zhang, Enge Wang, and Biao Wu,Comment II on "Inconsistency in the Appli-cation of the Adiabatic Theorem" [J].Phys. Rev. Lett.2006,97:128902.
    [134]Denis Lacroix,Stochastic mean-field dynamics for fermions in the weak-coupling limit[J].Phys. Rev. C.2006,73:044311.
    [135]Erik Sjoqvist, Arun K. Pati, Artur Ekert, Jeeva S. Anandan, Marie Ericsson, Daniel K. L. Oi, and Vlatko Vedral,Geometric Phases for Mixed States in Interferometry[J].Phys. Rev. Lett.2000,85: 2845-2849.
    [136]Rajendra Bhandari,Singularities of the Mixed State Phase[J].Phys. Rev. Lett.2001,89:268901.
    [137]Jeeva Anandan, Erik Sjoqvist, Arun K. Pati, Artur Ekert, Marie Ericsson, Daniel K. L. Oi, and Vlatko Vedral,Anandan et al. Reply:[J].Phys. Rev. Lett.2002,89:268902.
    [138]X. X. Yi, H. T. Cui, Y. H. Lin, and H. S. Song,Effect of intersubsystem couplings on the evolution of composite systems [J].Phys. Rev. A.2005,71:022107.
    [139]Li Han and Yong Guo,Comment on "Berry Phase in a Composite System"[J].Phys. Rev. Lett.2008, 100:168901.
    [140]D. Ellinas,S. M. Barnett and M. A. Dupertuis,Berry's phase in optical resonance[J].Phys. Rev. A.1989,39:3228-3237.
    [141]Ingo Kamleitner. James D. Cresser, and Barry C. Sanders,Geometric phase for an adiabatically evolving open quantum system [J].Phys. Rev. A.2004,70:044103.
    [142]D. M. Tong, E. Sjoqvist, L. C. Kwek, and C. H. Oh,Kinematic Approach to the Mixed State Geometric Phase in Nonunitary Evolution[J].Phys. Rev. Lett.2004,93:080405.
    [143]Asher Peres,Separability Criterion for Density Matrices[J].Phys. Rev. Lett.1996,77:1413-1415.
    [144]Michal Horodeckia, Pawel Horodeckib, Ryszard Horodecki,Separability of mixed states:necessary and sufficient conditions[Jj.Phys.Lett.A.1996,223:1-8.
    [145]Harold Ollivier and Wojciech H. Zurek,Quantum Discord:A Measure of the Quantumness of Correlations[J].Phys. Rev. Lett.2001,88:017901.
    [146]Wojciech Hubert Zurek,Quantum discord and Maxwell's demons [J].Phys. Rev. A.2003,67: 012320.
    [147]L Henderson and V Vedral,Classical, quantum and total correlations [J]. J. Phys. A:Math. Gen.2001,34:6899.
    [148]Bo Wang, Zhen-Yu Xu, Ze-Qian Chen and Mang Feng,Non-Markovian effect on the quantum discord [J].Phys. Rev. A.2010,81:014101.
    [149]Tycho Sleator and Harald Weinfurter,Realizable Universal Quantum Logic Gates[J].Phys. Rev. Lett.1995,74,4087-4090.
    [150]Pochung Chen, C. Piermarocchi, L. J. Sham, D. Gammon, and D. G. Steel,Theory of quantum optical control of a single spin in a quantum dot[J].Phys. Rev. B.2004,69,075320.
    [151]Jie Song, Yan Xia and He-Shan Song,One-step generation of cluster state by adiabatic passage in coupled cavities[J].Appl. Phys. Lett.2010,96:071102.
    [152]Tetsufumi Tanamoto and Xuedong Hu,Measurement of two-qubit stales by a two-island single-electron transistor[J].Phys. Rev. B.2004,69:115301.
    [153]Jin Liu, Zhao-Tan Jiang and Bin Shao.Local measurement, of the entanglement between two quantum-dot qubits[J].Phys. Rev. B.2009,79:115323.
    [154]Shi-Kuan Wang, Hujun Jiao, Feng Li, Xin-Qi Li and YiJing Yan.Full counting statistics of trans-port through two-channel Coulomb blockade syslems[J].Phys. Rev. B.2007,76:125416.
    [155]Xin-Qi Li, Ping Cui and YiJing Yan,Spontaneous Relaxation of a Charge Qubit under Electrical Measurement[J].Phys. Rev. Lett.2005,94:066803.
    [15C]M. Biittiker,Four-Terminal Phase-Coherent Conductance[J].Phys. Rev. Lett.1986,57:1761-1764.
    [157]S. D. Barrett and T. M. Stace,Continuous Measurement of a Microwave-Driven Solid State Qubit[J].Phys. Rev. Lett.2006,96:017405.
    [158]T. M. Stace, S. D. Barrett, H-S. Goan, and G. J. Milburn,Parity measurement of one-and two-electron double well systems [J].Phys. Rev. B.2004,70:205342.
    [159]T. M. Stace, A. C. Doherty, and S. D. Barrett,Population Inversion of a Driven Two-Level System in a Structureless Bath[J].Phys. Rev. Lett.2005,95:106801.
    [160]S. D. Barrett and T. M. Stace,Two-spin measurements in exchange interaction quantum comput-ers[J].Phys. Rev. B.2006,73:075324.
    [161]Daniel K. L. Oi, Sonia G. Schirmer, Andrew D. Greentree, and Tom M. Stace,Robust charge-based qubit encoding[J].Phys. Rev. B.2005,72:075348.
    [162]S. Pancharatnam,Generalized theory of interference, and its applications[J].Proc. Indian Acad. Sci., Sect. A.1956,44:247-262.
    [163]Y. Aharonov and J. Anandan,Phase change during a cyclic quantum evolution[J].Phys. Rev. Lett.1987,58:1593-1596.
    [164]J. Anandan and Y. Aharonov,Geometric quantum phase and angles[J].Phys. Rev. D.1988,38: 1863-1870.
    [165]Joseph Samuel and Rajendra Bhandari,General Setting for Berry's Phase[J].Phys. Rev. Lett.1988, 60:2339-2342.
    [166]S. L. Wu, X. L. Huang, L. C. Wang and X. X. Yi,Information flow, non-Markovianity, and geo-metric phases[J].Phys. Rev. A.2010,82:052111.
    [167]K. Kim, C. F. Roos, L. Aolita, H. Haffner, V. Nebendahl, and R. Blatt,Geometric phase gate on an optical transition for ion trap quantum computation[J].Phys. Rev. A.2008,77:050303(R).
    [168]R. G. Unanyan and M. Fleischhauer,Geometric phase gate without dynamical phases[J].Phys. Rev A.2004,69:050302(R).
    [169]Shruti Puri, Na Young Kim and Yoshihisa Yamamoto,Two-qubit geometric phase gate for quantum dot spins using cavity polariton resonance[J].Phys. Rev. B.2012,85:241403(R).
    [170]Huan-Qiang Zhou, Urban Lundin, Sam Young Cho, and Ross H. McKenzie,Measuring geometric phases of scattering states in nanoscale electronic devices[J].Phys. Rev. B.2004,69:113308.
    [171]A. N. Korotkov,Intrinsic noise of the single-electron transistor[J].Phys. Rev. B.1994,49: 10381-10392.
    [172]Jens Koch, Felix von Oppen, and A. V. Andreev,Theory of the Franck-Condon blockade regime[J].Phys. Rev. B.2006,74:205438.
    [173]A. N. Korotkov and D. V. Averin,Continuous weak measurement of quantum coherent oscilla-tions [J].Phys. Rev. B.2001,64:165310.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700