端板螺栓连接钢—混凝土组合节点的抗震性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1994年的美国Northridge地震和1995年的日本Kobe地震中最为惨痛的教训就是现代钢结构焊接刚性节点的过早脆性破坏。两次地震的震害调查发现,钢结构焊接节点的连接破坏主要发生在下翼缘处,分析其破坏的主要原因为:一方面可能是混凝土楼板的组合效应导致下翼缘处应力增大;另一方面可能是下翼缘在腹板位置焊接的中断造成焊缝缺陷。因此迫切需要探求有效的措施(如采用工厂焊接方式和钢梁“狗骨式”削弱等)来保证节点的焊缝质量,同时有必要深入研究混凝土楼板组合效应的影响。
     钢—混凝土组合结构以其合理和有效地利用了钢梁和钢筋/钢管混凝土柱的力学性能而逐渐被视为中、高震区的纯钢筋混凝土结构和钢结构的有益补充,并且日益广泛的应用于工程实际。为确保钢—混凝土组合节点的施工方便性和良好的抗震性能,本文提出了新型的端板螺栓连接钢—混凝土组合节点型式。该节点型式的特点在于:钢梁首先在工厂焊接好端板,再在施工现场通过贯穿柱身的无粘结高强螺栓与钢筋/钢管混凝土柱连接。该类型节点无需现场焊接,从而能够减少现场焊接带来的焊缝质量问题,而且采用现场拼接的方法可以提高施工进度,降低施工成本。同时该类型节点可以通过贯穿柱的高强螺栓和端板的共同作用有效地调动节点域混凝土参与抗剪,从而提高节点的抗震性能。由于端板螺栓连接组合节点是一种新型的节点型式,本文探讨了端板螺栓连接组合节点的合理设计方法,并且采用试验和有限元相结合的方法研究了端板螺栓连接钢—混凝土组合结构的抗震性能及其抗震性能的影响参数,具体工作如下:
     1、通过4个足尺端板螺栓连接钢筋混凝土柱—钢梁节点(RCS节点)和3个足尺端板螺栓连接圆钢管混凝土柱—钢梁节点(CFT节点)的低周反复循环荷载试验评估了端板螺栓连接组合节点的抗震性能。试验考察了钢梁类型、钢梁“狗骨式”削弱以及混凝土楼板等因素对节点抗震性能的影响。本文试验结果表明:具有良好焊缝质量的端板螺栓连接钢—混凝土组合节点具有较好的延性和耗能能力;该类型节点在反复循环荷载作用下能够满足抗弯组合框架的强度和刚度要求;混凝土楼板的组合效应对节点的承载力的提高显著;同时,钢梁的“狗骨式”削弱可以有效地把钢梁的塑性发展控制在削弱区域从而保证节点的延性破坏模式。
     2、采用有限元软件ANSYS建立了考虑材料非线性、几何非线性和接触非线性的端板螺栓连接组合节点的三维有限元模型,并且通过大量的算例验证了有限元模型的有效性。通过验证好的有限元模型分析了高强螺栓的初始预紧力、端板螺栓连接构造、柱的轴压比以及楼板中的混凝土强度和配筋率等因素对节点受力性能的影响。通过对节点施加不同程度的螺栓预紧力分析表明高强螺栓的初始预紧力对节点的整体性能影响较小,但对节点的局部应力有一定影响;对采用了不同厚度的端板的节点研究表明端板厚度对节点的刚度有一定的影响,但是当端板抗弯强度大于翼缘强度后再增加端板厚度对节点的受力性能影响很小;通过改变节点楼板中混凝土强度和配筋率的对比研究表明:由于混凝土的抗拉强度较低,楼板中混凝土强度的变化对组合节点的负向承载力影响较小,但是混凝土楼板的存在使得其负向承载力高于纯钢梁节点。同时,随着楼板配筋率的增加,节点的负向承载力提高明显,但是楼板配筋率的改变对正向承载力的影响很小。混凝土的强度提高时,组合节点的正向承载力也相应的提高,混凝土楼板的存在可以使节点的正向承载力提高80%之多。因而在计算节点的“强柱弱梁”系数以及端板螺栓连接设计时都应该考虑混凝土楼板的影响。
     3、提出了端板螺栓连接节点的分析模型,并采用有限元软件OPENSEES对本文设计的共计12榀端板螺栓连接钢—混凝土组合框架进行了Pushover分析和非线性时程分析以评估端板螺栓连接钢—混凝土组合框架的抗震性能,并且重点考察了混凝土楼板的组合效应以及钢梁的“狗骨式”削弱对端板螺栓连接框架抗震性能的影响。通过有限元软件OPENSEES的分析表明:本文建议的端板螺栓连接组合节点的分析模型能够较好的模拟端板螺栓连接节点的受力性能,分析结果和试验结果吻合良好;端板螺栓连接钢—混凝土组合结构具有较好的抗震性能,能够满足抗震规范要求;考虑混凝土楼板的组合效应后,框架的承载力会有所提高。考虑了混凝土楼板强度贡献的框架的Pushover分析得到的最大基底反力为不考虑混凝土楼板强度框架的1.1倍。同时,考虑混凝土楼板的强度贡献使得框架的梁—柱—节点域的强弱可能会发生改变,导致柱端和节点域区可能出现较大的塑性变形;另外,钢—混凝土组合框架按照弹性侧移率控制时,其强度有一定的富余,而采用钢梁“狗骨式”削弱可以在有效减少钢梁强度富余的同时较小削弱整体框架的刚度,从而保证框架的梁塑性铰破坏模式,通过设计框架的对比分析表明按照FEMA350设计的钢梁“狗骨式”削弱对框架的整体刚度削弱约为5%~7%。
     综合上述试验和有限元分析结果可知,本文建议的端板螺栓连接组合节点和端板螺栓连接的钢—混凝土组合框架具有良好的抗震性能,能够满足地震区的抗震框架设计要求。本文建议的端板螺栓连接节点的设计方法和分析方法基本可靠,能为相关规范的编制和工程应用提供参考。
One of the most significant lessons learned from the 1994 Northridge earthquake and the 1995 Kobe earthquake was the premature cracking and brittle failure of welded steel special moment resisting frame (SMRF) connections. Research after the earthquakes indicated that the possible reasons resulting in the premature fractures at the bottom flanges were mainly attributed to the presence of floor slabs and the potential weld defects due to the discontinuities of in-situ welding. Therefore, it is urgent to find improved details such as reduced beam sections in an effort to protect the welds and study the effect of composite action of concrete floor slabs. Composite steel and concrete moment resisting frame systems integrating structural steel beams with reinforced concrete columns or composite columns gradually gain acceptance as cost-effective and efficient alternatives to conventional steel and reinforced concrete structures in regions of middle or high seismic zones and are widely applied in the United States, Japan, China and etc in recent years. In order to improve the constructability and meanwhile ensure excellent seismic behavior, an innovative type of connection details for composite structures consisting of steel beams and reinforced concrete columns (RCS) or concrete filled circular steel tube columns (CFT) was proposed. The proposed composite connection details involve post-tensioning the shop-welded endplates of the steel beams to the reinforced concrete or concrete filled steel tube columns using high-strength steel rods. The proposed joint details require no field welding, eliminating the problems of the welded steel connections and improving the speed of construction. In addition, the contribution of concrete in panel zones on shear resistance could be mobilized by both endplates and through-column bolts. As a new type of connection details, a rational design procedure was suggested to assure a ductile behavior, and both experimental and analytical research was conducted to evaluate the seismic behavior of bolted endplate connections. The main achievements in the dissertation can be summarized as follows:
     1. To evaluate the seismic behavior of bolted endplate connections and investigate the effects of beam type, reduced beam sections and concrete floor slabs on joints, a total of seven full-scale exterior RCS and CFT joint models were designed and tested under simulated seismic loading. The experimental results indicated that composite RCS and CFT joints with good welding exhibited good ductility and energy- dissipation ability. The bolted endplate connections could provide sufficient strength and stiffness for moment resisting frames under inelastic cyclic loading. The proposed design method could result in a ductile failure pattern for the connections, particularly along with the use of a steel beam with reduced section near the critical moment end. The presence of floor slabs contributed to the strength of joints significantly and reduced beam sections were effective in moving the buckling zone away from the welds.
     2. Three-dimensional finite element models for proposed bolted endplate connections were developed using general-purpose finite element program ANSYS and the models were verified by comparing the behavior of models with experimental results. The nonlinearity of geometry, materials and surface-to-surface contacts was included in the models. Using the program ANSYS, some parameters such as initial pre-tension force of bolts, details of bolted endplate connections, axial force ratio on columns, and strength of concrete as well as ratios of steel bars in the floor slabs affecting the seismic behavior of joints were analyzed in detail. The analytical studies demonstrated that the initial pre-tension force had no apparent effect on the global performance of the joint specimens but local effect. The thickness of endplate has some influence on the stiffness of connections when the flexural strength of the endplate was not higher than that of the steel beam. Owing to the contribution of concrete floor slabs, both the sagging and hogging strength of composite joints increased. The varied strength of concrete had little effect on the sagging strength for the weakness of concrete in tension but the hogging strength of joints was enhanced significantly with the increase of concrete strength. The reinforcement ratio of floor slabs had obvious influence on the sagging strength of joints but it didn’t affect the hogging strength apparently. To ensure beam hinging according to the concept of“strong column–weak beam”, the effect of floor slab should be taken into account in calculation of the strength ratio between columns and beams.
     3. An analytical model for bolted endplate connections was proposed using the platform of OPENSEES and the seismic performance of composite frames with bolted endplate connections were investigated by nonlinear static and time-history analysis of twelve case-study frames. The influence of composite action of concrete floor slabs and reduced beam sections on the seismic behavior of composite frames was studied in detail. The analytical studies show that the proposed analytical model for bolted endplate connections can simulate the test results well. Composite steel and concrete frames with proper design exhibited good seismic behavior, meeting the requirements of current seismic codes. Comparative studies of frames with or without considering the contribution of concrete floor slabs to the strength of beams indicate that the composite action of concrete floor slabs enhance the strength of frames and may change the failure pattern of frames. The composite frames designed under control of elastic deformation result in over-strength of frames. The reduced beam sections can reduce the ratio of over-strength of frames with slight reduction on stiffness. The reduced beam sections designed according to FEMA350 can result in the reduction of stiffness of frames from about 5% to 7%.
     Based on the above-mentioned experimental and analytical results, the proposed bolted endplate connections and composite frames with bolted endplate connections exhibit good seismic performance, meeting the requirements of current codes for seismic resistant frames. The suggestions for the design and analysis of bolted endplate connections can be applied in engineering practice and revision of future codes.
引文
[1] Deierein G G, Hirishi N. Overview of U.S.-Japan Research on the Design of Composite Reinforced Concrete and Steel Moment Frame Structures. Journal of Structural Engineering, 2004, 130(2): 361-367
    [2] Goel S C, Tsai K C. Overview of International Cooperative Research on Seismic Performance of Composite and Hybrid Structures. In: Proceedings of the 2004 Structures-Building on the Past: Securing the Future. Nashville: ASCE, 2004, 1233-1239
    [3] Goel S C. United State-Japan Cooperative Earthquake Engineering Research Program on Composite and Hybrid Structures. Journal of Structural Engineering, 2004, 130(2): 157-158
    [4]申红侠.钢梁-钢筋混凝土柱组合结构研究的进展.建筑钢结构进展, 2006, 8(3):7-15
    [5] Kanno R. Strength, Deformation and Seismic Resistance of Joints between Steel Beams and Reinforced Concrete Columns: [dissertation]. New York: Cornell University, 1993,7-30
    [6]高立人.钢梁-钢筋混凝土柱组合框架结构在国外的发展.建筑结构,2002,32(5):34-57
    [7]申红侠,顾强.钢梁-钢筋混凝土柱节点的研究及其应用概况.建筑钢结构进展, 2004, 6(2):33-36
    [8] Kuramoto H, Noguchi H. An Overview of Japanese Research on RCS Systems. In: Proceedings of ASCE Structural Congress. Los Angeles, 1997, 716-720
    [9] Griffis L. Some Design Consideration for Composite Frame Structures. AISC Engineering Journal, 1986, 23(2): 59-64
    [10] Cordova P P. Validation of the Seismic Performance of Composite RCS Frame: Full-scale Testing Analysis and Seismic Design: [dissertation]. California: Stanford University, 2005, 9-57
    [11]钟善桐.钢管混凝土结构(第三版).北京:清华大学出版社,2003,1-141
    [12]蔡绍怀.现代钢管混凝土结构.北京:人民交通出版社,2003,4-5
    [13]韩林海.钢管混凝土结构-理论与实践.北京:科学出版社, 2004,1-70
    [14]韩林海,杨有福.现代钢管混凝土结构技术.北京:中国建筑工业出版社,2004, 1-300
    [15] Sheikh T M, Deierlein G G. Beam Column Moment Connections for CompositeFrame. Journal of Structural Engineering, 1989, 115(11): 2877-2896
    [16] ASCE Task Committee on Design Criteria for Composite Stuctures in Steel and Concrete. Guidelines for Design of Joints between Steel Beams and Reinforced Concrete Columns. Journal of Structural Engineering, 1994, 120(8): 2330-2357
    [17] Kanno R. Strength, Deformation and Seismic Resistance of Joints between Steel Beams and Reinforced Concrete Columns. ACI Structural Journal, 1993, 58(6): 56-61
    [18] Bracci J M, Moore W P, Bugeja M N. Seismic Design and Constructability of RCS Special Moment Frames. Journal of Structural Engineering, 1999,125(4): 385-392
    [19] Bugeja M N, Bracci J M, Moore W P. Seismic Behavior of Composite RCS Frame Systems. Journal of Structural Engineering, 2000, 126(4): 429-435
    [20] Parra-Montesinos G, Wight J K. Seismic Response of Exterior RC Column-to- Beam Connections. Journal of Structural Engineering, 2000, 126(10): 1113-1121
    [21] Parra-Montesinos G, Wight J K. Modeling Shear Behavior of Hybrid RCS Beam- Column Connections, Journal of Structural Engineering, 2004, 127(1): 3-10
    [22] Parra-Montesions G J, Liang X M, Wight J K. Towards Deformation-based Capacity Design of RCS Beam-Column Connections. Engineering Structures, 2003, 25: 681-690.
    [23] Liang X M, Parra-Montesinos G J. Seismic Behavior of Reinforced Concrete Column-Steel Beam Subassemblies and Frame Systems. Journal of Structural Engineering, 2004, 130(2): 310-319
    [24] Nishiyama I, Kuramoto H, Noguchi H. Guidelines: Seismic Design of Composite Reinforced Concrete and Steel Buildings. Journal of Structural Engineering, 2004, 130(2): 336-342
    [25] Kuramoto H, Nishiyama I. Seismic Performance and Stress Transferring Mechanism of Through-Column-Type Joints for Composite Reinforced Concrete and Steel Frames. Journal of Structural Engineering, 2004, 130(2): 352-360
    [26] Noguchi H, Uchida K. Finite Element Method Analysis of Hybrid Structural Frames with Reinforced Concrete Columns and Steel Beams. Journal of Structural Engineering, 2004, 130(2): 352-360
    [27] Fargier-Gabaldon L B. Seismic Behavior of Reinforced Concrete Column-to–Steel Beam (RCS) Connections with Special Configurations: [dissertation]. Michigan: University of Michigan, 2005, 1-176
    [28] Chen C H, Lai W C, Cordova P, et al. Pseudo-Dynamic Test of Full-Scale RCSFrame: Part I - Design, Construction, Testing. In: Proceedings of the 2004 Structures-Building on the Past: Securing the Future. Nashville, 2004, 107-118
    [29] Cordova P, Chen C H, Lai W C, et al. Pseudo-Dynamic Test of Full-Scale RCS Frame: Part II—Analysis and Design Implications. In: Proceedings of the 2004 Structures-Building on the Past: Securing the Future. Nashville, 2004, 119-131
    [30] Cheng C T, Chen C C. Seismic Behavior of Steel Beam and Reinforced Concrete Column Connections. Journal of Constructional Steel Research, 2005, 6: 587-606
    [31]杨建江,郝志军.钢梁—钢筋混凝土柱节点在低周反复荷载作用下受力性能的试验研究.建筑结构,2001,31(7):35-42
    [32]马宏伟,姜维山,于庆荣.端板螺栓连接的组合梁与复合螺旋箍混凝土柱节点研究.东南大学学报,2002,32(9):81-84
    [33]易勇.钢梁—钢筋混凝土柱组合框架中间层中间节点抗震性能试验研究:[重庆大学硕士学位论文].重庆:重庆大学,2005,19-80
    [34] Alostaz M Y, Schneider S P. Analytical Behavior of Connections to Concrete Filled Steel Tubes. Journal of Constructional Steel Research, 1996, 40(2): 95-127
    [35] Azizinamini A, Schneider S P. Moment Connections to Circular Concrete-Filled Steel Tube Columns. Journal of Structural Eengineering, 2004, 130(2): 213-222
    [36] Elremaily A, Azizinamini A. Experimental Behavior of Steel Beam to CFT Column Connections. Journal of Constructional Steel Research, 2001, 57: 1099-1119
    [37] Beutel J,Thambitratnam D, Perera N. Monotonic Behavior of Composite Column to Beam Connections. Engineering Structures, 2001, 23(9): 1152-1161
    [38] Beutel J, Thambitratnam D, Perera N. Cyclic Behavior of Concrete Filled Steel Tubular Column to Steel Beam Connections. Engineering Structures, 2002, 24(1): 29-38
    [39] Kang C H, Shin K J, Oh Y S, et al. Hysteresis Behavior of CFT Column to H-beam Connections with eExternal T-Stiffeners and Penetrated Elements. Engineering Structures, 2001, 23(9): 1194-1201
    [40] Shin K J, Kim Y J, Oh Y S, et al. Seismic Behavior of Welded CFT Column to H-Beam Connections with External T-Stiffeners. Engineering Structures, 2004, 26(6): 1877-1887
    [41] Chiew S P, Lie S P, Dai C W. Moment Resistance of Steel I-Beam to CFT Column Connections. Journal of Structural Engineering, 2001, 127(10): 1164-1172
    [42] Peng S W, Ricles J M, Sause R, et al. Experimental Evaluation of aPost-tensioned Moment Connection for Steel and Composite Frames in Seismic Zone. In: Composite and Hybrid Structures - Proceedings of 6th ASCCS Conference, Los Angeles: Xiao Y, Mahin S, 2000, 721-728
    [43] Ricles J M, Peng S W, Lu L W. Seismic Behavior of Composite Concrete Filled Steel Tube Column Wide Flange Beam Moment Connections. Journal of Structural Engineering, 2004, 130(4): 223-232
    [44] Herrera R. Seismic Behavior of Concrete Filled Steel Tube Column-Wide Flange Beam Frames: [dissertation]. Pennsylvania: Lehigh University, 2005, 97-597
    [45] Nishiyama I, Fujimoto T, Fukumoto T, et al. Inelastic Force-Deformation Response of Joint Shear Panels in Beam-Column Moment Connections to Concrete-Filled Tubes. Journal of Structural Engineering. 2004, 130(2): 244-252.
    [46] Fukumoto T, Morita K. Elastic-Plastic Behavior of Panel Zone in Steel Beam-to- Concrete Filled Steel Tube Column Moment Connections. Journal of Structural Engineering, 2005, 131(12): 1841-1853
    [47] Gardner A P, Goldsworthy H M. Experimental Investigation of the Stiffness of Critical Components in a Moment-Resisting Composite Connection. Journal of Constructional Steel Research, 2005, 61: 709-726
    [48] Yao H, Goldsworthy H M, Gad E. Experimental and Numerical Investigation of the Tensile Behavior of Blind-Bolted T-Stub Connections to Concrete-Filled Circular Columns. Journal of Structural Engineering, 2008, 134(2): 198-208
    [49] Park J W, Kang S M, Yang S C. Experimental Studies of Wide Flange Beam to Square Concrete Filled Tube Column Joints with Stiffening Plates around the Column. Journal of Structural Engineering, 2005, 131(12): 1866-1876
    [50] Cheng C T, Chung L L. Seismic Performance of Steel Beams to Concrete-Filled Steel Tubular Column Connections. Journal of Constructional Steel Research, 2003, 59: 405-426
    [51] Cheng C T, Chan C F, Chung L L. Seismic Behavior of Steel Beams and CFT Column Moment-Resisting Connections with Floor Slabs. Journal of Constructional Steel Research, 2007, 63(11): 1479-1493
    [52] Tsai K C, Hsiao P C, Wang K J, et al. Pseudo-Dynamic Tests of a Full-scale CFT/BRB Frame-Part 1: Specimen Design, Experiment and Analysis. Earthquake Engineering and Structural Dynamics, 2008, 37(2): 1081-1098
    [53] Tsai K C, Hsiao P C. Pseudo-Dynamic Tests of a Full-Scale CFT/BRB Frame-Part 2: Seismic Performance of Buckling-Restrained Braces and Connections. Earthquake Engineering and Structural Dynamics, 2008, 37(2):1099-1115
    [54] Wu L Y, Chung L L, Tsai S F, et al. Seismic Behavior of Bolted Beam-to-Column Connections for Concrete Filled Steel Tube. Journal of Constructional Steel Research, 2005, 61:1387-1410.
    [55] Wu L Y, Chung L L, Tsai S F, et al. Seismic Behavior of Bidirectional Bolted Connections for CFT Columns and H-Beams. Engineering Structures, 2007, 29(3): 395-407
    [56]张文福.单层钢管混凝土框架恢复力特性研究. [哈尔滨工业大学博士学位论文].哈尔滨:哈尔滨工业大学, 2000,1-60
    [57]张大旭,张素梅.钢管混凝土梁柱节点动力性能试验研究.哈尔滨建筑大学学报.2001,34(1): 21-27
    [58]张素梅,张大旭.钢管混凝土梁与柱节点荷载-位移滞回曲线理论分析.哈尔滨建筑大学学报, 2001,34(4): 1-6
    [59]吕西林,李学平,余勇.方钢管混凝土柱与钢梁连接的设计方法.同济大学学报,2002,30(1):1-5
    [60]宗周红,林东欣,林杰.两层钢管混凝土组合框架结构抗震性能试验研究.建筑结构学报,2002,23(2):27-35
    [61]宗周红,林于东,林杰.矩形钢管混凝土柱与钢梁半刚性节点的抗震性能试验研究.建筑结构学报,2004,25(6):29-36
    [62]宗周红,葛继平,杨强跃.反复荷载作用下方钢管混凝土柱与钢梁连接节点非线性有限元分析.建筑结构学报,2006,27(2):75-81
    [63]周天华,何保康,陈国津等.方钢管混凝土柱与钢梁框架节点的抗震性能试验研究.建筑结构学报,2004,25(1):9-16
    [64]陈娟,王湛,袁继雄.加强环式钢管混凝土柱-钢梁节点的刚性研究.建筑结构学报. 2004,25(40:43-51
    [65]霍静思.火灾作用后钢管混凝土柱-钢梁节点力学性能研究:[福州大学博士论文].福州:福州大学, 2005,65-121
    [66]聂建国,秦凯,刘嵘.方钢管混凝土柱与钢-混凝土组合梁连接的内隔板式节点的抗震性能试验研究.建筑结构学报,2006,27(4):1-9
    [67]周学军,曲慧.方钢管混凝土框架梁柱节点在低周反复何在作用下的抗震性能性能研究.土木工程学报,2006,39(1):38-42
    [68]王文达,韩林海,陶忠.钢管混凝土柱-钢梁平面框架抗震性能的试验研究.建筑结构学报,2006,27(3):48-58
    [69] Han L H, Wang W D, Zhao X L. Behavior of Steel Beam to Concrete-filled SHS Column Frames: Finite Element Method and Verfications. Engineering Structures,2008, 30: 1647-1658
    [70]中国工程建设标准化协会标准CECS28:90.钢管混凝土结构设计与施工规程.北京:中国计划出版社,1992,25-42
    [71]中国工程建设标准化协会标准CECS159:2004.矩形钢管混凝土结构技术规程.北京:中国计划出版社,2004,27-38
    [72] Alath S, Kunnath S K. Modeling Inelastic Shear Deformation in RC Beam-Column Joints. In: Tenth Conference on Engineering Mechanics. Boulder, 1995, 822-825
    [73] Biddah A, Ghobarah A. Modeling of Shear Deformation and Bond Slip in Reinforced Concrete Joints. Structural Engineering and Mechanics, 1999, 7(4): 413-432
    [74] Elmorsi M, Kianoush M R, Tso W K. Nonlinear Analysis of Cyclically Loaded Reinforced Concrete Structures. ACI Structural Journal, 1998, 95(6): 725-739
    [75] Elmorsi M, Kianoush M R, Tso W K. Modeling Bond-Slip Deformations in Reinforced Concrete Beam-Column Joints. Canadian Journal of Civil Engineering, 2000, 27(3): 490-505
    [76] Youssef M, Ghobarah A. Modeling of RC Beam-Column Joints and Structural Walls. Journal of Earthquake Engineering, 2001, 5(1): 93-111
    [77] Youssef M, Ghobarah A. Strength Deterioration due to Bond Slip and Concrete Crushing in Modeling of Reinforced Concrete Members. ACI Structural Journal, 1999, 96(6):956-967
    [78] Vecchio F J, Collins M P. The Modified Compression-Field Theory for Reinforced Concrete Elements Subjected to Shear. ACI Structural Journal, 1986, 83(22): 219-231
    [79] Vecchio F J, Collins M P. Compression Response of Cracked Reinforced Concrete. Journal of Structural Engineering, 1993, 119(12):3590-3610
    [80] Lowes L N, Mitra N, Altootash A. A Beam-Column Joint Model for Simulating the Earthquake Response of Reinforced Concrete Frames. In: PEER Report 2003/10. California: Pacific Earthquake Engineering Research Center, 2004, 1-55
    [81] Lowes L N, Altootash A. Modeling Reinforced Concrete Beam Column Joints Subjected to Cyclic Loading. Journal of Structural Engineering, 2003, 129(12): 1686-1697
    [82] Mitra N. An Analytical Study of Reinforced Concrete Beam-Column Joint Behavior under Seismic Loading: [dissertation]. Washington: University of Washington, 2007, 82-136
    [83] Altootash A. Simulation and Damage Models for Performance Assessment of Reinforced Concrete Beam-Column Joints: [dissertation]. California: Stanford Univeristy, 2004, 17-58
    [84] Shin M, LaFave J M. Modeling of Cyclic Joint Shear Deformation Contributions in RC Beam Column Connections to Overall Frame Behavior. Structural Engineering and Mechanics, 2004, 18(5): 645-669
    [85] Tremblay R, Timler P, Bruneau, et al. Performance of Steel Sturcutes during the 1994 Northridge Earthquake. Canadian Journal of Civil Engineering, 1995, 22: 338-360
    [86] Nakshima M, Inoue K, Tada M. Classification of Damage to Steel Buildings Observed in the 1995 Hyogoken-Nanbu Earthquake. Engineering Structures, 1998, 20(4): 271-281
    [87] Bertero V V, Xiao Y. Seismological and Engineering Aspects of the January 17, 1995 Hyogoken-Nanbu (Kobe) Earthquake. In: Earthquake Engineering Research Center, No. UCB/EERC-95/10. California: University of California, Berkeley, 1995, 250-260.
    [88]李国强.多高层建筑钢结构设计.北京:中国建筑工业出版社,2004,214-236
    [89] Duane K M. Lessons Learned from the Northridge Earthquake. Engineering Structures, 1998, 20(4): 249-260
    [90] Mahin S A. Lessons from Damage to Steel Buildings during Northridge Earthquake. Engineering Structures. 1998, 20(4): 261-270
    [91] Chen S J, Chao Y C. Effect of Composite Action on Seismic Performance of Steel Moment Connections with Reduced Beam Sections. Journal of Constructional Steel Research, 2001, 57: 417-434
    [92]石永久,苏迪,王元清.混凝土楼板对钢框架梁柱节点抗震性能影响的试验研究.土木工程学报,2006,39(9): 26-31
    [93] FEMA350. Recommended Seismic Design Criteria for New Steel Moment-Frame Buildings. Washington, D.C.: Federal Emergency Management Agency, 2000, 86-150
    [94]蔡益燕.考虑塑性铰外移的钢框架梁柱连接设计.建筑结构,2004,34(2):3-5
    [95]毛炜烽,肖岩.抗弯框架钢梁塑性铰外移设计方法的新进展及其应用.建筑技术开发,2005,32(211):1-4
    [96]杨强跃,郑悦.钢框架梁柱节点连接方式的介绍与分析.建筑结构, 2004,34(6):44-48
    [97] Xiao Y, Anderson J C, Wu Y T. Development of Bolted End Plate Connections for Steel Reinforced Concrete Composite Structures. In: Advances in Structures Steel Concrete Composite and Aluminum. Sidney, 2003, 207-223
    [98] Xiao Y, Wu Y T, Anderson J C et al. Moment Resisting Frame with Steel Beams Bolted to Reiforced Concrete Columns. In: Proceedings SEOAC 2005 Convention Structural Engineers Association of California. San Diego, 2005, 183-192
    [99] Xiao Y, Anderson J C, Yaprak T T. Seismic Behavior of High-Strength Composite Steel and Concrete Columns. In: Composite and Hybrid Structures– Proceedings of 6th ASCCS Conference. Los Angeles, 2000, 383-392
    [100]毛炜烽.端板螺栓连接钢梁—混凝土柱组合结构的开发研究:[湖南大学硕士学位论文].长沙:湖南大学,2005,1-76
    [101]中华人民共和国国家标准GB50017-2003.钢结构设计规范.北京:中国计划出版社,2003:1-116
    [102]中华人民共和国国家标准GB50010-2002.混凝土结构设计规范.北京:中国建筑工业出版社,2002,1-100
    [103] ACI Committee 318. Building Code Requirements of Structural Concrete (ACI318-08) and Commentary. Farmington Hills: American Concrete Institute, 2008, 103-169
    [104]中华人民共和国国家标准GB50011-2001.建筑抗震设计规范.北京:中国建筑工业出版社,2002,6-95
    [105] AISC. Seismic Provisions for Structural Steel Buildings. Chicago: American Institute of Steel Construction, 2002, 9-174
    [106] Tagawa Y, Kato B, Aoki H. Behavior of Composite Beams in Steel Frame under Hysteretic Loading. Journal of Structural Engineering, 1989, 115(8): 2029-2045
    [107] Lee S J, Lu L W. Cyclic Tests of Full-Scale Composite Joint Sub-assemblages. Journal of Structural Engineering, 1989, 115(8): 1977-1998
    [108] Civjan S A, Engelhardt M D, Gross J L. Slab Effect in SMRF Retrofit Connection Tests. Journal of Structural Engineering, 2001, 127(3): 230-237
    [109]聂建国.钢—混凝土组合梁结构—试验、理论与应用.北京:科学出版社,2005,1-86
    [110]聂建国,沈聚敏,袁彦声等.钢—混凝土组合梁中剪力连接件实际承载力的研究.建筑结构学报,1996,17(2):21-28
    [111] Civjan S A, Singh P. Behavior of Shear Studs Subjected to Fully Reversed Cyclic Loading. Journal of Structural Engineering, 2003, 129(11): 1466-1474
    [112]陈绍番.门式框架端板螺栓连接的强度和刚度.轻钢结构,2000,15(47):6-11
    [113]郭兵,顾强,柳峰等.梁柱端板连接节点的滞回性能试验研究.建筑结构学报,2002,23(3):8-13
    [114]施刚,石永久,王元清等.不同构造端板连接中高强度螺栓的受力特性研究.哈尔滨工业大学学报,2005,37(1):66-69
    [115]肖岩,Anderson J C.钢结构设计.北京:高等教育出版社,2007,177-215
    [116]中国工程建设标准化协会标准CECS102:2002.门式钢架轻型房屋结构技术规程.北京:筑龙网,2003,42-50
    [117] AISC. Specification for Structural Steel Buildings. Chicago: American Institute of Steel Construction, 2005, 90-121
    [118]中华人民共和国国家标准GB/T2975-1998.钢及钢产品力学性能实验取样位置及试样制备.北京:国家质量技术监督局,1998,6-7
    [119]中华人民共和国国家标准GB/T228-2002.金属材料室温拉伸实验方法.北京:中国计划出版社,2002,7-8
    [120]中华人民共和国建设部JGJ81-2002.建筑钢结构焊接技术规程.北京:中国建筑工业出版社,2002,63-64
    [121] FEMA350. Recommended Specifications and Quality Assurance Guidelines for Steel Moment- Frame Construction for Seismic Applications. Washington, D.C.: Federal Emergency Management Agency, 2000
    [122]中国建筑科学研究院JGJ101-96.建筑抗震试验方法规程.北京:中国建筑工业出版社,1996,9-15
    [123]湖南大学,太原理工大学,福州大学.建筑结构试验(第二版).北京:中国建筑工业出版社,1991,57-58
    [124] Paulay T, Prestley M J N. Seismic Design of Reinforced Concrete and Masonry Buildings. New York: John Wiley & Sons, 1992: 1-200
    [125]吕西林,金国芳,吴晓涵.钢筋混凝土结构非线性有限元理论与应用.上海:同济大学出版社,1997,77-145
    [126]江见鲸.钢筋混凝土结构非线性有限元分析.陕西:陕西科学技术出版社,1994,1-50
    [127]程文瀼,康谷贻,颜德姮,江见鲸.混凝土结构.北京:中国建筑工业出版社,2001,6-32
    [128]沈浦生,梁兴文.混凝土结构设计.北京:高等教育出版社,2007,18-19
    [129]过镇海,时旭东.钢筋混凝土原理和分析.北京:清华大学出版社,2003,337-338
    [130] Mander J B, Priestley M J N, Park R. Theoretical Stress-Strain Model for Confined Concrete. Journal of Structural Engineering, 1988, 114(8): 1804-1826
    [131]陈惠发,萨里普A F.混凝土和土的本构方程.北京:中国建筑工业出版社,2004,6-57
    [132]郝文化.ANSYS土木工程应用实例.北京:中国水利水电出版社,2005,75-98
    [133]祝效华,余志祥.ANSYS高级工程有限元范例精选.北京:电子工业出版社,2004,382-397
    [134]阚前华,谭长建,张娟.ANSYS高级工程应用实例分析与二次开发.北京:电子工业设计出版社,2006,236-262
    [135] Yun H W. Full Experimental and Analytical Studies on High-Strength Concrete Columns [dissertation]. California: University of Southern California, 2003, 188-295
    [136] Elremaily A, Azizinamini A. Behavior and Strength of Circular Concrete Filled Tube Columns. Journal of Constructional Steel Research, 2002, 58(12): 1567-1591
    [137]周涛.局部约束轧制H型钢柱的抗震性能研究:[湖南大学硕士学位论文].长沙:湖南大学,2007,1-65
    [138] Eurocode 3. Design of Steel Structures: Part 1.8 Design of Joints. CEN: PREN1993-1-8, 2002, 1-120
    [139]石永久,施刚,王元清.钢结构半刚性端板连接弯矩-转角曲线简化计算方法.土木工程学报, 2006,39(3):19-23
    [140] Mofid M, Mohammadi M R S, Mccabe S L. Analytical Approach on Endplate Connection: Ultimate and Yielding Moment. Journal of Structural Engineering, 2005, 131(3): 449-456
    [141]中华人民共和国行业标准JGJ 99-98.高层民用建筑钢结构技术规程.北京:北京建筑出版社,1998,1-30
    [142]沈聚敏,周锡元,高小旺.抗震工程学.北京:中国建筑工业出版社,2000,164-195
    [143]陈富生,邱国桦,范重.高层建筑钢结构设计(第二版).北京:中国建筑工业出版社,2004,265-330
    [144] IBC2003. International Building Code. Ilinois: International Code Council, 2003, 267-343
    [145] Mazzoni S, Mckenna F, Fenves G L et al. OpenSees Command Language Manual. California: Pacific Earthquake Engineering Research Centre, University of California, Berkeley, 2006, 1-440
    [146] Mazzoni S, Mckenna F, Fenves G L et al. OpenSees Command Language Manual. California: Pacific Earthquake Engineering Research Centre, University of California, Berkeley, 2007,1-440
    [147] Zhao J, Sritharan S. Modeling of Strain Penetration Effects in Fiber-Based Analysis of Reinforced Concrete Structures. ACI Structural Journal, 2007, 104(2): 133-141
    [148] Lee K. Response of Steel Moment Connections after Buckling: [dissertation]. California: University of California, Berkeley, 2004, 17-18
    [149]张新培.钢筋混凝土抗震结构非线性分析.北京:科学出版社,2003,1-13
    [150]克拉夫R,彭津J.结构动力学(第二版).北京:高等教育出版社,2006,173-226
    [151] Chopra A K.结构动力学理论及其在地震工程中的应用(第二版).北京:高等教育出版社,2007,521-548
    [152] Somerville P, Smith N, Punyamurthula S, et al. Development of Ground Motion Time Histories for Phase 2 of the FEMA/SAC Steel Project. In:Report No. SAC/BD-97/04. California: FEMA, 1997, 1-86
    [153] E-Defense. Collapse Test of a Full-Scale Four-Story Steel Building. http://www.blind-analysis.jp/2007/index_e.html, 2007-12-20
    [154] Mehanny S S, Deierlein G G. Modeling and Assessment of Seismic Performance of Composite Frames with Reinforced Concrete Columns and Steel Beams. In:Report No.135. California: Standford Unviersity, 2000, 1-132

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700