半刚性连接钢框架—钢板剪力墙结构的结构影响系数和位移放大系数研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
半刚性连接钢框架-钢板剪力墙结构是一种良好的双重抗侧力体系,具有较高的抗侧刚度、强度和延性,应用前景广泛。结构影响系数和位移放大系数是当前抗震设计方法中确定结构设计地震作用和变形的关键因素。作为国家自然科学基金项目《钢结构的地震作用折减和位移放大系数》(项目编号:50578099)研究的子课题之一,本文研究半刚性连接钢框架-钢板剪力墙结构在设防烈度(中震)下的结构影响系数R和大震下的位移放大系数Cd,进行了下列工作:
     1、对已有的结构影响系数和位移放大系数以及半刚性连接钢框架-钢板剪力墙结构体系的研究成果进行了总结回顾,结合我国抗震规范的有关规定指出,我国现行建筑抗震设计规范对不同的材料和结构体系采用统一的结构影响系数,不能充分体现钢结构较好的延性和耗能能力,有必要对钢结构的结构影响系数进行系统的研究。
     2、按照我国现行规范,以弹性屈曲为设计极限状态,设计了A、B、C、D共4组10个考虑不同连接刚度、层数、跨数的半刚性连接钢框架钢板剪力墙原型结构。按分析需要,分别建立了能反映剪力墙板屈曲及半刚性连接特性的梁壳有限元模型和等效斜拉杆模型。
     3、选取D组2跨8层原型结构底部三层的剪力墙跨部分,按照1:3的几何相似关系设计了试验模型,对其进行静力推覆试验,分析了试件的极限承载力、变形、破坏模式、墙板及半刚性连接的应力分布特点及破坏形态等。
     4、用本文有限元模型,对试验过程进行了模拟。对比结果验证了本文半刚性连接钢框架钢板剪力墙结构有限元模型及数值分析方法的适用性。
     5、采用Pushover分析及改进的能力谱法,对所设计的原型结构进行了静力弹塑性分析。通过建立考虑高阶振型的能力谱和按照不同延性系数折减的弹塑性需求谱,确定了结构在中震(设防地震)和大震下的性能点,求解了半刚性连接钢框架钢板剪力墙结构的结构影响系数、位移放大系数、延性折减系数、超强系数等。研究了结构层数、跨数、连接刚度等因素对半刚性连接钢框架钢板剪力墙结构的结构影响系数和位移放大系数的影响规律。
     6、选取多条地震波,对各组原型结构进行了增量动力时程(IDA)分析。通过对分析数据拟合,得到了结构基底剪力和顶点位移关系曲线。用改进的能力谱法确定结构的性能点,求解结构影响系数、位移延性折减系数、超强系数和位移放大系数,研究了结构层数、跨数、连接刚度等因素对结构影响系数和位移放大系数的影响规律。对Pushover分析与IDA分析的结果进行了对比,根据两种分析方法的结果,提出了按照我国规范设计的半刚性连接钢框架钢板剪力墙结构的结构影响系数和位移放大系数的取值。
     7、按照《建筑抗震设计规范》(GB50011-2010)的要求,采用本文结构影响系数建议值设计了2组半刚性连接钢框架钢板剪力墙结构。用Pushover方法研究了结构的性能,验证了本文提出的结构影响系数和位移放大系数的合理性。
As a dual lateral load resisting system, the semi-rigid connected steel frame-steel plate shear wall with higher lateral stiffness, bearing strength and ductility ,are gaining acceptance and suitable for multi-story or high-rise building in highly seismic regions. The structural influencing coefficient is keystone to obtain the structural design earthquake action in the performance-based seismic design of buildings. As part of national natural science foundation project- Structural Influencing Coefficient and Deflection Amplification Factor of Steel Structure, this paper is study with the structural influencing coefficient under the earthquake with seismic fortification intensity(namely the moderate earthquake)and the deflection amplification factor under the seldom occurred earthquake of semi-rigid connected steel frame-steel plate shear wall system, the main contents of this dissertation are the followings:
     1. The researches of structural influencing coefficient and deflection amplification factor and semi-rigid connected steel frame-steel plate shear wall are reviewed. For building seismic design code of China, different material and structure system have unified structural influencing coefficient, it is necessary to study the structural influencing coefficient of steel structure, so as to use its higher ductility and energy dissipation ability efficiently.
     2. According to building seismic design code of china, 10 semi-rigid connected steel frame-steel plate shear wall structures, which consider different connection stiffness and stories and spans, are designed. The structures is separated into 4 groups named A B C and D. For needs of further research, finite element models with beam-shell element and equal inclined stripe model are established.
     3. Experiment model from the first 3 floors of shear wall span of D group is designed with geometric similar ratio 1:3. Static pushover analysis is done with the experiment model. The strength, deformation, damage mode, stress and strain distribution in shear wall of the experiment model are observed and analyzed.
     4. Simulation of the experiment model in finite element method with the beam-shell element model and equal inclined stripe mode that established in this paper is done. Comparison between the result from simulation and experiment proved that both of beam-shell element model and equal inclined stripe model are suitable for further analysis.
     5. Static elastoplastic analysis of semi-rigid connected steel frame-steel plate shear wall structures that designed in this paper is executed. Improved capacity spectrum method, which consider higher vibration model and different ductility, is exert to get structural influencing coefficient R , deflection amplification factor C d, ductility deduction factor Ru and overstrength factor RΩ.The influence from different connection stiffness and stories and spans are considered at the same time.
     6. Incremental dynamic analysis method (IDA) is applied to the structures that designed in this paper with series earthquake waves, which selected by certain principle. The relationship of base shear force and top displacement of the structure is get through curve fitting method. With improved capacity spectrum method,R , C d, Ru and RΩare obtained. The influence of connection stiffness and stories and spans are considered after the analysis of the result. After comparison of the result from pushover and IDA, The structural influencing coefficient and deflection amplification factor of the semi-rigid connected steel frame-steel plate shear wall structures that designed according to building seismic code of China are suggested.
     7. According to the newly published Chinese Code for seismic design of building (GB50011-2010), 2 semi-rigid connected steel frame-steel plate shear wall structures are designed with the paper suggested structural influencing coefficient. Evaluation with Pushover method of the new designed structures proved that the paper suggested R and C d are exact and felicitous.
引文
[1.1] Park,R. Explicit Incorporation of Element and Structures Overstrength in the Design Process. In: Proc. 11th WCEE, Acapulco, Mexico: Elsevier science Ltd. ,1996, Paper No.2130
    [1.2] ATC-06. Tentative Provisions for the Development of Seismic Regulations for Buildings [S]. Redwood City, 1978
    [1.3] ATC-19. Structural Response Modification Factors[S]. Redwood City, 1995
    [1.4] ATC-34. A Critical Review of Current Approaches to Earthquake Resistant Design[S]. Redwood City, 1995
    [1.5] Building Seismic Safety Council. NEHRP recommended provisions for the development of seismic regulations for new buildings[S]. Washington D C, 1988
    [1.6] Uniform Building Code. UBC97 Structural Engineering Design Provisions[S]. 1997
    [1.7] FEMA 450. NEHRP recommended provisions for seismic regulations for new buildings and other structures[S]. 2003
    [1.8] California Building Code. Revision record for the state of California emergency upplement[S]. 2004
    [1.9] AISC. Seismic Provisions for Structural Steel Buildings[S]. 2002
    [1.10]王亚勇,郭子雄,吕西林.建筑抗震设计中地震作用取值-主要国家抗震规范比较[J].建筑科学, 1995, 15(5): 36-39
    [1.11] Concrete Design Committee. New Zealand Standard Concrete Structures Standards[S]. 1995
    [1.12]杨媛,白绍良.从各国规范对比看我国抗震设计安全水准评价中的有关问题[J].重庆建筑大学学报(增刊), 2000, 22( s1): 192-200
    [1.13]许利惟,周继忠.国内外建筑抗震设计规范比较[J].福建建筑, 2005, 96(5): 205-206
    [1.14] Uang C M. Comparison of Seismic Force Reduction Factors Used in U.S.A and Japan[J]. Earthquake Engineering and Structural Dynamics, 1991, 20(4): 389-397
    [1.15] National Research Council of Canada. Canadian Commission on Building and Fire Codes[S]. Ottawa, Ontario, 1995
    [1.16]谢礼立,马玉宏.现代抗震设计理论的发展过程.国际地震动态.2003,vol.298(10): 1-8
    [1.17]林淼童.从各国规范比较看结构抗震设计思想的演变.工程建设与设计.2005(10): 11-13
    [1.18]翟长海,谢礼立.抗震规范应用强度折减系数的现状及分析.地震工程与工程震动, 2006, 26(2): 1-7
    [1.19]翟长海,谢礼立.多自由度体系效应对强度折减系数的影响.工程力学, 2006, 23(11): 33-38
    [1.20]翟长海,谢礼立.结构抗震设计中的强度折减系数研究进展.哈尔滨工业大学学报, 2007, 39(8): 1177-1184
    [1.21]龚胡广.基于性能的抗震设计方法及其在高层混合结构抗震评估中的应用:[博士学
    [1.22]张海燕.基于位移的概率地震需求分析与结构抗震设计研究:[博士学位论文].长沙:湖南大学,2005
    [1.23]叶列平.等往复振动能量准则及其在结构抗震与建筑设计中的应用.见:第五届中日建筑结构技术学术交流会论文集.西安,2001,515-522
    [1.24]王亚勇.关于设计反应谱、时程法和能量方法的探讨.建筑结构学报,2000,21(l):21-28
    [1.25]程斌,薛伟辰.基于性能的框架结构抗震设计研究.地震工程与工程振动,2003,23(4):50-55
    [1.26] Bertero R.D.,Bertero V.V.(1992).Tall Reinforced Concrete Buildings:Conceptual Earthquake-Resistant Design Methodology,Report UCB/EERC-92/16,University of California at Berkeley,U.S.A.
    [1.27] Bertero R.D.(1997).Acceptability checks for performance-based design.Proceedings of The EERC-CUREE Symposium in Honor of Vitelmo V.Bertero,1997,Berkeley,CA,USA.
    [1.28] Bertero R.D.,Bertero V.V.(2002).Performance-based seismic engineering:the need for a reliable conceptual comprehensive approach.Earthquake Engineering and Structural Dynamics,31:627-652.
    [1.29] Bertero V.V.(1980).Lessons learned from structures damaged in recent earthquakes. Proceedings of 7 WCEE, Tomo 4,257-264.
    [1.30] Freeman S.A.,Paret T.F.,Searer G.R.,and Irfanoglu A.(2004).Musings on recent developments in performance-based seismic engineering.ASCE Structures Congress, Nashville,TN,U.S.A.
    [1.31] Krawinkler H.,Miranda E.(2004).Performance-based earthquake engineering.Chapter 9 of Earthquake engineering:from engineering seismology to performance-based engineering, Y.Bozorgnia and V.Bertero(eds.), CRC Press,2004.
    [1.32] Moehle J.P.(1992).Displacement-based design of RC structures subjected to earthquake. Earthquake Spectra, 8(3):403-428.
    [1.33] Moehle J.P.,Otani S.and Garcia L.(2003).“Seismic Performance and Design Objectives”in“Displacement-Based Seismic Design of Reinforced Concrete Buildings”,ed.Calvi M.,Federation Internationale du Beton,August 2003,Bulletin No.25.
    [1.34] Moehle J.P.(2004).A Framework for Performance-Based Earthquake Engineering.Proceedings,First International Conference on Urban Earthquake Engineering,Center for Urban Earthquake Engineering(CUEE), Tokyo Institute of Technology,Japan,March 2004.
    [1.35] Moehle J.P.,Lehman D.E.(2004).Seismic Performance of Confined Concrete Bridge Columns.Proceedings, International Symposium on Confined Concrete, Changsha, China, June 2004.
    [1.36] Federal Emergence Management Agency. NEHRP provisions for the Seismic Rehabilitation of Buildings. Report FEMA 273 (guidelines), Washington, D.C., 1997
    [1.37] Whittaker, Displacement Estimates for Performance Based Seismic Design. Journal of Structural Egineering, ASCE, 1998, 124(8): 905-912
    [1.38]钱稼茹,罗文斌.建筑结构基于位移的抗震设计.建筑结构,2001, 31(4): 3-6汪梦甫,周锡元.基于性能的建筑结构抗震设计.建筑结构,2003,33(3):59-61.
    [1.39]李应斌,刘伯权,史庆轩.基于结构性能的抗震设计理论研究与展望.地震工程与工程振动,2001,21(4):73-79.
    [1.40]黄群贤,林建华.建筑结构基于性能的抗震设计.工业建筑,2003,33(4):53-55.
    [1.41]谢晓健,姜永生,梁书亭等.基于结构功能设计原理的发展综述.东南大学学报,2000,(4):9-15.
    [1.42]周云,安宇,梁兴文.基于形态的抗震设计理论和方法的研究与发展.世界地震工程,2001,17(2):1-7.
    [1.43]地震区建筑规范(草案)[S].中国科学院土木建筑研究所, 1959: 1~54.
    [1.44]地震区建筑设计规范(草案稿)[S].中国科学院土木建筑研究所, 1964: 5~47.
    [1.45]中华人民共和国标准,工业与民用建筑抗震设计规范(TJ11-74)(试行)[S].
    [1.46]中华人民共和国标准,工业与民用建筑抗震设计规范(TJ11-78)[S].
    [1.47] GBJ11-89,建筑抗震设计规范[S].
    [1.48] GB5001-2001,建筑抗震设计规范[S].
    [1.49]中国工程建设标准化协会标准,《建筑工程抗震性态设计通则》(试用)[S].
    [1.50]周锡元,曾德民,高晓安.估计不同服役期结构的抗震设计设防水准的简单方法[J].建筑结构, 2002, 32(1): 37~40.
    [1.51]沈建文,蔡长青.地震危险性分析与抗震设防标准的确定[J].地震工程与工程振动, 1997, 17(2): 27~36.
    [1.52]洪峰,谢礼立.工程结构抗震设计中小震、中震和大震的确定方法[J].地震工程与工程振动, 2000, 20(2): 1~6.
    [1.53] Uniform Building Code. International Conference of Building official, Whittier, 1997: 1234-1253
    [1.54] National Earthquake Hazards Reduction Program Provisions for the Development of Seismic Regulations for the New Buildings. 1997(NEHRP1997)
    [1.55] Eurocode 8, Design Provisions for Earthquake Resistance of Structure. ENV 1998-1, CEN, Brussels, 1994: 854-876
    [1.56] IAEE. Earthquake Resistant Regulations, A World List. International Association for Earthquake Engineering, Tokyo, Japan, 1996:987-1024
    [1.57]中国工程建设标准化协会标准.建筑工程抗震性设计通则(试用)(CECS160:2004).中国计划出版社,北京,2004
    [1.58]许利惟,周继忠.国内外建筑抗震设计规范比较[J].福建建筑, 2005, 96(5): 205-206
    [1.59] Uang C M. Comparison of Seismic Force Reduction Factors Used in U.S.A and Japan[J].Earthquake Engineering and Structural Dynamics, 1991, 20(4): 389-397
    [1.60] Newmark,N.M.,Hall,W.J. Seismic Design Criteria for Nuclear Reactor Facilities.In: Proc. 4th WCEE, Santiago,Chile: IAEE, 1969, Vol.2 37-50
    [1.61] Newmark,N.M. ,Hall ,W.J. Earthquake spectra and design.Berkeley, California: EERI, 1982
    [1.62] Shirnazaki, K.S. Strong Motion Drift and Base Shear Coefficient for R/C structures. In: Proc. 9th WCEE, Tokyo-Kyoto, Japan: IAEE, 1988
    [1.63] Berrill, J. B., Priestley,M.J.N. and Chapman, H. e. Design Earhquake Loading and Ductility Demand. Bulletin of the New Zealand National Society forEngineering, 1980, Vol. 13(3): 232-241
    [1.64] Miranda, E. Nonlinear Response Spectra for Earthquake Resistant Design. In: Proc. 10th WCEE, Madrid, Balkema, Rotterdam:IAEE, 1992,Vol.10:5835-5840
    [1.65] Nassar, A.A. and Krawinkler, H. Seismic Demands foe SDOF and MDOF System . Report No. 95 , The John A. Blume Earthquake Engineering Center, Stanford University, Stanford , California,1991
    [1.66] Krawinkler H, Nassar A A. Seismic design based on ductility and cumulative damage demand and capacities. New York: Elsevier Applied Science, 1992
    [1.67] Miranda E, Ruiz-Garcia J. Influence of stiffness degradation on strength demands of structures built on soft soil sites. Engineering structures, 2002, 24(10): 1271-1281
    [1.68] Vidic T, Fajfar P. Consistent inelastic design spectra: strength and displacement. Earthquake engineering and structural dynamics, 1994, 23(5): 507-521
    [1.69] Fajfar P. Capacity spectrum method based on inelastic demand spectra. Earthquake engineering and structural dynamics, 1999, 28(9): 979-993
    [1.70] Chai Y H, Fajfar P, Romstad K M. Formulation of duration-dependent inelastic seismic design spectrum. Journal of Structural Engineering, 1998, 124(8): 913-921
    [1.71] Ordaz M, Perez-Rocha L E. Estimation of strength-reduction factors for elastoplastic systems: a new approach. Earthquake Engineering and Structural Dynamics, 1998, 27(9): 889-901
    [1.72] Lam N, Wilson J, Hutchinson G. The ductility reduction factor in the seismic design of buildings. Earthquake Engineering and Structural Dynamics, 1998, 27(7): 749-769
    [1.73] Lee L H, Han S W. Determination of ductility factor considering different hystereticmodels. Earthquake engineering and structural dynamics, 1999, 28(9): 957-977
    [1.74] Borzi B, Elnashai A S. Refined force reduction factors for seismic design. Engineering structures, 2000, 22(10): 1244-1260
    [1.75] Tiwari A K, Gupta V K. Scaling of ductility and damage-based strength reduction factors for horizontal motions. Earthquake Engineering and Structure Dynamics, 2000, 29(7): 969-987
    [1.76] Cuesta I, Aschheim M A. Isoductile strengths and strength reduction factors of elasto-plastic SDOF systems subjected to simple waveforms. Earthquake Engineering and Structural Dynamics, 2001, 30(7): 1043-1059
    [1.77] Lin Y Y, Chang K C. Study on damping reduction factor for building under earthquake ground motions. Journal of structural engineering, 2003, 129(2): 206-214
    [1.78] Decanini L D, Bruno S, Mollaioli F. Role of damage functions in evaluation of response modification factors. Journal of Structural Engineering, 2004, 130(9): 1298-1308
    [1.79] Chakraborti A, Gupta V K. Scaling of strength reduction factors for degrading elasto-plastic oscillators. Earthquake Engineering and Structural Dynamics, 2005, 34(2): 189-206
    [1.80]卓卫东,范立础.结构抗震设计中的强度折减系数研究.地震工程与工程振动, 2001, 21(1): 84-88
    [1.81]吕西林,周定松.考虑场地类别与设计分组的延性需求谱和弹塑性位移反应谱.地震工程与工程震动,2004,24(1): 39-48
    [1.82]黄金桥.钢结构弹塑性动力学及抗震设计理论研究: [博士学位论文].杭州:浙江大学, 2005
    [1.83] Tong G S, Huang J Q. Seismic force modification factor for ductile structures. Journal of Zhejiang University Science A, 2005, 6A(8): 813-825
    [1.84]赵永锋,童根树.修正Clough滞回模型下的地震力调整系数.土木工程学报,2006,39(10): 34-41
    [1.85]翟长海,公茂盛,张茂花等.工程结构等延性地震抗力谱研究.地震工程与工程振动, 2004, 24(1): 22-29
    [1.86]翟长海,谢礼立.近场脉冲效应对强度折减系数的影响分析.土木工程学报, 2006, 39(7): 15-19
    [1.87]翟长海,谢礼立.考虑设计地震分组的强度折减系数的研究.地震学报, 2006, 28(3):284-294
    [1.88]周靖,蔡健,方小丹.钢筋混凝土结构抗震强度折减系数的谱分析.华南理工大学学报(自然科学版), 2006, 34(2): 100-106
    [1.89]龚胡广.基于性能的抗震设计方法及其在高层混合结构抗震评估中的应用:[博士学位论文].长沙:湖南大学,2006
    [1.90] Chopra A K, Cruz E F. Evalutaion of building code formulas for earthquake forces. Journal of Structural Engineering, 1986, 112(8): 1881-1899
    [1.91] Chia-Ming Uang,“Establishing R(or Rw) and Cd factors for building seismic provisions”, Journal of Structural Engineering , Vol.117,No.1, 1991, 19-28
    [1.92] Uang C M, Maarouf A. Deflection Amplification factor for seismic design provisons[J]. Journal of Structural Engineering, 1994, 120(8): 2423-2436
    [1.93] Denis Mitchell and Patrick Paultre. Ductility and overstrength in seismic design of reinforced concrete structures. Can. J. Civ. Eng. 21. 1049-1060 (1994)
    [1.94] Luis Calado, Joao Azevedo & Antonio Lamas. Assessment of factors for seismic design of low-rise steel buildings. J. Construct. Steel Research , 35 (1995) : 1-17
    [1.95] Sudhir K. Jain and Rahul Navin. Seismic overstrength in reinforced concrete frames. Journal of Structural Engineering, 1995, 111(3): 580-585
    [1.96] Maria O. Moroni, Maximiliano Astroza, Juan Gomez, and Rafael Guzman. Establishing Rw and Cd factors for confined masonry buildings. Journal of Structural Engineering, Vol.122,No.10,1996,1208-1215
    [1.97] Bruno Calderoni, Aurelio Ghersi & Zila Rinaldi. Statistical analysis of seismic behaviour of steel frames: influence of overstrength. J. Construct. Steel Research , 1996, 39 (2) : 137-161
    [1.98] Miranda E. Strength reduction factors in performance-based design. EERC-CUREe Symposium in honor of Vitelmo V.Bertero, 1997
    [1.99] M. A. Rahgozar and J. L. Humar. Accounting for overstrength in seismic design of steel structures. Can. J. Civ. Eng. 25: 1-15 (1998)
    [1.100] Andrew Whittaker, Gary Hary, and Christopher Rojahn. Seismic response modification actors. Journal of Structural Engineering, 1999(4): 438-444
    [1.101] Kappos A J. Evaluation of behavior factor on the basis of ductility and overstrength studies. Engineering Structures, 1999, 21(9): 823-835
    [1.102] Whittaker A, Hart G, Rojahn C. Seismic response modification factors. Journal of structural engineering, 1999, 125(4): 438-444
    [1.103] E.S. Mistakidis. Evaluation of the total ductility in steel structures through a nonconvex energy optimization approach. Engineering Structures, 1999, 21(9): 810-822
    [1.104] Tezcan S S, Uluca O. Redection of earthquake response of plane frame building by viscoelastic dampers. Engineering Structures, 2003, 25(14): 1755-1761
    [1.105] Balendra T, Huang X. Overstrength and ductility factors for steel frames designed according to BS5950. Journal of Structural Engineering, 2003, 129(8): 1019-1035
    [1.106] Mahmoud R M, Akbari R. Seismic behavior factor R for steel X-braced and KNee-braced RC buildings. Engineering Structures, 2003, 25(12): 1505-1513
    [1.107] Marino E M, Nakashima M, Mosalam K M. Comparison of European and Japanese seismic design of steel building structures[J]. Engineering Structures, 2005, 27(6): 827-840
    [1.108] Kim J, Choi H. Response modification factors of chevron-braced frames. Engineering Structures, 2005, 27(2): 285-300
    [1.109] Fathi M, Daneshjoo F, Melchers R E. A method for determining the behavior factor of moment-resisting steel frames with semi-rigid connections. Engineering Structures, 2006, 28(4): 514-531
    [1.110] Kihak Lee and Douglas A. Foutch, M. ASCE. Seismic evaluation of steel moment frame buildings designed using different R-values. Journal of Structural Engineering, 2006, 132(9): 1461-1471
    [1.111] Nohemy Galindez, Peter Thomson. Performance of steel moment-frame buildings designed according to the Colombian code NSR-98. Engineering Structures, 29(2007): 2274-2281
    [1.112] Li C, Gu Q, Yang J F, et al. Seismic behaviour factor of moment-resisting steel frames involving local buckling effect. The 9th international conference on steel, space & composite structures, Yantai and Beijing, 2007
    [1.113] Yang J F, Gu Q, Li C, et al. Research on the response modification factors of CBSF. The 9th international conference on steel, space & composite structures, Yantai and Beijing, 2007Veletos A.S., Newmark N.M. (1960). Effect of inelastic behavior of the response of simple systems to earthquake motion, 2WCEE, Japan, 2: 895-912.
    [1.114]李成,徐柏荣,顾强. K型偏心支撑钢框架的结构影响系数研究.建筑结构, 2007, 10: 43-45
    [1.115]杨俊芬,张凡,顾强.人字型中心支撑多则框架的结构影响系数研究.建筑结构, 2007, 10: 46-49
    [1.116]余翔,顾强. X型中心支撑钢框架的结构影响系数.苏州科技学院学报(工程技术版), 2007, 20(1): 15-20
    [1.117]王二标,顾强. K型偏心支撑钢框架的结构影响系数.苏州科技学院学报(工程技术版), 2007, 20(3): 10-14
    [1.118]徐春兰,顾强.多层抗弯钢框架的结构影响系数.苏州科技学院学报(工程技术版), 2007, 20(1): 10-14
    [1.119]顾强,何若全,苏明周.钢结构的地震作用.苏州科技学院学报(工程技术版), 2005, 18(2): 1-5
    [1.120]王栉枫,何若全. V型中心支撑钢框架的结构影响系数.苏州科技学院学报(工程技术版), 2007, 20(2): 1-5
    [1.121]何若全,顾强,孙国华.关于钢结构抗震设计中结构影响系数的讨论.苏州科技学院学报(工程技术版), 2004, 17(4): 29-32
    [1.122]翟长海,谢礼立.抗震规范应用强度折减系数的现状及分析.地震工程与工程震动, 2006, 26(2): 1-7
    [1.123]翟长海,谢礼立.多自由度体系效应对强度折减系数的影响.工程力学, 2006, 23(11): 33-38
    [1.124]翟长海,谢礼立.结构抗震设计中的强度折减系数研究进展.哈尔滨工业大学学报, 2007, 39(8): 1177-1184
    [1.125] Veletsos A.S., Newmark N.M., Chelapati C.V. (1965). Deformation spectra for elastic and elastoplastic systems subjected to ground shock and earthquake motions. Proceedings of the 3rd World Conference on Earthquake Engineering, New Zealand, vol. II, 663-682.
    [1.126] Shimazaki K., Sozen M.A. (1984). Seismic drift of reinforced concrete structures. Technical Research Reports of Hazama-Gumi Ltd. Tokyo, Japan, 145–166.
    [1.127] Uang C M, Maarouf A. Deflection Amplification factor for seismic design provisons[J]. ournal of Structural Engineering, 1994, 120(8): 2423-2436
    [1.128] Miranda E. (2000). Inelastic displacement ratios for structures on firm sites. Journal of Structural Engineering, ASCE 126(10): 1150–1159.
    [1.129] Jorge R.G., Miranda E. (2006). Inelastic displacement ratios for evaluation of structures built on soft soil sites. Earthquake Engineering and Structural Dynamics, 35: 679-694.
    [1.130]夏洪流等.罕遇地震作用下SDOF结构位移响应的统计特性分析.重庆建筑大学学报(增刊), 2000, Vol.22: 139-143
    [1.131]肖明葵,白绍良等.求弹塑性位移谱的一种简化方法.重庆大学学报, 2002, Vol.25, N07: 99-103
    [1.132]李国强,冯健.罕遇地震下多高层建筑钢结构弹塑性位移的实用设计[J].建筑结构学报, 2000, 21(1): 77-83
    [1.133] Petti L, Iuliis M D, Palazzo B. Strength reduction factors for performance based seismic design[C]. Proceeding of the conference on behavior of steel structures in seismic areas, Naples, Italy, 2003
    [1.134] Abolhassan Astaneh-Asl. Seismic behavior and design of composite shear walls. Steel tips report. Structural steel educational council, Moraga, CA, 2001.
    [1.135]王迎春,郝际平,李峰,孙彤.钢板剪力墙力学性能研究[J].西安建筑科技大学学报(自然科学版), Vol.39(2): 181-186, 2007
    [1.136]陈国栋.钢板剪力墙结构性能研究.清华大学博士论文, 2002.
    [1.137]郭彦林,董全利,钢板剪力墙的发展与研究现状[J]钢结构2005年第1期第20卷总第77期.
    [1.138]曹春华.斜加劲钢板剪力墙性能研究.西安建筑科技大学博士论文, 2008.
    [1.139]中华人民共和国行业标准,《高层民用建筑钢结构技术规程》(JGJ99-98),中国建筑工业出版社,北京,1998.
    [1.140] Thorburn L J, Kulak G L, Montgomery L J. Analysis of steel plate shear walls[C]. Report No. 107. University of Alberta, Alberta, Canada, 1983
    [1.141]柳长江.钢框架梁柱四角钢连接在循环荷载作用下的破坏机理及抗震设计对策.西安建筑科技大学博士论文, 2008.
    [1.142] KishiN,Chen.w.f,Moment-rotation relations of semi-rigid connections with agles. Journal of Structure Engineering,ASCE,1990,116(7):1813-1834.
    [1.143]丁洁民,沈祖炎.一种半刚性节点的实用计算模型.工业建筑,1990,20(6):29-32
    [1.144] Frye,M.J. and Morris,G.A. Analysis of Flexibly connected steel frames,Canadian Journal of Civil Engineer,23:280-291
    [1.145] Jones,S.W.,Kirby,P.A. and Nethercot,D.A. Colunms with semi-rigid joints, Journalof Structural Division,ASCE,108,ST2:361~372
    [1.146] Colson,A. and Louveau,J.M. Connections incidence on the inelastic behavior of steel structures,Euromech Colloquium 174,October
    [1.147] Lui,E.M. and Chen,W.F. (1986) Analysis and behavior of flexibly-jointed frames,Engineering Structures,8:107~118
    [1.148]王广军.抗震规范中结构影响系数C的应用及变迁.世界地震工程,1991,01:37-44
    [1.149]戴国莹.《工业与民用建筑抗震设计规范》修订简介—地震作用和结构抗震验算.工程抗震,1985,06:39-12
    [1.150]丰定国,王清敏,钱国芳,苏三庆.工程结构抗震.北京:地震出版社,1995
    [2.1] Lui JYR,White DW,Chen WF,limit state design of semi-rigid frames using advanced analysis. Part1: Connection modeling and classification,Journal of Constructional Steel Research,pp.1-27;Part2:Analysis and design,1993.26.pp.29一57.
    [2.2] GB5001-2001,建筑抗震设计规范[S]
    [2.3]中华人民共和国行业标准,《高层民用建筑钢结构技术规程》(JGJ99-98),中国建筑工业出版社,北京,1998.
    [2.4]中华人民共和国国家标准.《钢结构设计规范》(GB50017-2003),中国计划出版社,北京,2003
    [2.5] ANSYS, Inc. Theroy Reference.
    [2.6]郭兵,雷淑忠.梁柱节点刚度对无支撑钢框架性能的影响.山东建筑大学学报.2010(3): 231-236
    [2.7] Timler, P. A. Design Procedures Development, Analytical Verification, and Cost Evaluation of Steel Plate Shear Wall Structures. Technical Report No. 98-01, EarthquakeEngrg. Research, Facility, Dept. of Civil Engineering, Univ. of British Columbia, Canada, 1988.
    [2.8] Thorburn, L.J., Kulak, G.L., and Montgomery C.J. Analysis of Steel Plate Shear Walls. Structural Engineering Report No. 107, University of Alberta, Canada.
    [2.9] Saeid Sabouri-Ghomi, Carlos E. Ventura etc. Shear Analysis and Design of Ductile Steel Plate Walls [J]. Journal of Structural Engineering, 131(6): 878-889, 2005.
    [2.10] Jeffrey Berman, Michel Bruneau. Plastic Analysis and Design of Steel Plate Shear walls [J]. Journal of Structural Engineering, 129(11): 1448-1456, 2003.
    [2.11]邵建华,顾强等.钢板剪力墙的弹-塑性抗剪承载力分析[J].河海大学学报, 34(5):537-541, 2006.
    [2.12]曹春华,郝际平,杨丽,王迎春,李峰.钢板剪力墙弹塑性分析[J].建筑结构,2007(10).
    [2.13]陈绍蕃.钢结构设计原理, (第二版).科学出版社, 2000.
    [2.14]陈国栋.钢板剪力墙结构性能研究[D].北京:清华大学,2002.
    [2.15]郭彦林,董全利.钢板剪力墙的发展与研究现状[J].钢结构,2005,20(1):1-6.
    [2.16] PETER Timler, CARLOES e venture, HELMUT prion. Experimental and analyticalstudies of steel plate shear walls as applied to the design of tall buildings [J]. The structural design of tall buildings, 1998, 7:233-249.
    [2.17] MOHAMED Elgaaly,YINBO Liu. Analysis of thin-steel-plate shear walls [J]. Journal of Structural Engineering, ASCE, 1997, 123(11 ):1487-1496.
    [2.18] MOHAMED Elgaaly. Thin steel plate shear walls behavior and analysis [J]. Thin-Walled Structures, 1998, 32:151-180.
    [2.19] ELGAALY M. Post-buckling behavior of thin steel plates using computational models [J]·Advances in engineer-ing software, 2000, 31:511-517.
    [2.20] FEMA273. NEHRP Guidelines for the Seismic Rehabilitation of Buildings[s]. Federal Emergency Management Agency,1997
    [2.21] FEMA274. NEHRP Commentary of the Guidelines for the Seismic Rehabilitation of Buildings[s]. Federal Emergency Management Agency,1997
    [2.22]沙广璟,何若全. SAP2000在静力弹塑性分析时塑性铰的修改[J].苏州科技学院学报(工程技术版),2007,20(3):l-4
    [3.1]中国质量技术监督局.GB/T 2975-1998钢及钢产品力学性能试验取样位置及试样制备[S].北京:中国计划出版社,1998.
    [3.2]陈绍蕃,钢结构(第二版),北京:中国建筑工业出版社,2000
    [3.3]钢结构常用数据速查手册,北京:中国建筑工业出版社,2006
    [3.4] JGJ101-96.建筑抗震试验方法规程[S].北京:中国建筑工业出版社,1997
    [3.5]姚谦峰,陈平.土木工程结构试验[M].北京:中国建筑工业出版社,2001
    [3.6]中华人民共和国国家标准.金属材料室温拉伸试验方法(GB/228-2002).中国建筑工业出版社,北京,2002
    [4.1] Gupta B,Kunnath S K.Adaptive spectra-based Pushover procedure for seismic evaluation of structures.Earthquake Spectra,2000,16(2):367-392
    [4.2]杨溥,李东,李英民等.抗震结构静力弹塑性分析(Pushover)方法的研究进展.重庆建筑大学学报(增刊),2000,22(1):87-92
    [4.3]汪梦甫,周锡元.关于结构静力弹塑性分析(Pushover)方法中的几个问题.结构工程师,2002,1(4):17-22
    [4.4] Building Seismic Safety Couneil (BSSC). NEHRP Guidelines for the Seismic Rehabilitatio of Buildings (FEMA273/274) [S]. Developed for the Federal Emergeney Managemet Agency,Washington DC,1997
    [4.5] Applied Technology Couneil (ATC). Seismic Evaluation and Petrofit of Concret Buildings[R]. Redwood City,Califomia. 1996
    [4.6] Peter Fajfar,Peter Gaspersic.The N2 method for the seismic damage analysis of RC building [J]. Earthquake Engineering and structural Dynamics,1996,25(l):31-46
    [4.7] M J N priestley. Performance Based Seismic Design[C]. Proceeding of 12th WCEE,Auckland, 2000
    [4.8] Krawinkler H,Seneviratna G D P K.Pros and cons of a pushover analysis of seismic performance evaluation,Engineering Structures,1998,20(4-6):452-464
    [4.9] Chopra A K,Goel R K.A modal pushover analysis procedure to estimate seismic demands for buildings: theory and preliminary evaluation[R]. Berkeley,CA:Report No.PEER 2001/03, Pacific Earthquake Engineering Research Center,University of California,2001
    [4.10] Chopra A K, Goel R K.A modal pushover analysis procedure for estimating seismic demands for buildings[J]. Earthquake Engineering and Structural Dynamics,2002,31(3):561-582
    [4.11]韩建平,吕西林,李慧.基于性能的地震工程研究的新进展及对结构非线性分析的要求[J].地震工程与工程振动,2007,27(4):15-23
    [4.12]卢文生,吕西林.模态静力非线性分析中模态选择的研究[J].地震工程与工程振动, 2004,24(6):32-38
    [4.13]沈蒲生,龚胡广.多模态静力推覆分析及其在高层混合结构体系抗震评估中的应用[J].工程力学,2006,23(8):69-73
    [4.14]龚胡广,沈蒲生.一种基于位移的改进静力弹塑性分析方法[J].地震工程与工程振动, 2005,25(6):18-23
    [4.15]刘清山,梁兴文,黄雅捷.对结构静力弹塑性分析方法的几点改进[J].建筑科学,2005, 21(4):28-33
    [4.16]毛建猛,谢礼立,翟长海.模态pushover分析方法的研究与改进[J].地震工程与工程振动, 2006,26(6):50-55
    [4.17]李应斌.钢筋混凝土结构基于性能的抗震设计理论与应用研究[D].西安:西安建筑科技大学博士学位论文,2004
    [4.18] ]汪大绥,贺军利,丙明淖.静力弹塑性分析中若干问题的研究与探讨[J1.建筑结构,2007,37(5):96-99
    [4.19]杨俊芬,中心支撑钢框架的结构影响系数和位移放大系数研究[D].西安:西安建筑科技大学,2009.5
    [4.20] Wittaker A., Constantinous M., Tsoplas P. Displacement estimation for performance-based seismic design. J. of Structural Engineering, ASCE. 1998,124: 905-912
    [4.21]肖明葵.基于性能的抗震结构位移及能量反应分析方法研究.重庆大学博士论文,重庆,2004
    [4.22]何浩祥,李宏南.基于规范弹性谱建立需求谱的方法.世界地震工程. 2002,9(3):57-63
    [4.23] Vidic T, Fajfar P, Fischinger M. Consistent inelastic design spectra: strength and displacement. Earthquake Engineering and Structure Dynamics, 1994, 23(5): 507-521
    [4.24]范立础,卓卫东.桥梁延性抗震设计[M].北京:人民交通出版社,2001
    [4.25]徐绩青.延性系数确定方法的探讨[J].水运工程,2004,365(9):14-17
    [5.1] Bertero V V.Strength and deformation capacities of buildings under extreme environments. Structural Engineering and Structural Mechanics, 1977, 29-79
    [5.2] Vamvatsikos D, Cornell C A. Incremental dynamic analysis[J]. Earthquake Engineering and Structural Dynamics, 2002, 31(3): 491- 514
    [5.3] Luco N,Cornell C A.Effects of connection fractures on SMRF seismic drift demands.ASCE Journal of Structural Engineering,2000,126(1):127-136
    [5.4]张守斌,聂昊。增量动力分析方法及其在性能评估中的应用[J]。工程建设与设计。2007(6):33-35
    [5.5]王亚勇,程民宪等。结构抗震时程分析法输人地震记录的选择方法及其应用。建筑结构,1992(5):3-7
    [5.6]王亚勇,刘小弟等。建筑结构时程分析法输人地震波的研究。建筑结构学报,1991,12(2):51~60
    [5.7]杨溥,李英民等。结构时程分析法输入地震波的选择控制指标。土木工程学报,2000,33(6):33~37
    [5.8] Eurocode8. Design Provisions for Earthquake Resistance of Structure[S]. ENV1998-l,CEN,Brussel,1994:854-876.
    [5.9] ]UBC97. Uniform Building Code [S]. International Council of Building official,Whittier,CA,1997.
    [5.10]孙文林.IDA在钢框架结构弹塑性分析中的应用研究[J].山西建筑,2005,3l(17):37一38
    [5.11]韩建平,吕西林,李慧.基于性能的地震工程研究的新进展及对结构非线性分析的要求[J].地震工程与工程振动,2007,27(4):15一23
    [5.12]邵建华,抗弯钢框架一钢板剪力墙的结构影响系数与位移放大系数研究[D].南京:河海大学,2008.10
    [5.13]杨俊芬,中心支撑钢框架的结构影响系数和位移放大系数研究[D].西安:西安建筑科技大学,2009.5
    [5.14]李成,多层抗弯钢框架的结构影响系数和位移放大系数[D].西安:西安建筑科技大学2008.12
    [5.15]刘伯权等,建筑结构抗震设计。中国建材工业出版社,1996.
    [6.1] GB5001-2001,建筑抗震设计规范[S].
    [6.2] GB5001-2010,建筑抗震设计规范[S].
    [6.3] Building Seismic Safety Council. NEHRP recommended provisions for the development of seismic regulations for new buildings[S]. Washington D C, 1988
    [6.4] Uniform Building Code.UBC97 Structural Engineering Design Provisions[S].1997
    [6.5] FEMA 450.NEHRP recommended provisions for seismic regulations for new buildings and other structures[S]. 2003
    [6.6] California Building Code.Revision record for the state of California emergency supplement[S]. 2004
    [6.7] AISC.Seismic Provisions for Structural Steel Buildings[S].2002
    [6.8]王亚勇,郭子雄,吕西林.建筑抗震设计中地震作用取值-主要国家抗震规范比较[J].建筑科学,1995, 15(5):36-39
    [6.9] Concrete Design Committee.New Zealand Standard Concrete Structures Standards[S].1995
    [6.10]杨媛,白绍良.从各国规范对比看我国抗震设计安全水准评价中的有关问题[J].重庆建筑大学学报(增刊),2000,22(s1):192-200
    [6.11]许利惟,周继忠.国内外建筑抗震设计规范比较[J].福建建筑,2005,96(5):205-206
    [6.12]童根树,赵永峰.中日欧美抗震规范结构影响系数的构成及其对塑性变形需求的影响[J].建筑钢结构进展,2008,Vol.10 No.5:53-62

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700