火灾后钢—混凝土组合框架梁—柱节点的力学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢-混凝土组合框架结构在建筑工程中已得到较广泛应用,深入研究火灾升、降温作用下钢-混凝土组合框架梁-柱连接节点的力学性能,对于整体组合框架结构抗火设计及其火灾后评估具有重要意义。本文以实际工程中常用的钢管混凝土柱-组合梁、型钢混凝土柱-型钢混凝土梁中柱节点为研究对象,对这两类节点在经历火灾升、降温过程后的工作机理进行了深入研究。
     主要研究工作如下:
     1.对钢管混凝土柱-组合梁节点和型钢混凝土柱-型钢混凝土梁节点在外荷载作用下,楼板下部遭受火灾升、降温过程后的力学性能进行了试验,深入研究了节点的温度分布、结构变形和材料应变、以及节点火灾作用后剩余承载力的变化规律。
     2.分析确定了常温、升温、降温和高温后各阶段钢和混凝土的热力学性能,编制了材料本构关系模型转换子程序和可模拟钢材高温蠕变的子程序。结合有限元分析平台ABAQUS,建立了钢管混凝土柱-组合梁节点和型钢混凝土柱-型钢混凝土梁节点的有限元分析模型,实现了对升、降温火灾和外荷载共同作用下两类节点的受力全过程分析。进行了型钢混凝土柱耐火极限的验证性试验,并收集了有关试验数据对有限元模型进行了验证。与试验结果的对比分析表明,该有限元分析模型具有较好的精度。
     3.采用建立的有限元分析模型,对钢管混凝土柱-组合梁节点和型钢混凝土柱-型钢混凝土梁节点在外荷载和火灾升、降温共同作用下的温度场分布、节点破坏形态、变形特点、应力和应变分布、内力变化、节点弯矩-梁柱相对转角关系等的变化规律进行了深入研究。
     4.对外荷载和火灾升、降温共同作用下,影响钢管混凝土柱-组合梁节点和型钢混凝土柱-型钢混凝土梁节点弯矩-转角关系的各种参数,如升温时间比、柱火灾荷载比、梁火灾荷载比、梁柱线刚度比和极限弯矩比、截面含钢率、混凝土和钢材强度等进行了分析计算,研究了上述各参数对钢-混凝土组合框架梁-柱连接节点火灾后剩余刚度系数和承载力系数的影响规律,给出了剩余刚度系数和承载力系数的实用计算方法。
Steel-concrete composite structures have been widely used in construction projects in recent years. It is very important to study the performance of steel-concrete composite beam-column joints subjected to a fire including the heating and cooling phases for the structural fire safety design and after-fire evaluation. Concrete filled steel tubular (CFST) colum to composite beam joints and steel reinforced concrete (SRC) column to SRC beam joints, which have been used widely in real projects, are chosen as the research objects. The performance of two types of composite beam-column joints are studied in a life-time loading sequences including initial loading, heating, cooling and post-fire loading.
     The main research work includes:
     1. Experiments were carried out on CFST column to composite beam joints and SRC column to SRC beam joints after exposed to heating and cooling fire with initial loads. The temperature distributions, deformations, strains and residual load bearing capacities of joints were analyzed.
     2. After the determinations of material properties in ambient, heating, cooling and post-fire phases, finite element analysis (FEA) models of CFST column to composite beam joints and SRC column to SRC beam joints were established in ABAQUS, for which, material constitutive relations conversion and steel high-temperature creep modelled using the subroutine. The FEA models can be used to analyze the entire process of the two types of joints under the combined loads and fire including heating and cooling phases. The accuracy of FEA models were verified by the test results including fire resistance tests of SRC columns carried out by the author.
     3. The temperature distributions, failure modes, deformations, stress and strain distributions, internal force, moment versus rotation angle relations of CFST column to composite beam joints and SRC column to composite beam joints under the combined loads and fire including heating and cooling phases were analyzed using the established FEA models.
     4. Influences of parameters, such as heating time ratio, load ratios of column and beam, beam-column linear stiffness ratio, beam-column ultimate moment ratio, steel ratio, concrete strength and steel yield stress on the moment versus rotation angle relations of CFST column to composite beam joints and SRC column to SRC beam joints under combined loads and fire were analyzed. Simplified formulas for calculating the residual stiffness ratio and residual load bearing capacity ratio of the two types of composite joints were proposed.
引文
[1]江见鲸,徐志胜.防灾减灾工程学[M].北京:机械工业出版社, 2005.
    [2] Guo T N, Fu Z M. The fire situation and progress in fire safety science and technology in China [J]. Fire Safety Journal, 2007, 42(3): 171-182.
    [3]董毓利.混凝土结构的火安全设计[M].北京:科学出版社, 2001.
    [4]过镇海,时旭东.钢筋混凝土的高温性能及其计算[M].北京:清华大学出版社, 2003.
    [5]吴波.火灾后钢筋混凝土结构的力学性能[M].北京:科学出版社, 2003.
    [6]李引擎.建筑防火工程[M].北京:化学工业出版社, 2004.
    [7]李国强,韩林海,楼国彪,蒋首超.钢结构及钢-混凝土组合结构抗火设计[M].北京:中国建筑工业出版社, 2006.
    [8] Menzies J. Learning from disaster [J]. The Structural Engineer, 2001, 79(19): 14-15.
    [9]新华网.委内瑞拉56层高楼着火大火吞噬34层以上建筑[EB/OL]. (2004-10-18) [2010-1-18]. http://news.xinhuanet.com/world/2004-10/18/content_2104168.htm.
    [10]腾讯新闻.湖南衡阳“11-3”特大火灾事故[EB/OL]. (2003-11-6) [2010-1-18]. http://news.qq.com/topic/newshengyangdahuo.shtml.
    [11] CCTV新闻.俄罗斯人民友谊大学发生火灾[EB/OL]. (2003-12-4) [2010-1-18]. http://www.cctv.com/special/1109/index.shtml.
    [12]新华网.温州一大厦发生火灾人员伤亡惨重[EB/OL]. (2007-12-12) [2010-1-18]. http://news.xinhuanet.com/photo/2007-12/12/content_7235198.htm.
    [13]新华网.乌鲁木齐德汇国际广场火灾现场见闻[EB/OL]. (2008-1-4) [2010-1-18]. http://news.xinhuanet.com/newscenter/2008-01/04/content_7365650.htm.
    [14]黄芳.组图:中央电视台新大楼北配楼发生火灾[EB/OL]. (2009-2-10) [2009-8-6]. http://news.sohu.com/20090210/n262147212.shtml.
    [15]钟善桐.钢管混凝土统一理论研究与应用[M].北京:清华大学出版社, 2006.
    [16]蔡绍怀.现代钢管混凝土结构(修订版)[M].北京:人民交通出版社, 2007.
    [17]胡曙光,丁庆军.钢管混凝土[M].北京:人民交通出版社, 2007.
    [18]韩林海.钢管混凝土结构——理论与实践(第二版)[M].北京:科学出版社, 2007.
    [19] Zhao X L, Han L H, Lu H. Concrete-filled tubular members and connections [M]. Londan and New York: Spon Press, 2010.
    [20]陶忠,于清.新型组合结构柱——试验、理论与方法[M].北京:科学出版社, 2006.
    [21]韩林海,杨有福.现代钢管混凝土结构技术(第二版)[M].北京:中国建筑工业出版社, 2007.
    [22]徐亚丰,贾连光.钢骨-钢管混凝土结构技术[M].北京:科学出版社, 2009.
    [23]韩林海,陶忠,王文达.现代组合结构和混合结构——试验、理论和方法[M].北京:科学出版社, 2009.
    [24]王元丰.钢管混凝土徐变[M].北京:科学出版社, 2006.
    [25]若林实.防灾シリ—ズ1?耐震构造—建物の耐震性能[M].日本东京:森北出版株式会社, 1981.
    [26]周起敬,姜维山,潘泰华.钢与混凝土组合结构设计施工手册[M].北京:中国建筑工业出版社, 1991.
    [27]白国良,秦福华.型钢钢筋混凝土原理与设计[M].上海:上海科学技术出版社, 2000.
    [28]叶列平,方鄂华.钢骨混凝土构件的受力性能研究综述[J].土木工程学报, 2000, 33(5): 1-12.
    [29]赵鸿铁.钢与混凝土组合结构[M].北京:科学出版社, 2001.
    [30]刘大海,杨翠如.型钢、钢管混凝土高楼计算和构造[M].北京:中国建筑工业出版社, 2003.
    [31]刘维亚.型钢混凝土组合结构构造与计算手册[M].北京:中国建筑工业出版社, 2004.
    [32]赵世春.型钢混凝土组合结构计算原理[M].成都:西南交通大学出版社, 2004.
    [33]薛建阳,赵鸿铁.型钢混凝土粘结滑移理论及其工程应用[M].北京:科学出版社, 2007.
    [34]傅传国,娄宇.预应力型钢混凝土结构试验研究及工程应用[M].北京:科学出版社, 2007.
    [35]李国强.当代建筑结构的新结构体系[J].建筑学报, 2002, (7): 22-26.
    [36] SWFC.关于上海环球金融中心[EB/OL]. (2009) [2010-1-22]. http://www.swfc-shanghai.com/#/about.
    [37]郑永乾.型钢混凝土构件及梁柱连接节点耐火性能研究[博士学位论文].福州:福州大学, 2007.
    [38]中华人民共和国国家标准GB50016-2006.建筑设计防火规范[S].中华人民共和国公安部.北京:中国计划出版社, 2006.
    [39]中华人民共和国国家标准GB50045-95.高层民用建筑设计防火规范[S].国家技术监督局,中华人民共和国建设部.北京:计划出版社, 2001.
    [40] Lie T T, Caron S E. Fire resistance of hollow steel columns filled with silicate aggregate concrete: test results [R], Ottawa, Canada: NRC-CNRC Internal Report. No.570, 1988.
    [41] Hass R. On realistic testing of the fire protection technology of steel and cement supports [R], Melbourne, Australia: Translation BHPR/NL/T/1444, 1991.
    [42] Lie T T, Chabot M. Experimental studies on the fire resistance of hollow steel columns filled with plain concrete [R], Ottawa, Canada: NRC-CNRC Internal Report. No.611, 1992.
    [43] Lie T T. Fire resistance of circular steel columns filled with bar-reinforced concrete [J]. Journal of Structural Engineering, 1994, 120(5): 1489-1509.
    [44] Lie T T, Stringer D C. Calculation of the fire resistance of steel hollow structural section columns filled with plain concrete [J]. Canada Journal of Civil Engineering, 1994, 21(3): 382-385.
    [45] Kodur V K R, Lie T T. Evaluation of fire resistance of rectangular steel columns filled with fibre-reinforced concrete [J]. Canadian Journal of Civil Engineering, 1997, 24: 339-349.
    [46] Kodur V K R. Performance of high strength concrete-filled steel columns exposed to fire [J]. Canadian Journal of Civil Engineering, 1998, 25: 975-981.
    [47] Kodur V K R. Performance-based fire resistance design of concrete-filled steel columns [J]. Journal of Constructional Steel Research, 1999, 51(1): 21-36.
    [48] Patterson N L, Zhao X L, Wong B M, Ghojel J and Grundy P. Elevated temperature testing of composite columns [J]. Advances in Steel Structures, Chan, S. L and Teng, J.G. (eds), Elsevier, Oxford, , 1999: 1045-1054.
    [49] Kodur V K R, Sultan M A. Enhancing the fire resistance of steel columns through composite construction [C]. Proceedings of the 6th ASCCS Conference, ASCCS, 2000, Los Angeles, U.S.A.: 279-286.
    [50] Okada T, Yamaguchi T, Sakumoto Y and Keira K. Load heat tests of full-scale columns of concrete-filled tubular steel structure using fire-resistant steel for buildings [C]. Proceedings of the Third International Conference on Steel-Concrete Composite Structures (I), ASCCS, 1991, Fukuoka, Japan: 101-106.
    [51] Sakumoto Y, Okada T, Yoshida M and Tasaka S. Fire resistance of concrete-filled, fire-resistant steel-tube columns [J]. Journal of Material in Civil Engineering, ASCE, 1994, 6(2): 169-184.
    [52] Wang Y C. Some considerations in the design of unprotected concrete-filled steel tubular columns under fire conditions [J]. Journal of Constructional Steel Research, 1997, 44(3): 203-223.
    [53] Wang Y C. The effects of structural continuity on the fire resistance of concrete filled columns in non-sway frames [J]. Journal of Constructional Steel Research, 1999, 50(2): 177-197.
    [54] Wang Y C. A simple method for calculating the fire resistance of concrete-filled CHS columns [J]. Journal of Constructional Steel Research, 2000, 54(3): 365-386.
    [55] Lu H, Zhao X L and Han L H. Experimental investigation on fire performance of self-consolidating concrete (SCC) filled double skin tubular columns [C]. 5th International Conference on Advances in Steel Structures, 2007, Singapore: 973-978.
    [56] Hong S, Varma A H. Analytical modeling of the standard fire behavior of loaded CFT columns [J]. Journal of Constructional Steel Research, 2009, 65(1): 54-69.
    [57] Schaumann P, Kodur V and Bahr O. Fire behaviour of hollow structural section steel columns filled with high strength concrete [J]. Journal of Constructional Steel Research, 2009, 65(8-9): 1794-1802.
    [58] Lu H, Zhao X L and Han L H. Fire behaviour of high strength self-consolidating concrete filled steel tubular stub columns [J]. Journal of Constructional Steel Research, 2009, 65(10-11): 1995-2010.
    [59] Lu H, Zhao X L, Han L H. Testing of self-consolidating concrete-filled double skin tubular stub columns exposed to fire [J]. Journal of Constructional Steel Research, 2010, 66(8-9): 1069-1080.
    [60] Yang Y F, Han L H. Concrete-filled double-skin tubular columns under fire [J]. Magazine of Concrete Research, 2008, 60(3): 211-222.
    [61] ISO-834. Fire resistance tests-elements of building construction [S]. International Standard ISO 834. Switzerland, Geneva: 1975.
    [62]余志武,丁发兴,林松.高温后钢管高性能混凝土轴压短柱力学性能研究[J].铁道学报, 2003, 25(4): 71-79.
    [63]金伟良,袁伟斌.离心钢管混凝土短柱火灾下与火灾后的极限承载力[J].浙江大学学报(工学版), 2006, 40(7): 1206-1210.
    [64]丁发兴,余志武.恒高温后圆钢管混凝土轴压短柱弹塑性分析[J].建筑科学与工程学报, 2006, 23(1): 34-38.
    [65]姜绍飞,于清海,李跃武.高温后方钢管混凝土双向压弯构件的承载力计算方法[J].沈阳建筑大学学报(自然科学版), 2009, 25(3): 495-500.
    [66] Han L H, Lin X K and Yang Y F. Cyclic performance of concrete filled steel tubular columns after exposure to fire: analysis and simplified model [J]. Advances in Structural Engineering - An International Journal, 2008, 11(4): 455-473.
    [67] Hass R. Zur Praxisgerechten brandschutz-technischen beurteilung von stützen aus stahl und beton [R]. Institut für Baustoff, Massivbau und Brandschutz der Technischen Universitat Braunschweig, Heft 69, 1986.
    [68] Yu J T, Lu Z D and Xie Q. Nonlinear analysis of SRC columns subjected to fire [J]. Fire Safety Journal, 2007, 42(1): 1-10.
    [69] Huang Z F, Tan K H and Phng G H. Axial restraint effects on the fire resistance of composite columns encasing I-section steel [J]. Journal of Constructional Steel Research, 2007, 63(4): 437-447.
    [70] Huang Z F, Tan K H, Toh W S and Phng G H. Fire resistance of composite columns with embedded I-section steel - Effects of section size and load level [J]. Journal of Constructional Steel Research, 2008, 64(3): 312-325.
    [71] ECCS-Technical Committee 3. Fire safety of steel structures, technical note, Calculation of the fire resistance of centrally loaded composite steel-concrete columns exposed to the standard fire [S]. 1988.
    [72] Eurocode 4. EN 1994-1-2:2005. Design of composite steel and concrete structures-part1-2: General rules-structural fire design [S]. European Committee for Standardization, Brussels, 2005.
    [73]韩林海,郑永乾. SRC和RC柱的耐火性能及抗火设计方法[C].第三届全国钢结构防火及防腐技术研讨会暨第一届全国结构抗火学术交流会, 2005,福州: 21-56.
    [74] Wang Z H, Tan K H. Residual area method for heat transfer analysis of concrete-encased I-sections in fire [J]. Engineering Structures, 2006, 28(3): 411-422.
    [75] Ellobody E, Young B. Investigation of concrete encased steel composite columns at elevated temperatures [J]. Thin-Walled Structures, 2010, 48(8): 597-608.
    [76]韩林海,宋天诣,谭清华.钢-混凝土组合结构抗火设计原理研究的部分新进展[C].第五届全国钢结构防火及防腐技术研讨会暨第三届全国结构抗火学术交流会, 2009, 10月30-31,济南: 67-83.
    [77] Chen W F and Liew J Y R. The civil engineering handbook (2nd Edition) [M]. Boca Raton, London, New York & Washington, D.C.: CRC Press, 2003.
    [78] Nethercot D A. Composite construction [M]. London, New York: Spon Press, 2003.
    [79] Johnson R P. Composite structures of steel and concrete: Beams, slabs, columns, and frames for buildings (Third Edition) [M]. Malden: Blackwell Publishing, 2004.
    [80]张培信.钢-混凝土组合结构设计[M].上海:上海科学技术出版社, 2004.
    [81] Chen W F and Lei E M. Handbook of structural engineering (2nd Edition) [M]. Boca Raton & New York: CRC Press, 2005.
    [82]聂建国.钢-混凝土组合梁结构——试验、理论与应用[M].北京:科学出版社, 2005.
    [83]朱聘儒.钢-混凝土组合梁设计原理(第二版)[M].北京:中国建筑工业出版社, 2006.
    [84] Wang Y C, Lennon T, Moore D B. The behavior of steel frames subject to fire [J]. Journal of Constructional Steel Research, 1995, 35(3): 291-322.
    [85] Rose P S, Burgess I W, Plank R J, Bailey C G. The influence of floor slabs on the structural performance of the cardington frame in fire [M]. Journal of Constructional Steel Research, 1998, 46(1-3): 310-311.
    [86] Rotter J M. Behavior of highly redundant buildings under compartment fire [C]. Proceedings of the International Conference on Structural Steelwork, ICASS'99, vol. 1. 1999, Hong Kong: 39-50.
    [87] Gillie M, Usmani A S, Rotter J M. A structural analysis of the first Cardington test [J]. Journal of Constructional Steel Research, 2001, 57(6): 581-601.
    [88] Ranzi G and Bradford M A. Analytical solutions for elevated-temperature behavior of composite beams with partial interaction [J]. Journal of Structural Engineering, ASCE, 2007, 133(6): 788-799.
    [89] Benedetti A and Mangoni E. Analytical prediction of composite beams response in fire situations [J]. Journal of Constructional Steel Research, 2007, 63(2): 221-228.
    [90]李国强,周宏宇.钢-混凝土组合梁抗火性能试验研究[J].土木工程学报, 2007, 40(10): 19-26.
    [91]高轩能,陈明华,李俊锋.火灾下薄壁型钢-混凝土组合梁的升温特性[C].第四届全国钢结构防火及防腐技术研讨会暨第二届全国结构抗火学术交流会, 2007,上海: 296-305.
    [92]毛小勇,张耀春.标准升温下轻钢-混凝土组合梁的抗力折减系数研究[C].第四届全国钢结构防火及防腐技术研讨会暨第二届全国结构抗火学术交流会, 2007,上海: 265-273.
    [93] Al-Jabri K S, Davison J B and Burgess I W. Performance of beam-to-column joints in fire-A review [J]. Fire Safety Journal, 2008, 43(1): 50-62.
    [94]陶中,韩林海,王永昌.火灾下钢管混凝土梁柱节点性能研究若干问题探讨[J].钢结构, 2005, 20(4): 81-94.
    [95] Franssen J M. Numerical determination of 3D temperature fields in steel joints [J]. Fire and Materials, 2004, 28(1): 63-82.
    [96] Lawson R M. Behaviour of steel-beam-to-column connections in fire [J]. The Structural Engineer, 1990, 68(14): 263-271.
    [97] Leston-Jones L C, Burgess I M, Lennon T and Plank R J. Elevated-temperature moment-rotation tests on steelwork connections [C]. Proceedings Instn Civil Engrs, Structures & Buildings, 1997, 122: 410-419.
    [98] Al-Jabri K S, Burgess I W, Lemon T and Plank R J. Moment-rotation-temperature curves for semi-rigid joints [J]. Journal of Constructional Steel Research, 2005, 61(3): 281-303.
    [99] Al-Jabri K S. Numerical modeling of the behaviour of bare-steel and composite flexible end-plate connections at elevated temperature [C]. Proceedings of the International Conference on Advances in Structures, 2003, Sydney, Australia: 635-641.
    [100] Al-Jabri K S, Burgess I W and Plank R J. Prediction of the degradation of connection characteristics at elevated temperature [J]. Journal of Constructional Steel Research, 2004, 60(6): 771-781.
    [101] Silva L S, Santiago A and Vila R P. A component model for the behaviour of steel joint at high temperatures [J]. Journal of Constructional Steel Research, 2001, 57(11): 1169-1195.
    [102] Liu T C H. Moment-rotation-temperature characteristics of steel/composite joints [J]. Journal of Structural Engineering, ASCE, 1999, 125(10): 1188-1197.
    [103] El-Rimawi J A, Burgess I W and Plank R J. The analysis of semi-rigid frames in fire-a secant approach [J]. Journal of Constructional Steel Research, 1995, 33(1-2): 125-146.
    [104] El-Rimawi J A, Burgess I W and Plank R J. Studies of the behaviour of steel subframes with semi-rigid connections in fire [J]. Journal of Constructional Steel Research, 1999, 41(1): 83-98.
    [105] Yu H X, Burgess I W, Davison J B and Plank R J. Numerical simulation of bolted steel connections in fire using explicit dynamic analysis [J]. Journal of Constructional Steel Research, 2008, 64(5): 515-525.
    [106] Yu H X, Burgess I W, Davison J B, Plank R J. Tying capacity of web cleat connections in fire, Part 1: Test and finite element simulation [J]. Engineering Structures, 2009, 31(3): 651-663.
    [107] Yu H X, Burgess I W, Davison J B, Plank R J. Tying capacity of web cleat connections in fire, Part 1: Development of component-based model [J]. Engineering Structures, 2009, 31(3): 697-708.
    [108] Wald F, da Silva L S, Moore D B, Lennon T, Chladna M, Santiago A, Benes M and Borges L. Experimental behaviour of a steel structure under natural fire [J]. Fire Safety Journal, 2006, 41(7): 509-522.
    [109] Foster S, Chladna M, Hsieh C, Burgess I and Plank R. Thermal and structural behaviour of a full-scale composite building subject to a severe compartment fire [J]. Fire Safety Journal, 2007, 42(3): 183-199.
    [110] Wang Y C. Steel and composite structures-behaviour and design for fire safety [M]. Spon Press, 2002.
    [111]陆洲导,朱伯龙,姚亚雄.钢筋混凝土框架火灾反应分析[J].土木工程学报, 1995, 28(6): 18-27.
    [112] Becker J M, Bresler B. Reinforced concrete frames in fire environments [J]. Journal of the Structural Division, 1977, 103(ST1): 211-224.
    [113]时旭东,过镇海.高温下钢筋混凝土框架的受力性能试验研究[J].土木工程学报, 2000, 33(1): 36-45.
    [114] Wang Y C, Davies J M. An experimental study of the fire performance of non-sway loaded concrete-filled steel tubular column assemblies with extended end plate connections [J]. Journal of Constructional Steel Research, 2003, 59(7): 819-838.
    [115] Ding J, Wang Y C. Experimental study of structural fire behaviour of steel beam to concrete filled tubular column assemblies with different types of joints [J]. Engineering Structures, 2007, 29(12): 3485-3502.
    [116] Ding J, Wang Y C. Temperatures in unprotected joints between steel beams and concrete-filled tubular columns in fire [J]. Fire Safety Journal, 2009, 44(1): 16-32.
    [117] Han L H, Zheng Y Q, Tao Z and Wang W H. Experimental behaviour of reinforced concrete beam to concrete filled steel tubular column joints under fire [C]. Proceedings of the Tenth International Symposium on Structural Engineering for Young Experts, 19-21, October, 2008, Changsha, China: 47-52.
    [118] Han L H, Huo J S and Wang Y C. Behavior of steel beam to concrete-filled steel tubular column connections after exposure to fire [J]. Journal of Structural Engineering, ASCE, 2007, 133(6): 800-814.
    [119] Han L H, Zheng Y Q and Tao Z. Fire performance of steel-reinforced concrete beam-column joints [J]. Magazine of Concrete Research, 2009, 61(7): 409-428.
    [120] Armer G S T, Moore D B. Full-scale testing on complete multi-storey structures [J]. Structural Engineer, 1994, 72(2): 30-31.
    [121] El-Rimawi J A, Burgess I W and Plank R J. The treatment of strain reversal in structural members during the cooling phase of a fire [J]. Journal of Constructional Steel Research, 1996, 37(2): 115-135.
    [122] Bailey C G, Burgess I W and Plank R J. Analyses of the effects of cooling and fire spread on steel-framed buildings [J]. Fire Safety Journal, 1996, 26(4): 273-293.
    [123]李国强,郭士雄.受火约束钢梁在升温段和降温段行为的理论分析(I) [J].防灾减灾工程学报, 2006, 26(3): 241-250.
    [124]郭士雄,李国强.受火约束钢梁在升温段和降温段行为的理论分析(II) [J].防灾减灾工程学报, 2006, 26(4): 359-368.
    [125] Wang P J, Li G Q and Guo S X. Effects of the cooling phase of a fire on steel structures [J]. Fire Safety Journal, 2008, 43(6): 451-458.
    [126] Lien K H, Chiou Y J, Wang R Z and Hsiao P A. Nonlinear behavior of steel structures considering the cooling phase of a fire [J]. Journal of Constructional Steel Research, 2009, 65(8-9): 1776-1786.
    [127] Li G Q, Guo S X. Experiment on restrained steel beams subjected to heating and cooling [J]. Journal of Constructional Steel Research, 2008, 64(3): 268-274.
    [128] Yang H, Han L H and Wang Y C. Effects of heating and loading histories on post-fire cooling behaviour of concrete-filled steel tubular columns [J]. Journal of Constructional Steel Research, 2008, 64(5): 556-570.
    [129] Huo J S, Huang G W and Xiao Y. Effects of sustained axial load and cooling phase on post-fire behaviour of concrete-filled steel tubular stub columns [J]. Journal of Constructional Steel Research, 2009, 65(8-9): 1664-1676.
    [130] ISO-834. Fire-resistance tests-elements of building construction [S]. International Standard ISO834: Amendment 1, Amendment 2, 1980.
    [131]中国工程建设标准化协会标准CECS 200: 2006.建筑钢结构防火技术规范[S].北京:中国计划出版社, 2006.
    [132]福建省工程建设地方标准DBJ13-51-2003.钢管混凝土结构技术规程[S].福州, 2003.
    [133]中华人民共和国国家标准GB50017-2003.钢结构设计规范[S].北京:中国计划出版社, 2003.
    [134]中华人民共和国国家标准JGJ 138-2001.型钢混凝土组合结构技术规程[S].北京:中国建筑工业出版社, 2002.
    [135]中华人民共和国国家标准GB/T 228-2002.金属材料室温拉伸试验方法[S].国家质量监督检验检疫总局.北京:中国标准出版社, 2002.
    [136] ISO 834-1. Fire-resistance tests-elements of building construction-Part 1: General requirements [S]. International Standard ISO 834, Geneva, 1999.
    [137] Kodur V K R, Phan L. Critical factors governing the fire performance of high strength concrete systems [J]. Fire Safety Journal, 2007, 42(6-7): 482-488.
    [138] Dwaikat M B, Kodur V K R. Hydrothermal model for predicting fire-induced spalling in concrete structural systems [J]. Fire Safety Journal, 2009, 44(3): 425-434.
    [139] BS 5950-8:2003. Structural use of steelwork in building– Part 8: Code of practice for fire resistant design [S]. British Standards Institutions, London U.K., 2003.
    [140]李引擎,马道贞,徐坚.建筑结构防火设计计算和构造处理[M].北京:中国建筑工业出版社, 1991.
    [141] Kodur V K R, Wang T C, Cheng F P, Predicting the fire resistance behavior of high strength concrete columns [J]. Cement and Concrete Composites, 2004, 26(2): 141-153.
    [142] Han L H, Xu L, Zhao X L. Tests and analysis on the temperature field within concrete filled steel tubes with or without protection subjected to a standard fire [J]. Advances in Structural Engineering - An International Journal, 2003, 6(2): 121-33.
    [143]孙金香,高伟译.建筑物综合防火设计[M].天津:天津科技翻译出版公司, 1992.
    [144]孔祥谦.有限单元法在传热学中的应用[M].北京:科学出版社, 1998.
    [145]钟善桐.钢管混凝土结构[M].哈尔滨:黑龙江科学技术出版社, 1994.
    [146]过镇海,时旭东.钢筋混凝土原理和分析[M].北京:清华大学出版社, 2003.
    [147] Kodur V, Dwaikat M and Fike R. High-temperature properties of steel for fire resistance modeling of structures [J]. Journal of Materials in Civil Engineering, ASCE, 2010, 22(5): 423-434.
    [148]曹文衔.损伤累积条件下钢框架结构火灾反应的分析研究[博士学位论文].上海:同济大学, 1998.
    [149]谢希文,过梅丽.材料科学基础[M].北京:北京航空航天大学出版社, 2005.
    [150] Eurocode 3. EN 1993-1-1:2005. Design of steel structures-part1-1: General rules and rules for buildings [S]. European Committee for Standardization, Brussels, 2005.
    [151]平修二.金属材料的高温强度—理论·设计[M].郭廷玮,李安定,徐介平译.北京:科学出版社, 1983.
    [152]杨建平.高温下钢筋砼压弯构件的试验研究和理论分析及实用计算[博士学位论文].北京:清华大学, 2000.
    [153] Skowroński W. Buckling fire endurance of steel columns [J]. Journal of Structural Engineering, ASCE, 1993, 119(6): 1712-1732.
    [154] Zeng J L, Tan K H and Huang Z F. Primary creep buckling of steel columns in fire [J]. Journal of Constructional Steel Research, 2003, 59(8): 951-970.
    [155] Huang Z F, Tan K H. Effects of external bending moments and heating schemes on the responses of thermally restrained steel columns [J]. Engineering Structures, 2004, 26(6): 769-780.
    [156] Huang Z F, Tan K H and Ting S K. Heating rate and boundary restraint effects on fire resistance of steel columns with creep [J]. 2006, 28(6): 805-817.
    [157] Bratina S, Saje M and Planinc I. The effects of different strain contributions on the response of RC beams in fire [J]. Engineering Structures, 2007, 29(3): 418-420.
    [158] Kodur V K R, Dwaikat M. A numerical model for predicting the fire resistance of reinforced concrete beams [J]. Cement & Concrete Composites, 2008, 30(5): 431-443.
    [159] Tan K H, Ting S K and Huang Z F. Visco-elasto-plastic analysis of steel frames in fire [J]. Journal of Structural Engineering, ASCE, 2002, 128(1): 105-114.
    [160]蔡跃.火灾下预应力混凝土结构计算理论及抗火设计方法研究[博士学位论文].上海:同济大学, 2003.
    [161] Fields B A, Fields R J. The prediction of elevated temperature deformation of structural steel under anisothermal conditions [R]. National Institute of Standards and Technology, Gaithersburg, MD, NCSTIR 4497, January 1991.
    [162]赵根田,孙德发.钢结构[M].北京:机械工业出版社, 2005.
    [163]陈骥.钢结构稳定理论与设计(第三版)[M].北京:科学出版社, 2006.
    [164]陈肇元,朱金铨,吴佩刚.高强混凝土及其应用[M].北京:清华大学出版社, 1992.
    [165]中华人民共和国国家标准GB 50010-2002.混凝土结构设计规范[S].北京:中国建筑工业出版社, 2002.
    [166] Hibbitt, Karlson and Sorensen, Inc. ABAQUS/standard User's Manual, Version 6.5.1[CP]. Pawtucket, RI, 2004.
    [167]沈聚敏,王传志,江见鲸.钢筋混凝土有限元与板壳极限分析[M].北京:清华大学出版社, 1993.
    [168]时旭东.高温下钢筋混凝土杆系结构试验研究和非线性有限元分析[博士学位论文].北京:清华大学, 1992.
    [169]李华东.高温下钢筋混凝土压弯构件的试验研究[硕士学位论文].北京:清华大学, 1994.
    [170]吕彤光.高温下钢筋的强度和变形的试验研究[硕士学位论文].北京:清华大学, 1996.
    [171] Izzuddin B A, Elghazouli A Y and Tao X Y. Realistic modelling of composite floor slabs under fire conditions [C]. Proceedings of 15th ASCE Engineering Mechanics Conference. Columbia University, New York, 2002.
    [172] Xiao J Z, K?nig G. Study on concrete at high temperature in China—an overview [J]. Fire Safety Journal, 2004, 31(1): 89-103.
    [173] Li L Y, Purkiss J. Stress-strain constitutive equations of concrete material at elevated temperatures [J]. Fire Safety Journal, 2005, 40(7): 669-686.
    [174]林晓康.火灾后钢管混凝土压弯构件的滞回性能研究[博士学位论文].福州:福州大学, 2006.
    [175]陆洲导,朱伯龙,谭玮.钢筋混凝土梁在火灾后加固修复研究[C].土木工程防灾国家重点试验室论文集, 1993: 152-162.
    [176]李卫,过镇海.高温下混凝土的强度和变形性能试验研究[J].建筑结构学报, 1993, 14(1): 8-16.
    [177] Harmathy T Z. Fire safety design and concrete, Concrete design and construction series [M].UK: Longman Scientific and Technical, 1993.
    [178]南建林,过镇海,时旭东.混凝土的温度应力共同本构关系[J].清华大学学报, 1997, 37(6): 87-90.
    [179] Anderberg G Y, Thelandersson S. Stress and deformation of concrete at hightemperatures: 2 Experimental investigation and material behaviour [R]. Bulletin 54, Lund: Lund Institute of Technolgy, 1976.
    [180] Sadaoui A, Khennane A. Effect of transient creep on the behaviour of reinforced concrete columns in fire [J]. Engineering Structures, 2009, 31(9): 2203-2208.
    [181] Sadaoui A, Kaci S and Khennane A. Behaviour of reinforced concrete frames in a fire environment including transitional thermal creep [J]. Austrlian Journal of Structural Engineering, 2007, 7(3): 167-184.
    [182] Yin J, Zha X X and Li L Y. Fire resistance of axially loaded concrete filled steel tube columns [J]. Journal of Constructional Steel Research, 2006, 62(7): 723-729.
    [183] Thelandersson S. Modeling of combined thermal and mechanical action in concrete [J]. Journal of Engineering Mechanics, ASCE, 1987, 113(6): 893-906.
    [184] Khennane A, Baker G. Thermo-plasticity models for concrete under varying temperature and biaxial stress [J]. Proc Royal Soc Lond A, 1992, 439(1): 59-80.
    [185] Heinfling G, Reynouard J M, Merabet O and Duval C A. Thermo-elastic–plastic model for concrete at elevated temperatures including cracking and thermo-mechanical interaction strains [R]. In: Owen DR, O?ate E, Hinton E, editors. Computational plasticity: fundamentals and applications, vol. 2. Barcelona, Spain: CIMNE, 1997: 1493-1498.
    [186] Nechnech W, Meftah F and Reynouard J M. An elasto-plastic damage model for plain concrete subjected to high temperatures [J]. Engineering Structures, 2002, 24(5): 597-611.
    [187] Lie T T, Irwin R J. Evaluation of fire resistance of reinforced concrete columns with rectangular cross-section [R]. Ottawa, Canada: NRC-CNRC Internal Report. No.601, 1990.
    [188] Kruppa J, Zhao B. Fire resistance of composite beams to Eurocode 4 Part 1.2 [J]. Journal of Constructional Steel Research, 1995, 33(1-2): 51-69.
    [189] Mirza O, Uy B. Behaviour of headed stud shear connectors for composite steel-concrete beams at elevated temperatures [J]. Journal of Constructional Steel Research, 2009, 65(3): 662-674.
    [190] Ollgaard J G, Slutter R G and Fisher J W. Shear strength of stud connectors in lightweight and normal-weight concrete [J]. AISC Engieering Journal, 1971: 8(2): 55-64.
    [191] Milovanov A F, Salmanov G D. The influence of high temperatures upon the properties of reinforcing steels and upon bond strength between reinforcement and concrete [J]. Issledovanija po zharoupornym betonu i zhelezobetonu, 1954: 203-223.
    [192] Reichel V. How fire affects steel-to-concrete bond [J]. Building Research and Practice, 1978, 6(3): 176-186.
    [193] Hertz K. The anchorage capacity of reinforcing bars at normal and high temperatures [J]. Magazine of Concrete Research, 1982, 34(121): 213-220.
    [194] Royles R, Morley P D. Further responses of the bond in reinforced concrete to high temperatures [J]. Magazine of Concrete Research, 1983, 35(124): 157-163.
    [195] Ahmed A E, Al-Shaikh A H and Arafat T I. Residual compressive and bond strengths of limestone aggregate concrete subjected to elevated temperatures [J]. Magazine of Concrete Research, 1992, 44(159): 117-125.
    [196] EI-Hawary M M, Hamoush S A. Bond shear modulus of reinforced concrete at high temperatures [J]. Engineering Fracture Mechanics, 1996, 55(6): 991-999.
    [197]周新刚,吴江龙.高温后混凝土与钢筋粘结性能的试验研究[J].工业建筑, 1995, 25(5): 37-40.
    [198]谢狄敏,钱在兹.高温作用后混凝土抗拉强度与粘结强度的试验研究[J].浙江大学学报, 1998, 32(5): 597-602.
    [199] Haddad R H, Al-Saleh R J and Al-Akhras N M. Effect of elevated temperature on bond between steel reinforcement and fiber reinforced concrete [J]. Fire Safety Journal, 2008, 43(5): 334-343.
    [200] Chiang C H, Tsai C L and Kan Y C. Acoustic inspection of bond strength of steel-reinforced mortar after exposure to elevated temperatures [J]. Ultrasonics, 2000, 38(1-8): 534-536.
    [201] Chiang C H, Tsai C L. Time-temperature analysis of bond strength of a rebar after fire exposure [J]. Cement and Concrete Research, 2003, 33(10): 1651-1654.
    [202] Haddad R H, Shannis L G. Post-fire behavior of bond between high strength pozzolanic concrete and reinforcing steel [J]. Construction and Building Materials, 2004, 18(6): 425-435.
    [203]王孔藩,许清风,刘挺林.高温自然冷却后钢筋与混凝土之间粘结强度的试验研究[J].施工技术, 2005, 34(8): 6,11.
    [204] Diederichs U, Schneider U. Bond strength at high temperautes [J]. Magazine of Concrete Research, 1981, 33(115): 75-84.
    [205] Morley P D, Royles R. Response of the bond in reinforced concrete to high temperatures [J]. Magazine of Concrete Research, 1983, 35(123): 67-74.
    [206]袁广林,郭操,吕志涛.高温下钢筋混凝土粘结性能的试验与分析[J].工业建筑, 2006, 36(2): 57-60.
    [207]朱伯龙,陆洲导,胡克旭.高温(火灾)下混凝土与钢筋的本构关系[J].四川建筑科学研究, 1990(1): 37-43.
    [208]徐有邻,沈文都,汪洪.钢筋砼粘结锚固性能的试验研究[J].建筑结构学报, 1994, 15(3): 26-37.
    [209]张彬,李国强.型钢混凝土粘结性能研究现状[J].结构工程师, 2005, 21(5): 84-88.
    [210]李红,李新忠.高温下钢板与混凝土的粘结强度[J].陕西工学院学报, 2003, 19(3): 42-45.
    [211]李红,安建利,姜维山.型钢与混凝土粘结性能的试验研究[J].哈尔滨建筑大学学报, 1993, 26(S1): 214-223.
    [212]吴兵.火灾前后钢管混凝土核心柱界面粘结性能的研究[硕士学位论文].杭州:浙江大学, 2006.
    [213]李红,姜维山.型钢与混凝土粘结本构关系的试验研究[J].西北建筑工程学院学报, 1995(3): 16-22.
    [214] Song T Y, Han L H and Yu H X. Concrete filled steel tube stub columns under combined temperature and loading [J]. Journal of Constructional Steel Research, 2010, 66(3): 369-384.
    [215]霍静思.火灾作用后钢管混凝土柱-组合梁节点力学性能研究[博士学位论文].福州:福州大学, 2005.
    [216] Mao C J, Chiou Y J, Hsiao P A and Ho M C. The stiffness estimation of steel semi-rigid beam–column moment connections in a fire [J]. Journal of Constructional Steel Research, 2010, 66(5): 611-736.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700