半刚性钢框架结构研究及优化设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在众多钢结构建筑中,钢框架结构体系不仅可用于民用多高层建筑结构,还广泛地应用于多层工业建筑结构,成为目前主要采用的结构体系之一。随着社会的发展、技术的进步,如何在保证结构安全基础上,减少用钢量、提高结构设计的经济性,实现对结构的优化设计成为钢结构发展过程中的瓶颈问题。本文将依据从节点优化到杆件优化再到结构拓扑优化的思路,详细讨论钢框架结构优化的全过程。
     传统钢结构设计中,为简化计算通常将梁柱节点简化成理想铰接或完全刚接;事实上,绝大多数钢框架结构梁柱节点的连接性能介于两者之间,呈半刚接特性。大量实验表明,节点的半刚接尤其对钢框架结构影响很大,不能忽略。为实现对钢框架结构的合理优化,本文在考虑节点半刚接基础上建立了钢框架结构静、动力有限元分析程序,这是实现钢框架结构合理优化设计的第一步,也是实现钢框架结构细致优化的关键。
     钢框架结构优化设计是非常复杂的问题,既包含杆件尺寸优化,又涉及支撑体系拓扑优化;根据静、动力相关要求,既包含单目标优化,又涉及多目标优化。本文针对钢框架结构优化变量离散性和多约束的特点,对遗传算法和基结构法进行改进,依据钢框架结构静、动力优化设计的相关要求,详细讨论半刚性钢框架静、动力尺寸优化和支撑体系拓扑优化。
     本论文主要研究工作如下:
     (1)根据钢框架结构静、动力分析的需要,基于零长度弹簧节点模型、转角位移方程和位移形函数,编制了可考虑节点半刚接和P-Δ二阶效应情况的半刚性钢框架静、动力有限元分析程序;并基于工程实例研究了节点连接性能及P-Δ二阶效应对静、动力作用下钢框架结构及杆件力学性能的影响。
     (2)根据钢框架结构优化多约束和离散性的特点,针对传统遗传算法借助罚函数处理约束问题易陷入局部收敛或出现非可行解的情况,提出一种新的动态分群免罚函数遗传算法,通过自适应交叉概率和变异概率、多进化体系等相应策略,提高了遗传算法的优化的全局性。根据钢框架结构静力尺寸优化相关要求,将半刚性钢框架静力分析程序与改进遗传算法相结合,建立了半刚性钢框架静力尺寸优化程序;并基于工程实例研究了节点半刚接及P-Δ二阶效应对钢框架静力尺寸优化结果的影响。
     (3)根据结构抗震设计多个目标期望值的要求,提出以多目标函数比例和值为偏好准则的改进多目标遗传算法;然后,将半刚性钢框架动力分析程序与改进多目标遗传算法相结合,建立了半刚性钢框架抗震多目标尺寸优化程序。基于工程实例研究了节点连接性能对钢框架抗震多目标尺寸优化结果的影响。
     (4)为提高钢框架结构的抗侧力性能,基于高效、经济的原则,详细研究了钢框架结构支撑体系的拓扑优化。根据工程支撑杆件节点设计合理性和可加工性的要求,对传统基结构法进行改进,提出杆件预先删除准则基结构法;针对拓扑优化过程中涉及尺寸优化与拓扑优化耦合关系,提出了整数与逻辑值混合的遗传算法编码形式;为了提高程序的优化效率,引入灰色关联度分析理论提出了约束关联度逐层判断准则。最后,将改进的遗传算法、基结构法和半刚性钢框架静、动力分析过程相结合,建立了半刚性钢框架支撑结构静、动力离散型拓扑优化程序;并基于工程实例研究了节点连接性能对钢框架支撑结构拓扑优化结果的影响。
     通过上述相关工作,为提高钢框架结构设计的安全性和经济性提供了理论依据。
Among familiar steel buildings, steel frame structure system is not only used in multi-storey civil building but also adopted to multi-storey industrial structures, and be one of the main structural systems. With the social development and technological advancement, how to reduce steel consumption and improve the economy of the frame structure design, in other words, to achieve the optimal design of frame structure is a bottleneck question. According to the main line from joint optimization to the bar optimization and then to structure optimization, the paper will discuss in detail the entire optimization process of steel frame structure.
     In traditional steel design, the calculation of beam-column joints are usually simplified as an ideal hinge or completely rigid joint; in fact, the connection performance of most beam-column joints is semi-rigid characteristics. A great deal experiments show that the semi-rigid performance of joints has especially great influence on frame structures and can not be ignored. In order to realize the rational optimization on steel frame structures, the paper firstly deduced the static and dynamic finite element analysis process by considering the semi-rigid characteristics, which were the first step of the optimal design and the key of achieving rational optimization.
     Steel frame structure optimization design is very complicated problem, which includes not only all rods size optimization, and involves bracing system of topological optimization. According to different design requirements, the problem maybe relate to single objective optimization, also involves multi-objective optimization. This article will consider the particularity of steel frame optimization, such as the discrete variable and multi constraints, to improve traditional genetic algorithm and base-structure method to realize the semi-rigid steel frame structural static and dynamic sizing optimization and topology optimization.
     The main research work of this paper is as follows:
     1. Based on the zero length spring node model, the angle displacement equation and displacement shape function, the semi-rigid steel frame static and dynamic finite element analysis programs that can consider the effect of the node and the second semi-rigid case on frame were compiled. Then the joint connectivity and the second-order effect on the steel frame and bar mechanical properties were studied through calculating engineering examples.
     2. In order to realize single-objective optimization, a new improved dynamic population genetic algorithm without penalty function was proposed. Some improved strategies for the new GA can increase the global convergence and optimization efficiency. Then to combine the semi-rigid steel frame static analysis program with the improved GA, the static 'optimization program for semi-rigid steel frame was compiled. Through calculating engineering examples, the effect of semi-rigid connectivity on static size optimization was studied.
     3. According to the requirement of multi-objective anti-seismic design, a new multi-objective GA with multi-objective proportional sum value was proposed. Based on seismic requirements of steel frame structure, the dynamic multi-objective optimization procedure for semi-rigid steel frame was set up by combined the semi-rigid steel frame dynamic analysis procedures and the new multi-objective GA. Through calculating engineering examples, the effect of semi-rigid connectivity on dynamic size optimization was studied.
     4. To improve lateral stiffness of steel frame system based on the efficient and economic principles, topological optimization of bracing system was studied in detail. According to the node design requirement, the traditional base structure method was improved, and puts forward the rods beforehand delete criteria. For topological optimization process refers to size optimization and the topological optimization coupling relation, a new genetic algorithm coded form of integer and logic mixed code was proposed. In order to improve the optimization efficiency, the theory of grey relational analysis was introduced to supply constraint correlation step by step judgment criterion. Then, the improved genetic algorithm and base structure method combined with the semi-rigid steel frame static and dynamic analysis procedures to compile steel frame discrete topological optimization program. Based on the engineering examples, the effect of semi-rigid connectivity on bracing topology optimization was studied.
     Through the above related work, the theory about how to improve the design safety and economy of steel frame structure was given.
引文
[1]李国强,沈祖炎.钢结构框架体系弹性及弹塑性分析与计算理论.上海:上海科学技术出版社.1998:1-6页
    [2]http://baike.baidu.com/view/1587399.htm#sub3486152
    [3]王新武.钢框架梁柱连接研究.博士学位论文.武汉:武汉理工大学.2003:1-14页
    [4]E. P. Popov and R. B. Pinkey. Behavoir of steel building connections subjected to inelastic strain reversals. American Iron and steel Institute.1968
    [5]Popov E. P., Balan T. A. and Yang T. S. Post-Northridge earthquake seismic steel moment connections. Earthquake Spectra.1998,14(4):659-677P
    [6]K. C. Tsai and E. P. Popov. Steel beam-column joints in seismic moment-resisting frames. Report No. UCB/RC-88/19. Earthquake Engineering Research Center, University orlv, Califonia.1988, EE7
    [7]E. Lightfoot and Califonia, Berk A. P. LeMessurier. Elastic Analysis of Frameworks with Elastic Connections. Journal of the Structure Division. ASCE. 1974,100:1297-1309P
    [8]A. R. Monforton and T. S. Wu. Matrix Analysis of Semi-Rigidly Connected Frames. Journal of the Structural Division. ASCE.1963,87:1342P
    [9]Jones S W, Kirby P A and Nethercot D A. Columns with semi-rigid joints. Journal of Structural Engineering.1982:361-372P
    [10]Lui E M and Chen W F. Analysis and behaviour of flexibly-jointed frames. Engineering Structures.1986,8:107-118P
    [11]Frye, M.John, Morris and Glenn A. Analysis of Flexibility Connected Steel Frames. Canadian Journal of Civil Engineering,1975,2(3):280-291P
    [12]L.R.O. de Lima, S.A.L. de Andrade, P.C.G.da S.Vellasco, et al. Experimental and mechanical model for predicting the behavior of minor axis beam-to-column semi-rigid joints. International Journal of Mechanical Sciences.2002,44(6):1047-1065P
    [13]A. Abolmaali, A.R. Kukreti and H. Razavi. Hysterics behavior of semi-rigid double web angle steel connections. Journal of Constructional Steel Research.2003,59(8): 1057-1082P
    [14]Goto Y, Lui E.M. and Chen W.F. Stability Behavior of Semi-rigid Sway Frames. Enginnering Structure.1993,15(3):209-219P
    [15]K. Zhu, F.G.A.Al-Bermani, S. Kitipornchai, et al. Dynamic response of flexibly jointed frames.Engineering Structures.1995,17(8):575-580P
    [16]Bhatti, M. Asghar, Hingtgen and James D. Effects of connection Stiffness and Plasticity on the Service Load Behavior of Unbraced Steel Frames. Engineering Journal. 1995,32(1):21-33P
    [17]P.P.T.Chui and S.L.Chan. Transient response of moment-resistant steel frames with flexible and hysteretic joints. Journal of Constructional Steel Research. 1996,39(3):221-243P
    [18]E.M.Liu and A.Lopes. Dynamic analysis and response of semi rigid frames. Engineering Structures.1997,19(8):644-654P
    [19]Peter Pui Tak Chui and Siu Lai Chan. Vibration and deflection characteristics of semi-rigid jointed frames. Engineering Structures.1997,19(12):1001-1010P
    [20]Roberto T. Leon. Analysis and design problems for PR composite frames subjected to seismic loads. Engineering Structures.1998,20(4-6):364-371P
    [21]W.F.Chen and T.Atsuta.梁-柱分析与设计.北京:人民交通出版社.1997:5-8页
    [22]沈祖炎,丁洁民.柔性节点钢框架的二阶弹塑性极限承载力研究.建筑结构学报,1992,13(1):34-42页
    [23]徐伟良.半刚性连接钢框架弹塑性大变形分析与试验研究.博士学位论文.重庆:重庆建筑大学.1994:1-65页
    [24]郑廷银.H型钢框架梁柱节点的设计方法.南京建筑工程学院学报.1997,43(4):14-22页
    [25]陈国栋,房贞政.半刚性连接钢框架的二阶弹性分析.福州大学学报.2000,28(6):66-71页
    [26]郭成喜.半刚性钢框架的内力性态分析.建筑结构.2002,32(5):3-6页
    [27]向芳,舒兴平.上下翼缘角钢半刚性连接的极限抗弯承载力研究.钢结构.2005,20(77):11-13页
    [28]孙修礼,梁书亭,王群依等.半刚性连接框架结构的动力特性研究.工程抗震与加固改造.2005,27(1):16-18页
    [29]陈惠发.钢框架稳定设计.上海:世界图书出版公司.1999:264-265页
    [30]李国强,石文龙,王静峰.半刚性连接钢框架结构设计.北京:中国建筑工业出版社.2009:1-5页
    [31]中华人民共和国建设部.中华人民共和国国家标准(GB50017—2003)钢结构设计规范.北京:中华人民共和国建设部和中华人民共和国国家质量监督检验检疫总局联合发布.2003,30-86页
    [32]曾庆强.结构拓扑优化中若干问题的研究.博士学位论文.大连:大连理工大学.2006:1-13页
    [33]Schmit LA. Structural Design by Systematic Synthesis. Proc of 2nd Nat Conf Elect comput. ASCE,1960:105-132P
    [34]Prager W, Taylor JE. Problems of optimal structural design. Journal of Applied Mechanics.1968,35(1):102-106P
    [35]Venkayya VB. Design of optimum structures. Computers and Structures.1971,(1): 112-123P
    [36]Berke L and Khot NS. Use of optimality criteria for large scale systems. AGARD Lecture Series No.70 on structural optimization.1974,AGARD-LS-70:1-29P
    [37]W. Prgaer. A Note on Discredited Michell Structures, Computer Methods in Applied Mechanics and Engineering.1974,3:349-351P
    [38]Dorn W, Gomory R and Greenberg H. Automatic design of optimal structures. Mechanique.1964,3(1):25-52P
    [39]Kirsh U and Topping B H V. Minimum weight design of Structural Topologies. Structural Engineering.1992,8:1770-1785P
    [40]M.P. Rossow and J.E.Taylor. A Finite Element Method for the Optimal Design of variable Thickness Sheets. AIAA Journal.1973,11(11):1566-1569P
    [41]K.T.Cheng and N.Olhoff. An investigation concerning optimal design of solid elastic plates. Solids Structures.1981:17P
    [42]Bendsoe MP and Kikuchi N. Generating Optimal Topologies in Structure Design Using A Homogenization Method. Computer Methods in Applied Mechanics and Engineering. 1988,71:197-224P
    [43]YM.Xie and G.P. Steven. A simple evolutionary Procedure for structure optimization. Computers and Structures.1993,49:885-896P
    [44]O. M. Querin, V. Young, G. P. Steven and Y. M. Xie, Computational efficiency and validation of bi-directional evolutionary structural optimization.Computer Methods in Applied Mechanics and Engineering.2000,189(2):559-573P
    [45]Bendsoe M.P and Sigmund O. Material interpolation schemes in topology optimization. Archives of Applied Mechanics.1999,69(9-10):635-654P
    [46]Dmitri Tc herniak. Topology optimization of resonating structures using SIMP method. International journal for numerical method in engineering.2002,54:1605-1622P
    [47]J. A. Sethian and Andreas Wiegmann. Structural Boundary Design via Level Set and Immersed Interface Methods. Journal of Computational Physics.2000,163:489-528P
    [48]钱令希.工程结构优化设计.北京:水利水电出版社.1983:1-306页
    [49]Qian LX, Zhong WX, Sui YK and Zhang JD. Efficient optimization design of structures-program DDDU. Computer Methods in Applied Mechanics and Engineering. 1982,30:209-224P
    [50]王健,程耿东.应力约束下薄板结构的拓扑优化.固体力学学报.1997,18(4):317-322页
    [51]谭中富,何成杰.关于拓扑优化中最优解“奇异”现象的讨论.哈尔滨建筑大学学报.1996,29(1):17-22页
    [52]王健.具有形状和应力约束的连续体结构拓扑优化及其在框架结构设计中的应用.工程力学.2002,19(4):99-103页
    [53]王晓明,刘震宇,郭东明.基于均匀化理论的微小型柔性结构拓扑优化的敏度分析.中国机械工程.1999,10(11):1264-1266页
    [54]袁振春,吴长养.采用非协调元的连续体拓扑优化设计.力学学报.2003,35(2):176-180页
    [55]袁振春,吴长春.基于杂交元和变密度法的连续体拓扑优化设计.中国科学技术大学学报.2001,31(6):694-699页
    [56]王跃方,孙焕纯.多工况多约束下离散变量桁架结构的拓扑优化设计.力学学报.1995,27(3):365-369页
    [57]陈建军,曹一波,孙环安.多工况下具有体系可靠性约束的桁架结构拓扑优化设计.固体力学学报.2000,21(1):11-18页
    [58]隋允康,杨德庆,王备.多工况应力和位移约束下连续体结构拓扑优化.力学学报.2000,32(2):171-179页
    [59]杨德庆,隋允康,刘正兴.多工况应力约束下连续体结构拓扑优化映射变换解法. 上海交通大学学报.2000,34(8):1061-1065页
    [60]Goldberg D E. Genetic algorithms in search, optimization and machine learning. New York:Addison-Wesley,1989
    [61]玄光男,程润伟.遗传算法与工程优化.北京:清华大学出版社.2004:1-106页
    [62]雷英文,张善文,李续武等.MATLAB遗传算法工具箱及应用.西安:西安电子科技大学出版社.2005:34-40页
    [63]李敏强,寇纪淞,林丹等.遗传算法的基本理论与应用.北京:科学出版社.2002:1-150页
    [64]王小平,曹立明.遗传算法:理论、应用及软件实现.西安:西安交通大学出版社.2002:19-65页
    [65]Holland J. Adaptation in Natural and Artificial Systems. University of Michigan Press. 1975
    [66]Goldberg D E. Genetic Algorithm in Search. Optimization and Machine Learning, Reading.1989
    [67]Goldberg D E and Samtani M P. Engineer Optimization Via GA Process. of 9th Conference Electronic Computation.1987:471-482P
    [68]Lu Dagang, Zhang Peng and Wang Guangyuan. Intelligent optimum design of a seismic structures based on Genetic Algorithm. CJK-OSM 99, Xi'an,1999:202-208P
    [69]Kameshki E S and Saka M P. Optimum design of nonlinear steel frames with semi-rigid connections using a genetic algorithm. Computers& Structures.2001,79(17): 1593-1604P
    [70]Mahmoud R, Maheri and D.Safari. Topology optimization of bracing in steel structures by genetic algorithm. Advances in Steel Structures.2005,1:277-282P
    [71]许素强,夏人伟.桁架结构拓扑优化与遗传算法.计算结构力学及其应用.1994,11(4):436-446页
    [72]高峰,胡俏,王章海等.改进进化方向的遗传算法与结构遗传设计.东北大学学报(自然科学版).1998,19(1):79-82页
    [73]黄冀卓,王湛.基于遗传算法的离散型结构拓扑优化设计.工程力学.2008,25(5):32-38页
    [74]葛培明,陈虬.改进的遗传算法在连续体结构拓扑优化中的应用.机械科学与技术.2006,25(7):757-760页
    [75]唐文艳,顾元宪,郭旭.求解具有奇异性的桁架拓扑优化的遗传算法.计算力学学报.2004,21(2):191-196页
    [76]黄炳生.日本神户地震中建筑钢结构的震害及启示.建筑结构.2000,30(9):24-25页
    [77]Kazuhiko Kasai, Ian Hodgson and David Bleiman. Rigid-bolted repair method for damaged moment connections. Engineering Structures.1998,2(4-6):521-53P
    [78]姚国春,霍立兴,张玉凤等.焊接钢结构梁柱节点地震下的断裂行为研究.钢结构.2000,15(50):25-27页
    [79]中华人民共和国建设部.中华人民共和国国家标准(GB50011—2001)建筑抗震设计规范.北京:中华人民共和国建设部和中华人民共和国国家质量监督检验检疫总局联合发布.2001:14-18页
    [80]黄冀卓.钢框架体系优化设计研究.博士学位论文.上海:同济大学.2006:147-152页
    [81]干洪,汪海涛.平面刚架二阶内力分析的矩阵位移法.合肥工业大学学报.2006,29(6):747-750页
    [82]陈骥.钢结构稳定理论与设计.北京:科学出版式社.2001:86-87页
    [83]宋雅桐,朱继澄.结构分析与程序设计.南京:东南大学出版社.1990:228-235页
    [84]胡习兵.半刚性连接平面钢框架结构弹塑性分析及抗震性能研究.博士学位论文.长沙::湖南大学.2006:15-29页
    [85]周晓峰.巨型钢框架结构的静力、抗震和抗风分析.博士学位论文.浙江大学.2001:87-88页
    [86]丰定国,王清敏,钱国芳等.工程结构抗震.北京:地震出版社.1994:32-91页
    [87]唐友刚.高等结构动力学.天津:天津大学出版社.2002:192-197
    [88]张雄,王天舒.计算动力学.北京:清华大学出版社.2007:21-55,169-177页
    [89]李俊峰,戴文战.基于遗传算法和灰色关联度的多目标问题求解方法研究Proceeding of the 25th Chinese Control Conference,7-11 August,2006, Harbin, Heilongjiang. 558-561P
    [90]周明,孙树栋.遗传算法原理及应用.北京:国防工业出版社.2005:116-117页
    [91]张晶,翟鹏程,张本源.惩罚函数法在遗传算法处理约束问题中的应用.武汉理工大学学报.2002,24(2):56-59页
    [92]高汉平,肖小红,康立山.一种求解不等式约束优化问题的新算法.黄冈师范学院学报.2002,22(6):46-49页
    [93]z.米凯利维茨.演化程序——遗传算法和数据编码的结合.北京:科学出版社. 2000:97-100页
    [94]Floudas C A and Pardalos P M.A Collection of Test Problems for Constrained Global Optimization Algorithms, Lecture Notes in Computer Science.Vol.455,1987
    [95]程东梅.烟道式余热锅炉钢架的设计与计算.热能动力工程.2008,23:72-75页
    [96]崔逊学.多目标进化算法及其应用.北京:国防工业出版社.2006:6-13,77-101页
    [97]雷德明,严新平.多目标智能优化算法及其应用.北京:科学出版社.2009:30-54页
    [98]胡毓达.实用多目标最优化.上海:上海科学技术出版社.1990:23-55页
    [99]李敏强,寇纪淞,林丹等.遗传算法的基本原理与应用.北京:科学出版社.2003:30-45页
    [100]游进军,纪昌明,付湘.基于遗传算法的多目标问题求解方法.水利学报.2003,7:64-69页
    [101]程东梅,陈明,乔洪斌等.涉外锅炉钢结构的风荷载计算及分析.热能动力工程.2010,25(1):61-64页
    [102]连慰安,张耀春.钢支撑及框架—中心支撑双重抗侧力体系研究现状、不足及改进.地震工程与工程振动.2005,3(6):67-75页
    [103]沈祖炎.高层、轻型、高耸钢结构的理论和工程技术发展.上海:同济大学出版社.1997:1-494页
    [104]程耿东.关于桁架结构拓扑优化中的奇异最优解.大连理工大学学报.2000,40(4):379-383页
    [105]蹇开林,燕乐纬,朱学旺.基于遗传算法的结构支撑位置优化.应用力学学报.2007,24(1):306-309页
    [106]燕乐纬,蹇开林,丁剑平.基于遗传算法的结构动力响应支撑位置优化.重庆科技学院学报(自然科学版).2006,8(3):56-61页
    [107]Wang Dong. Optimization of Support Positions to Maximize the Fundamental Frequency of Structures. International Journal for Numerical Methods in Engineering. 2004,61:1584-1602P
    [108]Wang Dong. Optimization of Support Positions to Minimize the Maximal Deflection of Structures. International Journal of Solids and Structures.2004,41:7445-7458P
    [109]周向阳,陈立平,黄正东.连续体结构与支撑综合拓扑优化设计方法.农业机械学报.2008,39(4):68,128-131页
    [110]Buhl T. Simultaneous topology optimization of structure and supports. Structural and Multidiscipline Optimization.2002,23(5):336-346P
    [111]Rozvany GIN, Zhou M and Birker T. Generalized shape optimization without homogenization. Structural Optimization.1992,4(3):250-252P
    [112]朱继宏,张卫红,田军等.基于连续密度变量的结构支撑布局优化设计.机械科学与技术.2004,23(9):113-116页
    [113]周克民,李俊峰,李霞.结构拓扑优化研究方法综述.力学进展.2005,35(1):69-76页
    [114]郭中泽,张卫红,陈裕泽.结构拓扑优化设计综述.机械设计.2007,24(8):1-6页
    [115]周秀文.灰色关联度的研究与应用.硕士学位论文.吉林大学.2007:9页
    [116]唐志刚,赵建国,张超.灰色关联度分析法评判目标威胁度.火力与指挥控制.2004,29:79-80页
    [117]刘思峰,谢乃明.灰色系统理论及其应用.北京:科学出版社.2008:17-27页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700