人基因组中DNA调节片段的快速富集与筛选
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人类基因组测序工作的顺利进行,基因组功能的研究已显得越来越紧迫。基因组的功能主要包括基因转录产物的功能、基因表达调节的功能以及基因组自身组织和进化的功能。其中基因实现有序、协调表达以及基因组形成高级结构是通过DNA与蛋白质的相互作用来完成的。发展新的研究思路,建立有效的技术方法,筛选、鉴定基因组中的DNA调节片段,是筛选DNA结合蛋白、揭示基因表达调节和基因组自身组织规律的基础。
     目前,绝大多数基因的转录调节机制研究尚未开展。这主要是由于已有的研究方法难以大量筛选、鉴定DNA调节元件,大多数基因的DNA调节区仍未被确定。另外,由于转录调节因子在细胞中的表达水平很低,利用常规的纯化方法很难获得足以进行氨基酸序列分析或抗体制备的纯化蛋白质,目前已克隆的转录因子不多,对这些因子的表达模式和DNA-蛋白质相互作用规律尚缺乏足够的研究。利用现有的软件对DNA上的蛋白质结合位点进行分析,即使在体外实验证实没有蛋白质结合的DNA片段上,往往检索出大量的结合位点,难以获得有价值的信息。筛选、鉴定DNA调节片段和相应的转录调节因子,研究DNA与蛋白质相互作用的规律,仍然是当前转录调节研究的一个重要任务。
     目前,已发展了多种方法筛选、鉴定DNA调节片段,主要包括以下几种。1) DNA连续删切分析:是最常用的方法,可初步确定DNA调节元件的大致位置、功能活性。但该方法对DNA片段进行连续删切时需要合适的限制性核酸内切酶位点。2) DNase Ⅰ敏感性分析:是初步确定体内重要调节区的常用方法,能较真实地反映体内调节机制,但该方法技术难度较大。另外,以上这两种方法不能克隆新的基因片段,只能对已经获得的基因片段进行分析:对于DNA
As the sequencing of human genome goes on smoothly, it is imminent to investigate the function of genome. The main function of genome includes (a) the function of gene's transcripts, (b) the regulation of gene expression, (c) the organization of genome and (d) the evolution of genome. Coordinated gene expression and highly ordered structure of genome results from the interaction between DNA and protein. So it is important to develop new strategy and to establish efficient techniques to isolate and to identify the genomic regulatory sequences, which is the basis for the identification of DNA binding protein and for the study of the regulation of gene expression.
    Presently there lack efficient methods to broadly isolate and identify DNA regulatory fragments. Only a few of transcription factors were cloned because they are expressed in low level and it's difficult to obtain pure protein enough for amino acid sequencing or preparation of antibody. Their expression pattern and the interaction between transcription factor and DNA were not studied in detail. It's difficult to obtain valuable DNA regulatory information by computer software analysis. Thus little is known about the transcriptional regulation of most genes. A main task to study the transcriptional regulation is still to isolate and identify the regulatory DNA fragments and the corresponding transcription factors, to study the interaction between DNA and proteins.
    Several methods to screen and to identify DNA regulatory fragments have been developed. They are: (a) expression assay with continuously truncted DNA constructs, which is widely used to analyze the position and the activity of regulatory fragments, but it needs suitable restriction enzyme sites for DNA deletion. (b) analysis of the sensitivity
引文
1. Welsh J. Chada K. Dalai SS, Cheng R, Ralph D, McClelland M. Arbitrarily primed PCR fingerprinting of RNA. Nucleic Acids Res 1992.20(19):4965-4970.
    
    2. Liang P, Pardee AB. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 1992.257(5072):967-971.
    
    3. Diatchenko L. Lau YF. Campbell AP. Chenchik A. Moqadam F. Huang B. Lukyanov S. Lukyanov K, Gurskaya N, Sverdlov ED. Siebert PD. Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci U S A 1996.93(12):6025-6030.
    
    4.Hedrick SM. Cohen DI, Nielsen EA, Davis MM. Isolation of cDNA clones encoding T cellspecific membrane-associated proteins. Nature 1984,308(5955): 149-153.
    
    5. Wong BR, Rho J. Arron J. Robinson E. Orlinick J. Chao M. Kalachikov S. Cayani E. Bartlett FS 3rd, Frankel WN. Lee SY, Choi Y. TRANCE is a novel ligand of the tumor necrosis factor receptor family that activates c-Jun N-terminal kinase in T cells. J Biol. Chem. 1997. 272(40):25190-25194.
    
    6. Chu ZL. McKinsey TA, Liu L, Gentry JJ. Malim MH. Ballard DW. Suppression of tumor necrosis factor-induced cell death by inhibitor of apoptosis C-IAP2 is under NF-kappaB control. Proc. Natl. Acad. Sci. USA 1997.94(19): 10057-10062.
    
    7. Hudson C. Clements D, Friday RV, Stott D, Woodland HR. Xsox17alpha and -beta mediate endoderm formation in Xenopus. Cell 1997.91(3):397-405.
    
    8. Sakaguchi N, Berger CN. Melchers F. Isolation of a cDNA copy of an RNA species expressed in murine pre-B cells. EMBO J. 1986.5(9):2139-2147.
    
    9. von Stein OD, Thies WG, Hofmann M. A high throughput screening for rarely transcribed differentially expressed genes. Nucleic Acids Res. 1997.25(13):2598-2602.
    
    10. Harshman K, Bell R, Rosenthal J, et al. Comparison of the positional cloning methods used to isolate the BRCA1 gene. Hum. Mol. Genet. 1995.8:1259-1266.
    
    11. Collins FS. Positional cloning moves from perditional to traditional. Nat. Genet. 1995.4:347-350.
    
    12. Hastbacka J, de la Chapelle A, Mahtani MM. et al. The diastrophic dysplasia gene encodes a novel sulfate transporter: positional cloning by fine-structure linkage disequilibrium mapping. Cell 1994.78(6): 1073-1087.
    
    13. van Bokhoven H. van den Hurk JA. Bogerd L. et al. Cloning and characterization of the human choroideremia gene. Hum. Mol. Genet. 1994.3(7): 1041 -1046..
    
    14. Kunapuli SP. Stark P, Rick L. et al. Determination of gene structure by intron trapping using polymerase chain reaction: application to the human plasma prekallikrein gene. DNA Cell Biol. 1995.14(4):343-347.
    
    15. Heiss NS. Rogner UC, Kioschis P, et al. Transcription mapping in a 700-kb region around the DXS52 locus in Xq28: isolation of six novel transcripts and a novel ATPase isoform (hPMCA5). Genome Res. 1996.6(6):478-491.
    
    16. Liau LM. Lallone RL, Seitz RS. Buznikov A. Gregg JP, Kornblum HI. Nelson SF. Bronstein JM. Identification of a human glioma-associated growth factor gene. granulin. using differential immuno-absorption. Cancer Res. 2000.60(5): 1353-1360.
    
    17. Xia JH, Liu CY. Tang BS. et al. Mutations in the gene encoding gap junction protein beta-3 associated with autosomal dominant hearing impairment. Nat. Genet. 1998.20(4):370-373.18. Gerasimova TI and Corces VG. Polycomb and trithorax group proteins mediate the function of achromatin insulator. Cell 1998.92:511-521.
    
    19. Grigoryey SA. Woodcock CL. Chromatin structure in granulocytes. A link between tight compaction and accumulation of a heterochromatin-associated protein (MENT). J Biol Chem 1998.273(5):3082-3089.
    
    20. Gohring F. Fackelmayer FO. The scaffold/matrix attachment region binding protein hnRNPU (SAF-A) is directly bound to chromosomal DNA in vivo: a chemical cross-linking study. Biochemistry 1997,36(27):8276-8283.
    
    21. Lyko F, Paro R. Chromosomal elements conferring epigenetic inheritance. Bioessays 1999.21(10):824-832.
    
    22. LeRoy G. Loyola A, Lane WS, Reinberg D. Purification and characterization of a human factor that assembles and remodels chromatin. J Biol. Chem. 2000 Mar 28.
    
    23. Davidson EH. A view from the genome: spatial control of transcription in sea urchin development. Curr. Opin. Genet. Dev. 1999.9(5):530-541.
    
    24. Shivdasani RA. Orkin SH. The transcriptional control of hematopoiesis. Blood 1996. 87 (10): 4025-4039.
    
    25. Orkin SH. Globin gene regulation and switching: circa 1990. Cell 1990 .63(4):665-672.
    
    26. Karlsson S. Nienhuis AW. Developmental regulation of human globin genes. Annu. Rev. Biochem. 1985.54:1071-1108.
    
    27. Evans T, Felsenfeld G, Reitman M. Control of globin gene transcription. Annu. Rev. Cell Biol. 1990.6:95-124.
    
    28. Baron MH. Transcriptional control of globin gene switching during vertebrate development. Biochimica et Biophysica Acta 1997, 1351: 51-72.
    
    29. Igarashi K. Hoshino H. Muto A, Suwabe N, Nishikawa S. Nakauchi H. Yamamoto M. Multivalent DNA binding complex generated by small Maf and Buch1 as a possible biochemical basis for beta-globin locus control region complex. J Biol. Chem. 1998.273(19):11783-11790.
    
    30. Maouche L, Lucien N. Cartron JP. et al. A CCACC motif mediates negative transcriptional regulation of the human erythropoietin receptor. Eur. J. Biochem. 1995.233:793-799.
    
    31. Cao SX. Gutman PD.Dave HPG. et al. Identification of a transcriptional silencer in the 5'- flanking region of the human (?)-globin gene. Proc. Natl. Acad. Sci. USA 1989.86:5306-5309.
    
    32. Bieker James J. Erythroid-specific transcription. Current Opinion in Hematology 1998.5:145-150.
    
    33. Orkin SH. Regulation of globin gene expression in erythroid cells. Eur. J Biochem. 1995,231 (2) :271-281.
    
    34. Baron MH. Transcriptional control of globin gene switching during vertebrate development. Biochim Biophys Acta 1997.1351 (1-2):51-72.
    
    35. Yura T. Nakahigashi K. Regulation of the heat-shock response. Curr. Opin. Microbiol. 1999.2(2): 153-158.
    
    36. Ponomarenko JV, Ponomarenko MP. Frolov AS. et al. Conformational and physieochemical DNA features specific for transcription factor binding sites. Bioinformatics 1999. 15(7-8):654- 668
    
    37. Dickerson RE, Chiu TK. Helix bending as a factor in protein/DNA recognition. Biopolymers 1997.44(4) :361-403.
    
    38. Collis P. Antoniou M and Grosveld F. Definition of the minimal requirements within the human beta-globin gene and the dominant control region for high level expression. EMBO J. 1990.9(1):233-240.
    
    39. Liu DP, Chang JC. Moi P. Liu W. Kan YW and Curtin PT. Dissection of the enhancer??activity of β -globin 5' DNase I hypersensitive site-2 in transgenic mice. Proc. Natl. Acad. Sci. USA 1992. 89: 3899-3903.
    
    40. Tuan D,Solomon W, Li Q. London IM. The "beta-like-globin" gene domain in human erythroid cells. Proc. Natl. Acad. Sci. USA 1985.82: 6384-6388.
    
    41. Elder JT. Forrester WC. Thompson C. et al. Mol. Cell. Biol. 1990. 10:1382-1389.
    
    42. Suck D, Lahm A and Oefner C. Nature 1988.332:464-468.
    
    43. Gonzy-Treboul G. Lepesant JA. Deutsch J. Enhancer-trap targeting at the Broad-Complex locus of Drosophila melanogaster. Genes Dev. 1995.9(9):1137-1148.
    
    44. Weber F, de Villiers J, Schaffner W. An SV40 "enhancer trap" incorporates exogenous enhancers or generates enhancers from its own sequences. Cell 1984.36(4):983-992.
    
    45. Hamada H. Random isolation of gene activator elements from the human genome. Mol. Cell. Biol. 1986.6(12):4185-4194.
    
    46. Iglesias T. Caubin J. Zaballos A. et al. Identification of the mitochondrial NADH dehydrogenase subunit 3 (ND3) as a thyroid hormone regulated gene by whole genome PCR analysis. Biochem. Biophys. Res. Commun. 1995.210(3) :995-1000.
    
    47. Nakagama H. Heinrich G, Pelletier J, et al. Sequence and structural requirements for highaffinity DNA binding by the WT1 gene product. Mol. Cell. Biol. 1995.15(3):1489-1498.
    
    48. Kinzler KW. Vogelstein B. Whole genome PCR: application to the identification of sequences bound by gene regulatory proteins. Nucleic Acids Res. 1989,17(10):3645-3653.
    
    49. Collick A. Dunn MG. Jeffreys AJ. Minisatellite binding protein Msbp-1 is a sequencespecific single-stranded DNA-binding protein. Nucleic Acids Res. 1991.19(23):6399-6404.
    
    50. Joulin V. Richard-Foy H. A new approach to isolate genomic control regions. Application to the GATA transcription factor family. Eur. J Biochem. 1995.232(2):620-626.
    
    51. Matsugi T. Kreider BL, Delwel R, et al. The Evi-1 zinc finger myeloid transforming protein binds to genomic fragments containing (GATA)n sequences. Oncogene 1995.11(1):191-198.
    
    52. Costa-Giomi MP, Gaub M-P, Chambon P. et al. Characterization of a retinoic acid responsive element isolated by whole genome PCR. Nucleic Acids Res. 1992. 20(12):3223- 3232.
    
    53. Cohen-Kaminsky S, Maouche-Chretien L. Vitelli L. et al. Chromatin immunoseleetion defines a TAL-1 target gene. EMBO J 1998. 17(17): 5151-5160.
    
    54. Watson DK. Robinson L. Hodge DR. et al. FL11 and EWS-FL11 function as ternary complex factors and ELK1 and SAPla function as ternary and quaternary complex factors on the Egrl promoter serum response elements. Oncogene 1997.14(2):213-221.
    
    55. Robinson L. Panayiotakis A. Papas TS. et al. ETS target genes: identification of egrl as a target by RNA differential display and whole genome PCR techniques. Proc. Natl. Acad. Sci. USA 1997.94(14) :7170-7175.
    
    56. Watson DK, Kitching R, Vary C, et al. Isolation of target gene promoter/enhancer sequences by whole genome PCR method. Methods Mol. Biol. 2000.130:1-11.
    
    57. Wright WE. Binder M and Funk W. Cyclic Amplification and Selection of Targets (CASTing) for the myogenin consensus binding site. Mol. Cell. Biol. 1991.11(8):4104-4110.
    
    58. Wadman IA, Osada H. Grutz GG.et al. The LIM-only protein Lmo2 is a bridging molecule assembling an erythroid DNA-binding complex which includes the TAL1. E47. GATA-1 and Ldb1/NL1 proteins. EMBO J. 1997. 16: 3145-3157.59. Driscoll MC. et al. γ δ β -thalassemia due to a de novo mutation deleting the 5" β -globin gene activation-region hypersensitive sits. Proc. Natl. Acad. Sci. USA 1989. 85:7470-7474.
    
    60. Forget BG. Molecular basis of hereditary persistance of fetal hemoglobin. Ann. N.Y. Acad. Sci. 1998.850:38-44.
    
    61. Nallur GN, Prakash K and Weissman SM. Multiplex selection technique (MuST): an approach to clone transcription factor binding sites. Proc. Natl. Acad. Sci. USA 1996. 93: 1184-1189.
    
    62. Nishimura D. DNA analysis: new kid on the block. Science 1999. 285(5426):355-356.
    
    63. Blobel G. Wozniak RW. Proteomics for the pore. Nature 2000.403(6772):835-836.
    
    64. Rosamond J and AIlsop A. Harnessing the power of the genome in the search for new antibiotics. Science 2000.287(5460):1973-1976.
    
    65. Butler D. Celera in talks to launch private sector human proteome projeet. Nature 2000.403(6772):815-816.
    
    66. Wilkins M. Government backs proteome proposal. Nature 1995.378(6538):653.
    
    67. Anderson NL, Anderson NG. Proteome and proteomics: new technologies, new concepts and new words. Electrophoresis 1998.19:1853-1861.
    
    68. Pietu G, Eveno E. Soury-Segurens B, Fayein NA. Mariage-Samson R. Matingou C. Leroy E. Dechesne C, Krieger S. Ansorge W. Reguigne-Arnould I. Cox D. Dehejia A. Polymeropoulos MH, Devignes MD, Auffray C. The genexpress IMAGE knowledge base of the human muscle transcriptome: a resource of structural, functional, and positional candidate genes for muscle physiology and pathologies. Genome Res. 1999,9(12):1313-1320.
    
    69. Velculescu VE. Zhang L. Zhou W, et al. Characterization of the yeast transcriptome. Cell 1997.88(2):243-251.
    
    70. Dignam JD, Lebovitz RM and Roeder RG. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 1983.11(5):1475-1489.
    
    71. Sambrook J, Fritsch EF and Maniatis T. Molecular Cloning. A laboratory Manual. 2nd edition. 1989.
    
    72. Dynal. Technical Handbook. 3rd edition. Biomagnetic Techniques in Molecular Biology.
    
    73. Caubin J, Lglesias T, Bernal J, et al. Isolation of genomic DNA fragments corresponding to genes modulated in vivo by a transcription factor. Nucleic Acids Res. 1994, 22(20):4132-4138.
    
    74. Osada H, Grutz G, Axelson H. Forster A, Rabbitts TH. Association of erythroid transcription factors: complexes involving the LIM protein RBTN2 and the zinc-finger protein GATA1. Proc. Natl. Acad. Sci. USA. 1995.92(21):9585-9589.
    
    75. Peterson CL, Workman JL. Promoter targeting and chromatin remodeling by the SWI/SNF complex. Curr. Opin. Genet. Dev. 2000.10(2): 187-192.
    
    76. Jaquet V, Pfend G, Tosic M. Matthieu JM. Analysis of cis-acting sequences from the myelin oligodendrocyte glycoprotein promoter. J Neurochem. 1999.73(1):120-128.
    
    77. Johns TG, Bernard CC. The structure and function of myelin oligodendrocyte glycoprotein. J Neurochem. 1999,72(1):1-9.
    
    78. Roth MP. Malfroy L. Offer C, Sevin J, Enault G, Borot N. Pontarotti P. Coppin H. The human myelin oligodendrocyte glycoprotein (MOG) gene: complete nucleotide sequence and structural characterization. Genomics 1995.28(2):241-250.
    
    79. Taboit-Dameron F, Malassagne B, Viglietta C. Puissant C, Leroux-Coyau M. Chereau C. Attal J, Weill B, Houdebine LM. Association of the 5'HS4 sequence of the chicken beta-globin locus control region with human EF1 alpha gene promoter induces ubiquitous and high expression of human CD55 and CD59 cDNAs in transgenic rabbits. Transgenic Res. 1999,8(3):223-235. 80. Dorsman JC, van Heeswijk WC, Grivell LA. Identification of two factors which bind to the upstream sequences of a number of nuclear genes coding for mitochondrial proteins and to genetic elements important for cell division in yeast. Nucleic Acids Res. 1988.16(15):7287-7301.
    81. Giese K. Kingsley C, Kirshner JR, el aL Assembly and function of a TCR alpha enhancer complex is dependent on LEF-1-induced DNA bending and multiple protein-protein interactions. Genes Dev. 1995.9(8):995-1008.
    82. Kramer JA, McCarrey JR, Djakiew D, Krawetz SA. Differentiation: the selective potentiation of chromatin domains. Development 1998,125(23):4749-4755.
    83. Xue Y. Wong J. Moreno GT, Young MK. Cote J, Wang W. NURD. a novel complex with both ATP-dependent chromatin-remodeling and histone deacetylasc activities. Mol. Cell. 1998.2(6):851-861.
    84. Ronchi AE, Bottardi S, Mazzucchelli C. Ottolenghi S. Santoro C. Differential binding of the NFE3 and CP1/NFY transcription factors to the human gamma-and epsilon-globin CCAAT boxes. J Biol. Chem. 1995.270(37):21934-21941.
    85. Ponomarenko MP, Ponomarenko JV. Frolov AS, Podkolodny NL. Savinkova LK. Kolchanov NA, Overton GC. Identification of sequence-dependent DNA features correlating to activity of DNA sites interacting with proteins. Bioinformatics 1999.15(7-8):687-703.
    86. Fields S, Song O. A novel genetic system to detect protein-protein interactions. Nature 1989. 340(6230):245-246.
    87. Ulmasov T, Olmasov T, Hagen G, et al. ARFI. a transcription factor that binds to auxin response elements. Science 1997, 276(5320): 1865-1868.
    88. Harper JW, Adami GR. Wei N, et al. The p21 Cdk-interacting protein Cipl is a potent inhibitor of G1 cyclin-dependent kinases. Cell 1993. 75(4):805-816.
    89. Durfee T. Becherer K, Chen PL. The retinoblastoma protein associates with the protein phosphatase type 1 catalytic subunit. Genes. Dev. 1993.7(4):555-569.
    90. Spirov AV, Bowler T, Reinitz J. HOX Pro: a specialized database for clusters and networks of homeobox genes. Nucleic Acids Res. 2000.28(1): 337-340.
    91. Lohr D, Venkov P and Zlatanova J. Transcriptional regulation in the yeast GAL gene family: a complex genetic network. The FASEB J. 1995.9:777-787.
    92. Holstege FCP, Jennings EG. Wyrick JJ, et al. Dissecting the regulatory circuitry of a eukaryotic genome. Cell 1998.95:717-728.
    93. Kolchanov NA, Ponomarenko MP. Kel AE. et al. GeneExpress: a computer system for description, analysis, and recognition of regulatory sequences in eukarvotic genome. Ismb 1998:6:95-104.
    94. Crystal RG. Transfer of genes to humans: early lessons and obstacles to success. Science 1995.270:404.
    95. Hraais JD and Lemoine NR. Strategies for targeted gene therapy. Trends Genet. 1996.12:400-405.
    96. Miller N. and Whelan J. Progress in transcriptionally targeted and regulatable vectors for genetic therapy. Hum. Gene Ther. 1997,8:803-815.
    97. Li Q. Emery DW, Fernandez M, Hart H, Stamatoyannopoulous G. Development of viral vectors for gene therapy of beta-chain hemoglobinopathies: optimization of a gamma-globin gene expression cassette. Blood 1999,93:2208-2216.1. Kingston RE. A shared but complex bridge. Nature 1999.399(6733): 199-200.
    
    2. Liao SM, Taylor IC. Kingston RE, Young RA. RNA polymerase II carboxy-terminal domain contributes to the response to multiple acidic activators in vitro. Genes Dev. 1991.5(12B):2431-2440.
    
    3. Yuan W. Condorelli G, Caruso M. Felsani A. Giordano A. Human p300) protein is a coactivator for the transcription factor MyoD. J Biol. Chem. 199.271(15):9009-9013.
    
    4. Tsang AP. Visvader JE. Turner CA, Fujiwara Y. Yu C. Weiss MJ. Crossley M. Orkin SH. FOG, a multitype zinc finger protein, acts as a cofactor for transcription factor GATA-1 in erythroid and megakaryocytic differentiation. Cell 1997.90(1):109-119.
    
    5. Goodrich JA, Cutler G, Tjian R. Contacts in context: promoter specificity and macromolecular interactions in transcription.Cell 1996,84(6) :825-830 .
    
    6. Workman JL, Roeder RG, Kingston RE. An upstream transcription factor. USF (MLTF). facilitates the formation of preinitiation complexes during in vitro chromatin assembly. EMBO J 1990.9(4):1299-1308.
    
    7. Pondel MD, Murphy S, Pearson L, Craddock C, Proudfoot NJ. Sp1 functions in a chromalindependent manner to augment human alpha-globin promoter activity. Proc. Natl. Acad. Sci. USA 1995.92(16) :7237-7241.
    
    8. Korzus E. Torchia J, Rose DW. Xu L. Kurokawa R. McInerney EM. Mullen TM. Glass CK, Rosenfeld MG. Transcription factor-specific requirements for coactivators and their acetyltransferase functions. Science 1998.279(5351):703-707.
    
    9. Koleske AJ. Young RA. An RNA polymerase II holoenzyme responsive to activators. Nature 1994.368(6470) :466-469.
    
    10. Kershnar E, Wu SY. Chiang CM. Immunoaffinity purification and functional characterization of human transcription factor IIH and RNA polymerase II from clonal cell lines that conditionally express epitope-tagged subunits of the multiprotein complexes. J Biol. Chem. 1998,273(51):34444-34453.
    
    11. Ossipow V, Tassan JP, Nigg EA, Schibler U. A mammalian RNA polymerase II holoenzyme containing all components required for promoter-specific transcription initiation. Cell 1995.83(1): 137-146.
    
    12. Naar AM, Beaurang PA, Zhou S, Abraham S, Solomon W. Tjian R. Composite co-activator ARC mediates chromatin-directed transcriptional activation. Nature 1999.398(6730):828-832.
    
    13. Hengartner CJ, Thompson CM, Zhang J. Chao DM. Liao SM. Koleske AJ. Okamura S, Young RA. Association of an activator with an RNA polymerase II holoenzyme. Genes Dev 1995,9(8) :897-910.
    
    14. Asturias FJ, Jiang YW, Myers LC, Gustafsson CM, Kornberg RD. Conserved structures of mediator and RNA polymerase II holoenzyme. Science 1999.283(5404):985-987.
    
    15. Armstrong JA. Emerson BM., NF-E2 disrupts chromatin structure at human beta-globin??locus control region hypersensitive site 2 in vitro. Mol. Cell. Biol. 1996.16(10):5634-5644.
    16. Felsenfeld G. Chromatin unfolds. Cell 1996.86(1):13-19.
    17. Zink D, Paro R. Drosophila Polycomb-group regulated chromatin inhibits the accessibility of a trans-activator to its target DNA. EMBO J 1995.14(22):5660-5671.
    18. Tsukiyama T, Wu C. Purification and properties of an ATP-dependent nucleosome remodeling factor. Cell 1995,83(6):1011-1020.
    19. Armstrong JA. Bicker JJ. Emerson BM. A SWI/SNF-related chromatin remodeling complex. E-RC1. is required for tissue-specific transcriptional regulation by EKLF in vitro. Cell 1998, 95(1): 93-104.
    20. Bazett-Jones DP, Cote J, Landel CC, Peterson CL, Workman Jk The SWI/SNF complex creales loop domains in DNA and polynucleosome arrays and can disrupt DNA-histone contacts within these domains. Mol. Cell. Biol 1999,19(2):1470-1478.
    21. Lorch Y, Zhang M, Kornberg RD. Histone octamer transfer by a chromatin-remodeling complex. Cell 1999,96(3):389-392.
    22. im J, Sif S. Jones B. Jackson A, Koipally J. Heller E. Winandy S. Viel A. Sawyer A, Ikeda T. Kingston R, Georgopoulos K. Ikaros DNA-binding proteins direct formation or chromatin remodeling complexes in lymphocytes. Immunity 1999.10(3):345-355.
    23. Sudarsanam P, Cao Y, Wu L, Laurent BC. Winston F. The nucleosome remodeling complex. Snf/Swi, is required for the maintenance of transcription in vivo and is partially redundant with the histone acetyltransferase, gcnS. EM BO J 1999.18(11):3101-3106.
    24. Igarashi K, Hoshino H, Muto A, Suwabe N. Nishikawa S. Nakauchi H. Yamamoto M. Multivalent DNA binding complex generated by small Mar and Bachl as a possible biochemical basis for beta-globin locus control region complex. J Biol. Chem. 1998,273 (19): 11783-11790.
    25. Thanos D. Maniatis T. Virus induction of human IFN beta gene expression requires the assembly of an enhanceosome. Cell 1995,83(7):1091-1100.
    26. Giese K. Kingsley C, Kirshner JR. Grosschedl R. Assembly and function of a TCR alpha enhancer complex is dependent on LEF-1-induced DNA bending and muhiple protein-protein interactions. Genes Dev. 1995,9(8):995-1008.
    27. Cavallesco R, Tuan D. Modulatory subdomains of the HS2 enhancer differentially regulate enhancer activity in erythroid cells at different developmental stages. Blood Cells. Molecules. And Diseases 1997,23(2):8-26.
    28. Milot E, Strouboulis J, Trimborn T, Wijgerde M. de Boer E. Langeveld A. Tan-Un K. Vergeer W, Yannoutsos N, Grosveld F, Fraser P. Heterochromatin effects on the frequency and duration of LCR-mediated gene transcription. Cell 1996. 87(1):105-114.
    29. Wijgerde M, Grosveld F, Fraser P. Transcription complex stability and chromatin dynamics in vivo. Nature 1995, 377(6546):209-213.
    30. Gerasimova TI. Corces VG. Polycomb and trithorax group proteins mediate the function of a chromatin insulator. Cell 1998, 92(4):511-521.
    31. Cook PR. The organization of replication and transcription. Science 1999.284(5421):1790-??1795.
    32. Wilson CJ, Chao DM, Imbalzano AN, Schnitzler GR, Kingston RE. Young RA. RNA polymerase Ⅱ holoenzyme contains SWI/SNF regulators involved in chromatin remodeling. Cell 1996,84(2):235-244.
    33. Cosma MP. Tanaka T. Nasmyth K. Ordered recruitment of transcription and chromatin remodeling factors to a cell cycle-and developmentally regulated promoter. Cell 1999,97(3):299-311.
    34. Carey M. The enhanceosome and transcriptional synergy. Cell 1998. 92(1):5-8.
    35. Ellwood K, Huang W, Johnson R, Carey M. Multiple layers of cooperativity regulate enhanceosome-responsive RNA polymerase Ⅱ transcription complex assembly. Mol. Cell. Biol. 1999,19(4):2613-2623.
    36. Minie ME, Kimura T, Felsenfeld G. The developmental switch in embryonic (?)-globin expression is correlated with erythroid lineage-specific differences in transcription factor levels. Development 1992,115:1149-1164.
    37. Zhang QY, Rombel I, Reddy GN. Shen CKJ. Transcriptional regulation of human ξ2 and α globin promoters by multiple nuclear factor-DNA complexes: the final act. In: Stamatoyannopoulos G. Molecular Biology of Hemoglobin Switching. United Kingdom: Intercept Limited, 1995. 193-202.1. Wykes S.M.. Nelson J.E.. Visscher D.W.. et al.Coordinate expression of the PRM1. PRM2.and TNP2 multigene Locus in human testis. DNA Cell Biol. 1995.14(2):155-161
    2. Bennani-Baiti I.M.. Jones B.K..Liebhaber S.A..et al. Physical linkage of the human growth horme gene cluster and the skeletal muscle sodium channel u-subunit gene (SCN4A) on chromosmoe 17. Genomics 1995.29:647-652
    3. Simrak D.. Cowley C.M.E.. Buxton R.S.. et al. Tandem arrangement of the closely linked desmglein genes on human chromosome 18. Genomics 1995. 25: 591-594
    4. Marasco O..Melina F..Mele E..et al. Linkage disequilibrium of three polymorphic RFLP markers in the apolipoprotein A Ⅰ-C Ⅲ gene cluster on chromosome 11. Hum. Genet. 1993.91:169-174
    5. Smit M., Kooij-Meijs E.van der..Frants R. R..et al. Apolipoprotein gene cluster on chromosome 19-Definite localization of the Apoc2 gene and the polymorphic Hpa Ⅰ site associated with typeⅢhyperlipoproteinemia. Hum.Genet. 1988.78:90-93
    6. Allan C.M..Walker D. and Taylor J.M..Evolutionary duplicatiuon of a hepatic control region in the human Apolipoprotein E gene locus. J. Biol. Chem. 1995. 270(44):26278-26281
    7.刘德培 张俊武 珠蛋白基因表达调控,见:沈(王羽)琲,方福德主编.《真核基因表达调??控》北京,教育出版社 1996年.236-254
    8. Steijlen P.M..Kremer H..Vakilzadeh F.. et al. Genetic linkage of the keratin type Ⅱ gene cluster with lchthy'osis Bullosa of Siemens and with autosomal dominant Ichthyosis Exfoliative. J. Invest. Dermatol. 1994.103(3):282-285
    9. Boncinelli E.. Somma R.. Acampora D.. et al.Organization of human homeobox genes. Hum. Reprod. 1988,3 (7):880-886
    10. Duboule D.and Morata G..Colinearity and functional hierarchy among genes of the homeotic complexes. Trends. Genet.1994.10(10):358-364
    11. Hoovers J.M.N., Mannens M.. John R.. et al.High-resolution localization of 69 potential human zinc finger protein genes: a number are c lustered.Genomics. 1992. 12:254-263
    12. Shannon M., Ashworth L. K.. Mucenski M.L.. et al. Comparative analysis of a conserved zine finger gene cluster on human chromosome 19q and mouse chromosome 7.Genomics. 1996.33:112-120
    13. Worton RG.. Sutherland J., Sylvester J.E..et al. Human ribosomal RNA genes: orientation of the tandem array and conservation of the 5'end. Science 1988.239:64-68
    14.陈诗书,汤雪明主编《医学细胞与分子生物学》上海医科大学出版社 1995年.475-481
    15. Lewin B., Chromatin and gene expression:constant questions.but changing answers. Cell 1994.79:397-406
    16. Wijgerde M.. Grosveld F.and Fraser P.,Transcription complex stability and chromatin dynamics in vivo. Nature 1995.377:209-213
    17. Krumlauf R..Hox genes in vertebrate development.Cell 1994.78(2):191-201
    18. Karlsson S. and Nienhuis A.W., Developmental regulation of human globin genes. Annu. Rev. Biochem 1985, 54:1071-1108
    19. Jarman A.P..Wood W.G.,Sharpe J.A.,et al. Characterization of the major regulatory element upstream of human α-globin gene cluster. MoI.Cell.Biol.1991,11:4679-4689
    20. Sharpe J.A., Summerhill R.J.. Vyas P..et al.Role of upstream DNase Ⅰ hypersensitive sites in the regulation of human alpha globin gene expression.Blood 1993.82(5): 1666-1671
    21, Li Q.,Clegg C., Peterson K.,et al. Binary transgenic mouse model for studying the trans control of globin gene switching: evidence that GATA-1 is an in vivo repressor of human (?) gene expression Proc. Natl. Acad.Sci.USA 1997.94:2444-2448
    22. Hubert R.S..Mitchell S..Chen X.N.,et al. BAC and PAC contigs covering 3.5 Mh of the Down syndrome congenital heart disease region between D21s55 and MXlon chromosome 21. Genomics 1997.41:218-226
    23. Galli-Taliadoros L.A, Sedgwick J.D, Wood S.A. et al.Gene knock-out technology:a methodological overview for the interested novice.J.Immunol. Methods 1995. 181: 1-15

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700