人脐静脉内皮细胞永生化细胞系的建立、鉴定及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
【背景】
     肿瘤的治疗是目前全世界面临的难题,传统的放疗、化疗及手术治疗疗效欠佳,探索新的肿瘤治疗方法成为医学研究领域的当务之急。1971年Folkman教授[1]提出了肿瘤血管依赖性理论。自此之后,肿瘤血管抑制治疗成为肿瘤领域的研究热点,并且取得了一些成果。但是,由于缺少肿瘤血管的靶向性分子,临床治疗效果不理想。而肿瘤血管与正常血管相比存在“异质性”[2]的研究使得肿瘤血管的靶向治疗成为可能。
     在前期的工作中,我们建立了人低分化胃腺癌的肾包膜下异种移植瘤模型,利用噬菌体随机展示肽库进行体内筛选,在荷瘤鼠体内成功筛选出了能与胃癌血管特异性结合的环七肽GX1(CGNSNPKSC)[3]。实验证实,GX1对胃癌的血管具有良好的靶向性并且能够在一定程度上抑制血管生成[4],具有良好的应用前景。目前肿瘤血管抑制治疗多采用内皮细胞与肿瘤细胞体外共培养模型,内皮细胞多采用来源广泛、易于获得的人脐静脉内皮细胞(HUVECs)。但是由于原代人脐静脉内皮细胞分离工作量大,体外培养传代有限等限制了这一领域的研究。因此本课题就围绕人脐静脉内皮细胞永生化细胞系的建立、鉴定及应用展开,以期成功建立HUVECs的永生化细胞系,为GX1后续研究及肿瘤的血管抑制治疗提供一个很好的细胞模型。
     【目的】
     获得HUVECs的永生化细胞系,从而为GX1后续研究及肿瘤的血管抑制治疗提供一个很好的细胞模型。
     【方法】
     1.通过胶原酶消化法分离原代的脐静脉内皮细胞(HUVECs)。
     2.通过慢病毒介导SV40LT感染原代HUVECs。
     3.通过电镜观察、免疫细胞荧光化学、RT-PCR及管状成形试验等方法从形态学、特征性标志物的表达等方面对原代及转染后的HUVECs进行鉴定。
     4.利用免疫荧光化学及IP的方法验证GX1的受体在永生化HUVECs上的表达,从而证实永生化HUVECs可作为一种新的细胞模型用于肿瘤血管抑制治疗的研究。
     【结果】
     1.成功分离培养了原代的HUVECs。在相差倒置显微镜下,分离的细胞呈单层生长,呈多角形或短梭状;扫描电镜及透射电镜下,细胞表面多绒毛及凸起,且发现内皮细胞的特征性结构W-P小体;八因子及KDR染色阳性;管状形成试验阳性。
     2.成功包装SV40LT的慢病毒载体,并转染入HUVECs,转染后的HUVECs可以持续传代,形态学、特征性标志物及管状形成试验与原代HUVECs无明显差异; RT-PCR证实SV40LT成功转入,且原代与转染后的HUVECs八因子及KDR的表达在mRNA水平无明显差异。
     3.免疫荧光化学及IP结果均证实永生化HUVECs上有GX1受体的表达,其可以替代原代HUVECs用于GX1的相关研究。
     【结论】
     1.慢病毒介导的SV40LT可以成功诱导HUVECs永生化。
     2.永生化HUVECs可以作为一种新的细胞模型用于肿瘤血管抑制治疗。
【Background】
     Cancer therapy is a worldwide problem. Traditional therapies are not satisfying, such as radiotherapy, chemotherapy and operation. There is an urgent need to study a new therapy to cancer. Folkman introduced tumor vascular theory in 1971, and the anti-angiogenesis has become a promising approach for cancer therapy. The heterogeneity between normal and tumorous vasculature makes the specific vascular targets suitable for therapies targeting tumors. However, one of reasons to low efficiency is lacking specific molecules targeting vascular in the therapy.
     Using phage display technology, we have identified the peptide GX1 (CGNSNPKSC) as having the ability to target the gastric cancer vasculature in xenograft study. We found that GX1 targeted specifically to the gastric cancer vasculature and inhibited the angiogenesis. The current model of target treatment usually adopted endothelial cells and tumor cells co-culture model. Due to abundant source and easy expansion, human umbilical vein endothelial cells (HUVECs) become the most commonly cells in study of tumor angiogenesis. However, the complex isolation and limited passage of HUVECs in vitro hampered our study. Therefore, this study mainly focuses on the establishment, identification and application of immortalized HUVECs. The immortalized HUVECs provide an ideal cell model for examining GX1 receptor and tumor anti-angiogenesis.
     【Objectives】
     We aim to obtain the immortalized HUVECs and establish an ideal cell model for the study of anti-angiogenesis.
     【Methods】
     1. Isolation of Human Umbilical Vein Endothelial Cells using collagenase digestive method.
     2. Transfection of the primary HUVECs by lentvirus vetor contained SV40LT.
     3. The primary HUVECs and the transfected cells were identified by light microscope and scanning electron microscope. Tube formation assay and specific markers were studied by Immunofluorescence and real-time PCR.
     4. Immunofluorescence staining and IP were performed to detect the expression of receptor of GX1 in immortalized HUVEC.
     【Results】
     1. The primary HUVECs was successfully isolated. Cells showed confluent monolayer with the cobblestone morphology under light microscope and much villi on cell surfaces under scanning electron microscope. The characteristic W-P body was found in the primary HUVECs. The primary HUVECs exhibited FactorⅧand KDR expression and the tube formation in Matrigel.
     2. The HUVECs were transformed by the lentvirus vector containing with SV40LT into the HUVECs. The immortalized HUVECs shared the similar characteristics with the primary HUVECs, such as the cobblestone morphology, W-P body, FactorⅧ, KDR and the ability of tube formation.
     3. The receptor of GX1 was detected in the immortalized HUVECs by using the methods of Immunofluorescence staining and immunoprecipitation.
     【Conclusions】
     1. The immortalized HUVECs were successfully transformed by SV40LT.
     2. The immortalized HUVECs can be used in the study of anti-angiogenesis as a cell model.
引文
[1] Folkman J. Tumor angiogenesis: therapeutic implications.[J]. N Engl J Med. 1971, 285(21): 1182-1186.
    [2] Ruoslahti E. Vascular zip codes in angiogenesis and metastasis.[J]. Biochem Soc Trans. 2004, 32(Pt3): 397-402.
    [3] Zhi M, Wu K C, Dong L, et al. Characterization of a specific phage-displayed Peptide binding to vasculature of human gastric cancer[J]. Cancer Biol Ther. 2004, 3(12): 1232-1235.
    [4] Chen B, Cao S, Zhang Y, et al. A novel peptide (GX1) homing to gastric cancer vasculature inhibits angiogenesis and cooperates with TNF alpha in anti-tumor therapy.[J]. BMC Cell Biol. 2009, 10: 63.
    [5] Parkin D M, Bray F, Ferlay J, et al. Global cancer statistics, 2002.[J]. CA Cancer J Clin. 2005, 55(2): 74-108.
    [6] Parkin D M. International variation.[J]. Oncogene. 2004, 23(38): 6329-6340.
    [7] Leung W K, Wu M S, Kakugawa Y, et al. Screening for gastric cancer in Asia: current evidence and practice.[J]. Lancet Oncol. 2008, 9(3): 279-287.
    [8] Hamashima C, Shibuya D, Yamazaki H, et al. The Japanese guidelines for gastric cancer screening.[J]. Jpn J Clin Oncol. 2008, 38(4): 259-267.
    [9] Selgrad M, Bornschein J, Rokkas T, et al. Clinical aspects of gastric cancer and Helicobacter pylori--screening, prevention, and treatment.[J]. Helicobacter. 2010, 15 Suppl 1: 40-45.
    [10] Resende C, Ristimaki A, Machado J C. Genetic and epigenetic alteration in gastric carcinogenesis.[J]. Helicobacter. 2010, 15 Suppl 1: 34-39.
    [11] Hinnen P, Eskens F A. Vascular disrupting agents in clinical development[J]. Br J Cancer. 2007, 96(8): 1159-1165.
    [12] Li X B, Schluesener H J, Xu S Q. Molecular addresses of tumors: selection by in vivo phage display.[J]. Arch Immunol Ther Exp (Warsz). 2006, 54(3): 177-181.
    [13] Kishchenko G, Batliwala H, Makowski L. Structure of a foreign peptide displayed on the surface of bacteriophage M13[J]. J Mol Biol. 1994, 241(2): 208-213.
    [14] Hui X, Han Y, Liang S, et al. Specific targeting of the vasculature of gastric cancer by a new tumor-homing peptide CGNSNPKSC.[J]. J Control Release. 2008, 131(2): 86-93.
    [15] Brem S, Brem H, Folkman J, et al. Prolonged tumor dormancy by prevention of neovascularization in the vitreous[J]. Cancer Res. 1976, 36(8): 2807-2812.
    [16] Folkman J. Anti-angiogenesis: new concept for therapy of solid tumors[J]. Ann Surg. 1972, 175(3): 409-416.
    [17] Shim W S, Teh M, Bapna A, et al. Angiopoietin 1 promotes tumor angiogenesis and tumor vessel plasticity of human cervical cancer in mice[J]. Exp Cell Res. 2002, 279(2): 299-309.
    [18] Kerbel R S. Tumor angiogenesis: past, present and the near future[J]. Carcinogenesis. 2000, 21(3): 505-515.
    [19] Ferrara N. Vascular endothelial growth factor as a target for anticancer therapy[J]. Oncologist. 2004, 9 Suppl 1: 2-10.
    [20] Carmeliet P. Angiogenesis in health and disease[J]. Nat Med. 2003, 9(6): 653-660.
    [21] Pugh C W, Ratcliffe P J. Regulation of angiogenesis by hypoxia: role ofthe HIF system[J]. Nat Med. 2003, 9(6): 677-684.
    [22] Moeller B J, Cao Y, Vujaskovic Z, et al. The relationship between hypoxia and angiogenesis[J]. Semin Radiat Oncol. 2004, 14(3): 215-221.
    [23] Ferrara N, Gerber H P, Lecouter J. The biology of VEGF and its receptors[J]. Nat Med. 2003, 9(6): 669-676.
    [24] Bergers G, Benjamin L E. Tumorigenesis and the angiogenic switch[J]. Nat Rev Cancer. 2003, 3(6): 401-410.
    [25] Dvorak H F, Nagy J A, Feng D, et al. Vascular permeability factor/vascular endothelial growth factor and the significance of microvascular hyperpermeability in angiogenesis[J]. Curr Top Microbiol Immunol. 1999, 237: 97-132.
    [26] Ferrara N, Davis-Smyth T. The biology of vascular endothelial growth factor[J]. Endocr Rev. 1997, 18(1): 4-25.
    [27] van Hinsbergh V W, Collen A, Koolwijk P. Role of fibrin matrix in angiogenesis[J]. Ann N Y Acad Sci. 2001, 936: 426-437.
    [28] Dvorak H F. Vascular permeability factor/vascular endothelial growth factor: a critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy[J]. J Clin Oncol. 2002, 20(21): 4368-4380.
    [29] Robinson C J, Stringer S E. The splice variants of vascular endothelial growth factor (VEGF) and their receptors[J]. J Cell Sci. 2001, 114(Pt 5): 853-865.
    [30] Poltorak Z, Cohen T, Sivan R, et al. VEGF145, a secreted vascular endothelial growth factor isoform that binds to extracellular matrix[J]. J Biol Chem. 1997, 272(11): 7151-7158.
    [31] Neufeld G, Cohen T, Gengrinovitch S, et al. Vascular endothelial growth factor (VEGF) and its receptors[J]. FASEB J. 1999, 13(1): 9-22.
    [32] Dvorak H F, Brown L F, Detmar M, et al. Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis[J]. Am J Pathol. 1995, 146(5): 1029-1039.
    [33] PTK787/ZK 222584, a novel and potent inhibitor of vascular endothelial growth factor receptor tyrosine kinases, impairs vascular endothelial growth factor-induced responses and tumor growth after oral administration[J]. 2000, 60(8): 2178-2189.
    [34] Mendel D B, Laird A D, Xin X, et al. In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: determination of a pharmacokinetic/pharmacodynamic relationship[J]. Clin Cancer Res. 2003, 9(1): 327-337.
    [35] Wilhelm S M, Carter C, Tang L, et al. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis[J]. Cancer Res. 2004, 64(19): 7099-7109.
    [36] Presta L G, Chen H, O'Connor S J, et al. Humanization of an anti-vascular endothelial growth factor monoclonal antibody for the therapy of solid tumors and other disorders[J]. Cancer Res. 1997, 57(20): 4593-4599.
    [37] Wedge S R, Ogilvie D J, Dukes M, et al. ZD6474 inhibits vascular endothelial growth factor signaling, angiogenesis, and tumor growth following oral administration[J]. Cancer Res. 2002, 62(16): 4645-4655.
    [38] Yancopoulos G D, Davis S, Gale N W, et al. Vascular-specific growth factors and blood vessel formation[J]. Nature. 2000, 407(6801): 242-248.
    [39] Holash J, Wiegand S J, Yancopoulos G D. New model of tumor angiogenesis: dynamic balance between vessel regression and growth mediatedby angiopoietins and VEGF[J]. Oncogene. 1999, 18(38): 5356-5362.
    [40] Holash J, Maisonpierre P C, Compton D, et al. Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF[J]. Science. 1999, 284(5422): 1994-1998.
    [41] Hanahan D. Signaling vascular morphogenesis and maintenance[J]. Science. 1997, 277(5322): 48-50.
    [42] Lin P, Buxton J A, Acheson A, et al. Antiangiogenic gene therapy targeting the endothelium-specific receptor tyrosine kinase Tie2[J]. Proc Natl Acad Sci U S A. 1998, 95(15): 8829-8834.
    [43] Siemeister G, Schirner M, Weindel K, et al. Two independent mechanisms essential for tumor angiogenesis: inhibition of human melanoma xenograft growth by interfering with either the vascular endothelial growth factor receptor pathway or the Tie-2 pathway[J]. Cancer Res. 1999, 59(13): 3185-3191.
    [44] Stratmann A, Acker T, Burger A M, et al. Differential inhibition of tumor angiogenesis by tie2 and vascular endothelial growth factor receptor-2 dominant-negative receptor mutants[J]. Int J Cancer. 2001, 91(3): 273-282.
    [45] Popkov M, Jendreyko N, Mcgavern D B, et al. Targeting tumor angiogenesis with adenovirus-delivered anti-Tie-2 intrabody[J]. Cancer Res. 2005, 65(3): 972-981.
    [46] Oliner J, Min H, Leal J, et al. Suppression of angiogenesis and tumor growth by selective inhibition of angiopoietin-2[J]. Cancer Cell. 2004, 6(5): 507-516.
    [47] Roca C, Adams R H. Regulation of vascular morphogenesis by Notch signaling[J]. Genes Dev. 2007, 21(20): 2511-2524.
    [48] Hellstrom M, Phng L K, Hofmann J J, et al. Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis[J]. Nature. 2007,445(7129): 776-780.
    [49] Lobov I B, Renard R A, Papadopoulos N, et al. Delta-like ligand 4 (Dll4) is induced by VEGF as a negative regulator of angiogenic sprouting[J]. Proc Natl Acad Sci U S A. 2007, 104(9): 3219-3224.
    [50] Taylor K L, Henderson A M, Hughes C C. Notch activation during endothelial cell network formation in vitro targets the basic HLH transcription factor HESR-1 and downregulates VEGFR-2/KDR expression[J]. Microvasc Res. 2002, 64(3): 372-383.
    [51] Thurston G, Kitajewski J. VEGF and Delta-Notch: interacting signalling pathways in tumour angiogenesis[J]. Br J Cancer. 2008, 99(8): 1204-1209.
    [52] Ridgway J, Zhang G, Wu Y, et al. Inhibition of Dll4 signalling inhibits tumour growth by deregulating angiogenesis[J]. Nature. 2006, 444(7122): 1083-1087.
    [53] Scehnet J S, Jiang W, Kumar S R, et al. Inhibition of Dll4-mediated signaling induces proliferation of immature vessels and results in poor tissue perfusion[J]. Blood. 2007, 109(11): 4753-4760.
    [54] Noguera-Troise I, Daly C, Papadopoulos N J, et al. Blockade of Dll4 inhibits tumour growth by promoting non-productive angiogenesis[J]. Nature. 2006, 444(7122): 1032-1037.
    [55] Ostman A. PDGF receptors-mediators of autocrine tumor growth and regulators of tumor vasculature and stroma[J]. Cytokine Growth Factor Rev. 2004, 15(4): 275-286.
    [56] Abramsson A, Lindblom P, Betsholtz C. Endothelial and nonendothelial sources of PDGF-B regulate pericyte recruitment and influence vascular pattern formation in tumors[J]. J Clin Invest. 2003, 112(8): 1142-1151.
    [57] Bergers G, Song S, Meyer-Morse N, et al. Benefits of targeting bothpericytes and endothelial cells in the tumor vasculature with kinase inhibitors[J]. J Clin Invest. 2003, 111(9): 1287-1295.
    [58] Sridhar S S, Shepherd F A. Targeting angiogenesis: a review of angiogenesis inhibitors in the treatment of lung cancer[J]. Lung Cancer. 2003, 42 Suppl 1: S81-S91.
    [59] Arap W, Pasqualini R, Ruoslahti E. Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model[J]. Science. 1998, 279(5349): 377-380.
    [60] Orlando R A, Cheresh D A. Arginine-glycine-aspartic acid binding leading to molecular stabilization between integrin alpha v beta 3 and its ligand[J]. J Biol Chem. 1991, 266(29): 19543-19550.
    [61] Inhibition of angiogenesis in vitro and in vivo: comparison of the relative activities of triflavin, an Arg-Gly-Asp-containing peptide and anti-alpha(v)beta3 integrin monoclonal antibody[J]. 1997, 1336(3): 445-454.
    [62] Koivunen E, Wang B, Ruoslahti E. Phage libraries displaying cyclic peptides with different ring sizes: ligand specificities of the RGD-directed integrins[J]. Biotechnology (N Y). 1995, 13(3): 265-270.
    [63] Pasqualini R, Koivunen E, Kain R, et al. Aminopeptidase N is a receptor for tumor-homing peptides and a target for inhibiting angiogenesis[J]. Cancer Res. 2000, 60(3): 722-727.
    [64] Burg M A, Pasqualini R, Arap W, et al. NG2 proteoglycan-binding peptides target tumor neovasculature[J]. Cancer Res. 1999, 59(12): 2869-2874.
    [65] Ozerdem U, Grako K A, Dahlin-Huppe K, et al. NG2 proteoglycan is expressed exclusively by mural cells during vascular morphogenesis[J]. Dev Dyn. 2001, 222(2): 218-227.
    [66] Stallcup W B, Huang F J. A role for the NG2 proteoglycan in gliomaprogression[J]. Cell Adh Migr. 2008, 2(3): 192-201.
    [67] Porkka K, Laakkonen P, Hoffman J A, et al. A fragment of the HMGN2 protein homes to the nuclei of tumor cells and tumor endothelial cells in vivo[J]. Proc Natl Acad Sci U S A. 2002, 99(11): 7444-7449.
    [68] Christian S, Pilch J, Akerman M E, et al. Nucleolin expressed at the cell surface is a marker of endothelial cells in angiogenic blood vessels[J]. J Cell Biol. 2003, 163(4): 871-878.
    [69] Fogal V, Sugahara K N, Ruoslahti E, et al. Cell surface nucleolin antagonist causes endothelial cell apoptosis and normalization of tumor vasculature[J]. Angiogenesis. 2009, 12(1): 91-100.
    [70] Essler M, Ruoslahti E. Molecular specialization of breast vasculature: a breast-homing phage-displayed peptide binds to aminopeptidase P in breast vasculature[J]. Proc Natl Acad Sci U S A. 2002, 99(4): 2252-2257.
    [71] Pilch J, Brown D M, Komatsu M, et al. Peptides selected for binding to clotted plasma accumulate in tumor stroma and wounds[J]. Proc Natl Acad Sci U S A. 2006, 103(8): 2800-2804.
    [72] Fanning E, Knippers R. Structure and function of simian virus 40 large tumor antigen[J]. Annu Rev Biochem. 1992, 61: 55-85.
    [73] Ahuja D, Saenz-Robles M T, Pipas J M. SV40 large T antigen targets multiple cellular pathways to elicit cellular transformation[J]. Oncogene. 2005, 24(52): 7729-7745.
    [74] Ali S H, Decaprio J A. Cellular transformation by SV40 large T antigen: interaction with host proteins[J]. Semin Cancer Biol. 2001, 11(1): 15-23.
    [75] Lilyestrom W, Klein M G, Zhang R, et al. Crystal structure of SV40 large T-antigen bound to p53: interplay between a viral oncoprotein and a cellular tumor suppressor[J]. Genes Dev. 2006, 20(17): 2373-2382.
    [76] Brodsky J L, Pipas J M. Polyomavirus T antigens: molecular chaperones for multiprotein complexes[J]. J Virol. 1998, 72(7): 5329-5334.
    [77] Sullivan C S, Pipas J M. T antigens of simian virus 40: molecular chaperones for viral replication and tumorigenesis[J]. Microbiol Mol Biol Rev. 2002, 66(2): 179-202.
    [78] Sullivan C S, Pipas J M. The virus-chaperone connection[J]. Virology. 2001, 287(1): 1-8.
    [79] Ali S H, Kasper J S, Arai T, et al. Cul7/p185/p193 binding to simian virus 40 large T antigen has a role in cellular transformation[J]. J Virol. 2004, 78(6): 2749-2757.
    [80] Kohrman D C, Imperiale M J. Simian virus 40 large T antigen stably complexes with a 185-kilodalton host protein[J]. J Virol. 1992, 66(3): 1752-1760.
    [81] Tsai S C, Pasumarthi K B, Pajak L, et al. Simian virus 40 large T antigen binds a novel Bcl-2 homology domain 3-containing proapoptosis protein in the cytoplasm[J]. J Biol Chem. 2000, 275(5): 3239-3246.
    [82] Cotsiki M, Lock R L, Cheng Y, et al. Simian virus 40 large T antigen targets the spindle assembly checkpoint protein Bub1[J]. Proc Natl Acad Sci U S A. 2004, 101(4): 947-952.
    [83] Eckner R, Ludlow J W, Lill N L, et al. Association of p300 and CBP with simian virus 40 large T antigen[J]. Mol Cell Biol. 1996, 16(7): 3454-3464.
    [84] Lill N L, Tevethia M J, Eckner R, et al. p300 family members associate with the carboxyl terminus of simian virus 40 large tumor antigen[J]. J Virol. 1997, 71(1): 129-137.
    [85] Poulin D L, Kung A L, Decaprio J A. p53 targets simian virus 40 large T antigen for acetylation by CBP[J]. J Virol. 2004, 78(15): 8245-8253.
    [86] Hahn W C, Dessain S K, Brooks M W, et al. Enumeration of the simian virus 40 early region elements necessary for human cell transformation[J]. Mol Cell Biol. 2002, 22(7): 2111-2123.
    [87] Mungre S, Enderle K, Turk B, et al. Mutations which affect the inhibition of protein phosphatase 2A by simian virus 40 small-t antigen in vitro decrease viral transformation[J]. J Virol. 1994, 68(3): 1675-1681.
    [88] De Meyer S F, Vanhoorelbeke K, Chuah M K, et al. Phenotypic correction of von Willebrand disease type 3 blood-derived endothelial cells with lentiviral vectors expressing von Willebrand factor[J]. Blood. 2006, 107(12): 4728-4736.
    [89] Katz R A, Skalka A M. The retroviral enzymes[J]. Annu Rev Biochem. 1994, 63: 133-173.
    [90] Naldini L, Blomer U, Gage F H, et al. Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector[J]. Proc Natl Acad Sci U S A. 1996, 93(21): 11382-11388.
    [91] Gruber A, Kan-Mitchell J, Kuhen K L, et al. Dendritic cells transduced by multiply deleted HIV-1 vectors exhibit normal phenotypes and functions and elicit an HIV-specific cytotoxic T-lymphocyte response in vitro[J]. Blood. 2000, 96(4): 1327-1333.
    [92] Zufferey R, Nagy D, Mandel R J, et al. Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo[J]. Nat Biotechnol. 1997, 15(9): 871-875.
    [93] Dull T, Zufferey R, Kelly M, et al. A third-generation lentivirus vector with a conditional packaging system[J]. J Virol. 1998, 72(11): 8463-8471.
    [94] Cao S S, Wu K C, Yan Z, et al. [Cloning, expression and identification of recombinant fusion protein GX1-rmhTNFalpha][J]. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2006, 22(3): 360-362.
    [95]韩宇,洪流,吴开春,等.环行七肽CGNSNPKSC的受体鉴定及其在胃癌中的表达[J].现代肿瘤医学. 2007, 15(4): 458-460.
    [96]贺莉,吴开春,惠晓莉,等.应用免疫沉淀-质谱法筛选肿瘤血管靶向肽CGNSNPKSC的结合受体[J].现代肿瘤医学. 2008, 16(8): 1259-1263.
    [97]刘洋,吕艳香,惠晓丽,等.肿瘤血管靶向肽GX1的受体筛选[J].现代肿瘤医学. 2010, 18(8): 1467-1470.
    [98] Jaffe E A, Nachman R L, Becker C G, et al. Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria[J]. J Clin Invest. 1973, 52(11): 2745-2756.
    [99] Shtivelband M I, Juneja H S, Lee S, et al. Aspirin and salicylate inhibit colon cancer medium- and VEGF-induced endothelial tube formation: correlation with suppression of cyclooxygenase-2 expression[J]. J Thromb Haemost. 2003, 1(10): 2225-2233.
    [100]郭纯.免疫共沉淀技术的研究进展[J].中医药导报. 2007, 13(12): 86-89.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700