布拉格反射波导光子晶体激光器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
布拉格反射波导激光器是一种具有线缺陷的一维光子晶体激光器,它在垂直方向利用光子带隙效应替代传统的全反射原理进行光限制,因此激光器具有大的模式体积和强的模式分辨,可实现超大光模式尺寸、稳定单横模工作。这种激光器可有效的解决传统边发射半导体激光器所面临的灾变光损伤、垂直发散角大等难题。另外,通过控制光子带隙导引模式,布拉格反射波导激光器可输出不同的远场光斑,这在一些领域具有很大的潜在应用。
     本论文主要针对布拉格反射波导激光器进行了结构设计、材料生长、器件制备及测试分析,具体的研究内容和结果如下:
     (1)采用传输矩阵理论和布洛赫波近似的方法对布拉格反射波导的光学特性进行了深入分析,获得了布拉格反射波导的设计和计算方法。
     (2)深入研究了布拉格反射波导激光器的模式特性,发现通过控制激光器的腔模分布可获得不同远场的激光输出,并证明了单边布拉格反射波导激光器实现双瓣远场输出。
     (3)采用非对称布拉格反射波导激光器结构,制备的50μm条宽、800μm腔长激光器单管连续输出功率大于1.5W,阈值电流密度仅为253A/cm~2,最大电光转换效率可达48%。
     (4)首次验证了一种布拉格反射波导双光束激光器,激光器在垂直方向输出两个对称的、近圆形的光束,单光束垂直发散角低至8°,这种双光束激光器在高速激光扫描、高灵敏度吸收光谱仪、刻蚀深度原位监控、离轴外腔及相干合束等领域具有很大的应用前景。
     (5)对布拉格反射波导激光器的光谱特性进行了深入研究,制备的10μm条宽激光器可连续、单模工作,光谱线宽仅为0.052nm,边模抑制比大于33dB,并发现了其具有光谱调制现象。
     (6)首次验证了双边布拉格反射波导激光器实现超窄垂直光束发散的激光输出,制备的808nm波长激光器输出一近圆形光斑,垂直和侧向远场发散角半高全宽可低至7.5°×7.2°,达到国际先进水平。
Bragg reflection waveguide (BRW) laser is a new class1D photonic crystallaser with a line defect, where photonic band-gap effect rather than the total internalreflection is utilized to provide optical confinement in the vertical direction. TheBRW lasers (BRLs) possess a variety of advantages compared with conventionalindex-guiding lasers, including the high gain coefficient, large mode volumes, andstrong mode discrimination, allowing for high power and single mode operation.This helps to raise the catastrophic optical damage threshold power and reduce thevertical beam divergence of the diode laser. Another significant advantage of theBRL is that it could produce different beam patterns through controling thenear-field electric field distribution, which are are in demand for a wide variety ofapplications.
     The objective of this thesis is to develop high-performance BRLs. The mainwork is as follows:
     1) The mode dispersion equation of the Bragg reflection waveguide is solved bythe transfer matrix method and Bloch theory. The design and calculation methods ofthe BRLs are presented.
     2) The further analysis shows that the intrinsic reason for the far-fielddistribution is determined by the mode shape in the cavity. The single-sided BRLwith dual-lobed far field is demonstrated.
     3) The fabricated50μm-wide asymmetric BRL exhibites more than1.5Wcontinuous-wave output power with high efficiency of48%. The threshold currentdensity is as low as253A/cm~2.
     4) A Bragg reflection waveguide twin-beam laser is designed and demonstrated.Nearly the entire emitted power of the BRL is concentrated in two near-circularlobes in the vertical direction. The full-width at half maximum divergence angles areas narrow as7.2°and5.4°respectively in the vertical and lateral directions.
     5) The continuous-wave and single-mode operation of the ridge BRL isdemonstrated. The lasing spectrum showed an ultra-narrow linewidth of0.052nmand large side mode suppression ratio (SMSR) exceeding33dB. Periodic spectrummodulation with a uniform mode spacing of3.3nm is also observed.
     6) High brightness808nm edge-emitting Bragg reflection waveguide laserswith a nearly circular output beam was firstly demonstrated. The vertical beamdivergence is as narrow as8°at the full width at half maximum. The significantlyreduced vertical beam divergence while maintaining stable single transverse modeoperation is beneficial for fiber coupling.
引文
[1]王启明.中国半导体激光器的历次突破与发展[J].中国激光,2010,37(9):2190-2197.
    [2] K. Price, S. Karlsen, P. Leisher, et al. High Brightness Fiber Coupled Pump LaserDevelopment [J]. Proc. SPIE,2010,7583:758308_1-758308_7.
    [3] P. Crump, H. Wenzel, G. Erbert, et al. Progress in increasing the maximumachievable output power of broad area diode lasers [J]. Proc. SPIE,2012,8241:82410U_1-82410U_10.
    [4] L. Bao, J. Wang, M. Devito, et al. Performance and Reliability of High Power7xxnm Laser Diodes [J]. Proc. SPIE,2011,7953:79531B_1-79531B_12.
    [5] V. V. Bezotosnyi, V. Yu. Bondarev, O. N. Krokhin, et al. Laser diodes emitting upto25W at808nm [J],” Quant. Electron.,2009,39(3):241-243.
    [6] P. Leisher, K. Price, S. Bashar, et al. Mode Control for High Performance LaserDiode Sources [J]. Proc. SPIE,2008,6952:69520C_1-69520C_11.
    [7] P. Crump, C. Roder, R. Staske, et al. Limitations to Peak Continuous Wave Powerin High Power Broad Area Single Emitter980nm Diode Lasers,” Proc.CLEO-Europe Munich Germany, CB-P.33-TUE (2009).
    [8] I. S. Tarasov, N. A. Pikhtin, S. O. Slipchenko, et al. High power CW (16W) andpulse (145W) laser diodes based on quantum well heterostructures [J].SpectrochimicaActa PartA,2007,66(4-5):819-823.
    [9] H. G. Treusch, J. Harrison, B. Morris, et al. Compact high-brightness andhigh-power diode laser source for materials processing [J]. Proc. SPIE,2000,3945:23-31.
    [10]H. Miyajima, H. Kan, T. Kanzaki, et a1. Jet-type, water-cooled heat sink thatyields255-W continuous-wave laser output at808nm from a1-cm laser diode bar [J].Opt. Lett.,2004,29(3):304-306.
    [11]J. Braunstein, M. Mikulla, R. Kiefer, et al.267W cw A1GaAs/GaInAs DiodeLaser Bars [J]. Proc. SPIE,2000,3945:17-22.
    [12]N. ichtenstein, Y. Manz, P. mauron, et a1.325Watt from1-cm wide9xx LaserBars for DPSSL-and FL-applications [J]. Proc. SPIE,2005,5711:1-11.
    [13]P. Crump, J. Wang, T. Crum, et al.>360W and>70%Efficient GaAs-BasedDiode Lasers [J]. Proc. SPIE,2005,5711:21-29.
    [14]D. Lorenzen, M. Schr der, J. Meusel, et a1. Comparative performance studies ofindium and gold-tin packaged diode laser bars [J]. Proc. SPIE,2006,6104:610404_1-610404_12.
    [15]H. X. Li, I. Chyr, X. Jin, et al.>700W continuous-wave output power from singlelaser diode bar [J]. Electron. Lett.,2007,43(1):27-28.
    [16]H. X. Li, I. Chyr, D. Brown, et al. Ongoing Development of High-Efficiency andHigh-Reliability Laser Diodes at Spectra-Physics [J]. Proc. SPIE,2007,6456:64560C_1-64560C_9.
    [17]D. Schr der, J. Meusel, P. Hennig, et al. Increased power of broad area lasers(808nm/980nm) and applicability to10mm-bars with up to1000Watt QCW [J]. Proc.SPIE,2007,6456:64560N_1-64560N_10.
    [18]M. T. Knapczyk, J. H. Jacob, H. Eppich, et al.70%efficient, near1kW, single1-cm laser-diode bar at20°C [J]. Proc. SPIE,2011,7918:79180F_1-79180F_6.
    [19]G. F. Bonati, P. Hennig, K. Schmidt, et a1. Passively cooled diode laser for highpower applications [J]. Proc. SPIE,2004,5336:71-76.
    [20]P. Crump, M. Grimshaw, J. Wang, et al.85%power conversion efficiency975-nm broad area diode lasers at-50°C,76%at10°C [J]. Conference ofCLEO/QELS, paper JWB24(2006).
    [21]P. A. Crump, W. Dong, M. Grimshaw, et al.100-W+diode laser bars show>71%power conversion from790-nm to1000-nm and have clear route to>85%[J]. Proc.SPIE,2007,6456:64560M_1-64560M_11.
    [22]M. Kanskar, T. Earles, T. Goodnough, et a1. High-power conversion efficiencyAl-free diode lasers for pumping high-power solid-state laser systems [J]. Proc. SPIE,2005,5738:47-56.
    [23]D. A. Vinokurov, S. A. Zorina, V. A. Kapitonov, et al. High-Power Laser DiodesBased on Asymmetric Separate-Confinement Heterostructures [J]. Semiconductors,2005,39(3):370-373.
    [24]M. Peters, V. Rossin, M. Everett, et al. High Power, High Efficiency Laser Diodesat JDSU [J]. Proc. SPIE,2007,6456:64560G_1-64560G_11.
    [25]P. Crump, H. Wenzel, G. Erbert, et al. Passively Cooled TM Polarized808-nmLaser Bars With70%Power Conversion at80-W and55-W Peak Power per100-μmStripe Width [J]. IEEE Photonics Technol. Lett.,2008,20(16):1378-1380.
    [26]A. Hodges, J. Wang, M. DeFranza, et a1. A CTE matched, hard solder, passivelycooled laser diode package combined with nXLT facet passivation enables highpower, high reliability operation [J]. Proc. SPIE,2007,6552:65521E_1-65521E_9.
    [27]W. Gao, Z. T. Xu, L. S. Cheng, et al. High Power High Reliable Single EmitterLaser Diodes At808nm [J]. Proc. SPIE,2007,6456:64560B-1-64560B_5.
    [28]Z. T. Xu, W. Gao, L. S. Cheng, et al. Highly Reliable, High Brightness,915nmLaser Diodes for Fiber Laser Applications [J]. Proc. SPIE,2008,6909:69090Q_1-69090Q_10.
    [29]V. Rossin, M. Peters, E. Zucker, et al. Highly Reliable High-Power Broad AreaLaser Diodes [J]. Proc. SPIE,2006,6104:610407_1-610407_10.
    [30]M. Zorn, R. Hülsewede, H. Schulze, et al. JENOPTIK diode lasers and barsoptimized for high-power applications in the NIR range [J]. Proc. SPIE,2010,7583:75830U_1-75830U_10.
    [31]D. Lorenzen, J. Meusel, D. Schroder, et a1. Passively cooled diode lasers in thecw power range of120to200W [J]. Proc. SPIE,2008,6876:68760Q_1-68760Q_12.
    [32]D. Schr der, M. Schr der, E. Werner, et a1. Improved laser diode for high powerand high temperature applications [J]. Proc. SPIE,2009,7198:719809_1-719809_8.
    [33]S. Schwertfeger, J. Wiedmann, B. Sumpf, et al.7.4W continuous-wave outputpower of master oscillator power amplifier system at1083nm [J]. Electron. Lett.,2006,42(6):346-347.
    [34]H. Wenzel, K. Paschke, O. Brox, et al.10W continuous-wave monolithicallyintegrated master-oscillator power-amplifier [J]. Electron. Lett.,2007,43(3):160-162.
    [35]R. M. Lammert, M. L. Osowski, V. C. Elarde, et al. High-power single-modelaser diodes with tapered amplifiers [J]. Proc. of IEEE LEOS, pp.850-851(2008).
    [36]S. Spie berger, M. Schiemangk, A. Sahm, et al. Micro-integrated1Wattsemiconductor laser system with a linewidth of3.6kHz [J]. Opt. Express,2011,19(8):7077-7083.
    [37]J. Fricke, M. Matalla, K. Paschke, et al. Fabricating and testing of Bragg gratingsfor1060nm α-DFB lasers [J]. Proc. SPIE,2003,4947:223-231.
    [38]D. Feise, G. Blume, H. Dittrich, et al. High-brightness635nm tapered diodelasers with optimized index guiding [J]. Proc. SPIE,2010,7583:75830V_1-75830V_12.
    [39]B. Sumpf, P. Adamiec, M. Zorn, et al.650nm tapered lasers with1W maximumoutput power and nearly diffraction limited beam quality at500mW [J]. Proc. SPIE,2008,6876:68760M_1-68760M_8.
    [40]B. Sumpf, P. Adamiec, M. Zorn, et al. Nearly Diffraction-Limited Tapered Lasersat675nm With1-W Output Power and Conversion Efficiencies Above30%[J]. IEEEPhotonics Technol. Lett.,2011,23(4):266-268.
    [41]G. Erbert, J. Fricke, R. Hülsewede, et al.3W-high brightness tapered diodelasers at735nm based on tensile strained GaAsP-QWs [J]. Proc. SPIE,2003,4995:29-38.
    [42]F. Dittmar, B. Sumpf, J. Fricke, et al. High-power808-nm tapered diode laserswith nearly diffraction-limited beam quality of M2=1.9at P=4.4W [J]. IEEEPhotonics Technol. Lett.,2006,18(4):601-603.
    [43]O. B. Jensen, A. Klehrb, F. Dittmarb, et al.808nm tapered diode lasers optimisedfor high output power and nearly diffraction-limited beam quality in pulse modeoperation [J]. Proc. SPIE,2007,6456:64560A_1-64560A_10.
    [44]F. Dittmar, B. Sumpf, G. Erbert, et al. Long-term reliability studies of high-power808nm tapered diode lasers with stable beam quality [J]. Semicond. Sci. Technol.,2007,22(4):374-379.
    [45]C. Fiebig, G. Blume, C. Kaspari, et al.12W high-brightness single-frequencyDBR tapered diode laser [J]. Electron. Lett.,2008,44(21):1253-1254.
    [46]B. Sumpf, X. H. Hasler, P. Adamiec, et al.12.2W output power from1060nmDBR tapered lasers with narrow spectral line width and nearly diffraction limitedbeam quality [J]. in European Conference on Lasers and Electro-Optics2009and theEuropean Quantum Electronics Conference. CLEO Europe-EQEC (2009).
    [47]J. N. Walpole, J. P. Donnelly, P. J. Taylor, et al. Slab-Coupled1.3-μmSemiconductor Laser With Single-Spatial Large-Diameter Mode [J]. IEEE PhotonicsTechnol. Lett.,2002,14(6),756-758.
    [48]R. K. Huang, J. P. Donnelly, L. J. Missaggia, et al. High Brightness Slab-CoupledOptical Waveguide Lasers [J]. Proc. SPIE,2007,6485:64850F_1-64850F_9.
    [49]R. K. Huang, B. Chann, L. J. Missaggia, et al. High-Power Coherent BeamCombination of Semiconductor Laser Arrays [J]. Lasers and Electro-Optics,2008and2008Conference on Quantum Electronics and Laser Science. CLEO/QELS2008.
    [50]J. Fricke, F. Bugge, A. Ginolas, et al. High-Power980-nm Broad-Area LasersSpectrally Stabilized by Surface Bragg Gratings [J]. IEEE Photonics Technol. Lett.,2010,22(5):284-286.
    [51]K. Paschke, S. Spie berger, C. Kaspari, et al. High-power distributed Braggreflector ridge-waveguide diode laser with very small spectral linewidth [J]. Opt. Lett.,2010,35(3):402-404.
    [52]S. Spie berger, M. Schiemangk, A.Wicht, et al. DBR laser diodes emitting near1064nm with a narrow intrinsic linewidth of2kHz [J]. Appl. Phys. B,2011,104(4):813-818.
    [53]H. Kogelnik, and C. V. Shank. Coupled‐Wave Theory of Distributed FeedbackLasers [J]. J. Appl. Phys.1972,43(5):2327-2335.
    [54]M. Nakamura1, K. Aiki1, J. Umeda1, et al. cw operation of distributed-feedbackGaAs-GaAlAs diode lasers at temperatures up to300K [J]. Appl. Phys. Lett.,1975,27(7):403-405.
    [55]Y. He, H. An, J. Cai, et al.808nm broad area DFB laser for solid-state laserpumping application [J]. Electron. Lett.,2009,45(3):163-164.
    [56]C. M. Schultz, P. Crump, H. Wenzel, et al.11W broad area976nm DFB laserswith58%power conversion efficiency [J]. Electron. Lett.,2010,46(8):580-581.
    [57]S. Spie berger, M. Schiemangk, A. Wicht, et al. Narrow Linewidth DFB LasersEmitting Near a Wavelength of1064nm [J]. J. Lightwave Technol.,2010,28(7):2611-2616.
    [58]C. Cayron, V. Ligeret, P. Resneau, et al. High-power, high-reliability, and narrowlinewidth, Al-free DFB laser diode, for Cs pumping (852nm)[J]. Proc. SPIE,2010,7616:76160Z_1-76160Z_11.
    [59]M. Dumitrescu, J. Telkk l, J. Karinen, et al. Development of high-speeddirectly-modulated DFB and DBR lasers with surface gratings [J]. Proc. SPIE,2011,7953:79530D_1-79530D_12.
    [60]G. Venus, A. Gourevitch, V. Smirnov, et al. High Power Volume Bragg Laser Barwith10GHz spectral bandwidth [J]. Proc. SPIE,2008,6952:69520D_1-69520D_5.
    [61]H. Wenzel, K. H usler, G. Blume, et al. High-power808nm ridge-waveguidediode lasers with very small divergence, wavelength-stabilized by an external volumeBragg grating [J]. Opt. Lett.,2009,34(11),1627-1629.
    [62]P. Crump, C. M. Schultz, A. Pietrzak, et al.975-nm high-power broad area diodelasers optimized for narrow spectral linewidth applications [J]. Proc. SPIE,2010,7583:75830N_1-75830N_10.
    [63]B. K hler, T. Brand, M. Haag, et al. Wavelength stabilized high-power diode lasermodules [J]. Proc. SPIE,2009,7198:719810-1-719810_12.
    [64]A. Muller, D. Vijayakumar, O. B. Jensen, et al.16W output power byhigh-efficient spectral beam combining of DBR-tapered diode lasers [J]. Opt. Express,2011,19(2):1228-1235.
    [65]B. S. Ryvkin, and E. A. Avrutin. Nonbroadened asymmetric waveguide diodelasers promise much narrower far fields than broadened symmetric waveguide ones[J]. J. Appl. Phys.,2005,98(2):026107.
    [66]A. Pietrzak. Realization of High Power Diode Lasers with Extremely NarrowVertical Divergence [D]:[Doctoral Thesis]. Berlin: Ferdinand-Braun-Institut,Leibniz-Institut für H chstfrequenztechnik,2011.
    [67]A. Al-Muhanna, L. J. Mawst, D. Botez, et al. High-power (>10W)continuous-wave operation from100-um-aperture0.97-um-emitting Al-free diodelasers [J]. Appl. Phys. Lett.,1998,73(9):1182-1184.
    [68]G. Erbert, G. Beister, R. Hulsewede, et al. High-power highly reliable Al-free940-nm diode lasers [J]. IEEE J. Sel. Top. Quantum Electron.,2001,7(2):143-148.
    [69]F. Bugge, H. Wenzel, B. Sumpf, et al. High-performance laser diodes withemission wavelengths above1100nm and very small vertical divergence of the farfield [J]. IEEE Photonics Technol. Lett.,2005,17(6):1145-1147.
    [70]S. O. Slipchenko, N. A. Pikhtin, N. V. Fetisova, et al. Laser Diodes (λ=0.98mm)with a Narrow Radiation Pattern and Low Internal Optical Losses [J]. TechnicalPhysics Letters,2003,29(12):980-983.
    [71]A. Pietrzak, H. Wenzel, G. rbert, etb al. High-power laser diodes emitting lightabove1100nm with a small vertical divergence angle of13°[J]. Opt. Lett.2008,33(19):2188-2190.
    [72]C. Fiebig, G. Erbert, W. Pittroff, et al. High-power, high-brightness100W QCWdiode laser at940nm [J]. Proc. SPIE,2007,6456:64560K.
    [73]A.Pietrzak, P. Crump, F. Bugge, et al.1060-nm Multi Quantum Well DiodeLasers With Narrow Vertical Divergence Angle of8°and High Internal Efficiency,” inConference on Lasers and Electro-Optics/International Quantum ElectronicsConference, OSA Technical Digest (CD)(Optical Society of America,2009), paperCWF2.
    [74]P. Crump,A. Pietrzak, F. Bugge, H. Wenzel et al.975nm high power diode laserswith high efficiency and narrow vertical far field enabled by low index quantumbarriers [J].Appl. Phys. Lett.,2010,96(13):131110_1-131110_3.
    [75]A. Pietrzak, P. Crump, H. Wenzel, et al. Combination of Low-Index QuantumBarrier and Super Large Optical Cavity Designs for Ultranarrow Vertical Far-FieldsFrom High-Power Broad-Area Lasers [J]. IEEE J. Sel. Top. Quantum Electron,2011,17(6):1715-1722.
    [76]S. T. Yen, and C. P. Lee. Theoretical Investigation on Semiconductor Lasers withPassive Waveguide [J]. IEEE J. Quantum Electron.,1996,32(1):4-13.
    [77]D. Vakhshoori, W. S. Hobson, H. Han, et al.980nm spread index laser with straincompensated InGaAs/GaAsP/lnGaP and90%fibre coupling efficiency [J]. Electron.Lett.,1996,32(11):1007-1008.
    [78]P. M. Smowton, G. M. Lewis, M. Yin, et al.650-nm Lasers with Narrow Far-FieldDivergence with Integrated Optical Mode Expansion Layers [J]. IEEE J. Sel. Top.Quantum Electron.1999,5(3):735-739.
    [79]H. Wenzel, F. Bugge, G. Erbert, et al. High-power diode lasers with small verticalbeam divergence emitting at808nm [J]. Electron. Lett.,2001,37(16):1024-1026.
    [80]Y. C. CHEN, R. G. WATERS,and R. J. DALBY. SINGLE-QUANTUM-WELLLASER WITH11.2DEGREE TRANSVERSE BEAM DIVERGENCE [J]. Electron.Lett.,1990,26(17):1348-1350.
    [81]M. C. Wu, Y. K. Chen, and M. Hong. A periodic index separate confinementheterostructure quantum well laser [J].Appl. Phys. Lett.,1991,59(26):1046-1048.
    [82]Y. K. Chen, M. C. Wu, W. S. Hobson, et al. High-temperature operation ofperiodic index separate confinement heterostructure quantum well laser [J]. Appl.Phys. Lett.,1991,59(22):2784-2786.
    [83]Andrzej Malqg, Bohdan Mroziewicz,“Vertical Beam Divergence ofDouble-barrier Multiquantum Well (DBMQW)(AlGa)As Heteros tructure Lasers,” J.Lightwave. Tech., Vol.14, No.6,1996.
    [84]T. M. Cockerill, J. Honig, T. A. DeTemple, et al. Depressed index cladding gradedbarrier separate confinement single quantum well heterostructure laser [J]. Appl. Phys.Lett.,1991,59(21):2694-2696.
    [85]G. Lin, S. T. Yen, C. P. Lee, et al. Extremely Small Vertical Far-Field Angle ofInGaAs-AlGaAs Quantum-Well Lasers with Specially Designed Cladding Structure[J]. IEEE Photonics Technol. Lett.,1996,8(12):1588-1591.
    [86]G. W. Yang, G. M. Smith, M. K. Davis. High-Performance980-nm RidgeWaveguide Lasers With a Nearly Circular Beam [J]. IEEE Photonics Technol. Lett.,2004,16(4):981-983.
    [87]A. Malag, A. Jasik, M. Teodorczyk, et al. High-Power Low Vertical BeamDivergence800-nm-Band Double-Barrier-SCH GaAsP-(AlGa)As Laser Diodes [J].IEEE Photonics Technol. Lett.,2006,18(15):1582-1584.
    [88]C. T. Hung, and T. C. Lu.830-nm AlGaAs-InGaAs Graded Index Double BarrierSeparate Confinement Heterostructures Laser Diodes With Improved Temperature andDivergence Characteristics [J]. IEEE J. Quantum Electron.,2013,49(1):127-132.
    [89]K. B. Kahen, L. G. Shantharama, J. P. Shepherd, et al. Single depressed-indexcladding ridge waveguide laser with a low aspect ratio [J]. Appl. Phys. Lett.,1993,62(12):1317-1319.
    [90]Z. Xu, W. Gao, B. Siskavich, et al. Low divergence-angle,808nm,GaAlAs/GaAs laser diode using asymmetric-cladding structure [J]. Proc. SPIE,2004,5365:142-147.
    [91]B. Ma, S. Cho, C. Lee, et al. High-Power660-nm GaInP–AlGaInP Laser DiodesWith Low Vertical Beam Divergence Angles [J]. IEEE Photonics Technol. Lett.,2005,17(7):1375-1377.
    [92]S. Cho, Y. Park, Y. Kim, et al.660-nm GaInP–AlGaInP Quantum-Well LaserDiode Structures With Reduced Vertical Beam Divergence Angle [J]. IEEE PhotonicsTechnol. Lett.,2005,17(3):534-536.
    [93]D. R. Scifres, W. Streifer, and R. D. Burnham. Leaky wave room-temperaturedouble heterostructure GaAs:GaAIAs diode laser [J]. Appl. Phys. Lett.,1976,29(1):23-25.
    [94]T. Kajimura, K. Saito, N. Shige, et al. Leaky-mode buried-heterostructureAIGaAs injection lasers [J]. Appl. Phys. Lett.,1977,30(11):590-591.
    [95] N. Zvonkov, B. N. Zvonkov, A. V. Ershov, et al. Semiconductor lasers emittingat the0.98μm wavelength with radiation coupling-out through the substrate [J]. IEEEJ. Quantum Electron.,1998,28(7):605-607.
    [96]I. I. Novikov, Yu. M. Shernyakov, M. V. Maximov, et al. Wavelength-stabilizedtilted wave lasers with a narrow vertical beam divergence [J]. Semicond. Sci. Technol.,2008,23(7):075043.
    [97]V. Shchukin, N. Ledentsov, V. Kalosha, et al. Modeling of Photonic Crystal BasedHigh Power High Brightness Semiconductor Lasers [J]. Proc. SPIE,2010,7597:75971A.
    [98]D. Bimberg, K. Posilovic, V. Kalosha, et al. High-power high-brightnesssemiconductor lasers based on novel waveguide concepts [J]. Proc. of SPIE,2010,7616:76161l.
    [99]N. N. Ledentsov, and V. A. Shchukin. Novel concepts for injection lasers [J]. Opt.Eng.,2002,41(12):3193-3203.
    [100] N. N. Ledentsov, and V.A. Shchukin. Novel Approaches to SemiconductorLasers [J]. Proc. SPIE,2002,4905:222-234.
    [101] M. V. Maximov, Yu. M. Shernyakov, I. I. Novikov, et al. Narrow verticalbeam divergence laser diode based on longitudinal photonic band crystal waveguide[J]. Electron. Lett.2003,39(24):1729-1731.
    [102] M. V. Maximov, Yu. M. Shernyakov, I. I. Novikov, et al. Low divergenceedge-emitting laser with asymmetric waveguide based on one-dimensional photoniccrystal [J]. phys. stat. sol.(c).2005,2(2):919–922.
    [103] M. V. Maximov, Yu. M. Shernyakov, I. I. Novikov, et al. High-PowerLow-Beam Divergence Edge-Emitting Semiconductor Lasers with1-and2-DPhotonic Bandgap Crystal Waveguide [J]. IEEE J. of Select. Topics in QuantumElectronics,2008,14(4):1113-1122.
    [104] I. I. Novikov, N. Yu. Gordeev, Yu. M. Shernyakov, et al. High-power singlemode (>1W) continuous wave operation of longitudinal photonic band crystal laserswith a narrow vertical beam divergence [J]. Appl. Phys. Lett.,2008,92(10):103515_1-103515_3.
    [105] L. Ya. Karachinsky, I. I. Novikov, Yu. M. Shernyakov, et al. High powerGaAs/AlGaAs lasers (850nm) with ultranarrow vertical beam divergence [J]. Appl.Phys. Lett.,2006,89(23):231114_1-231114_3.
    [106] T. Kettler, K. Posilovic, O. Schulz, et al. Single transverse mode850nmGaAs/AlGaAs lasers with narrow beam divergence [J]. Electron. Lett.2006,42(20):1157-1158.
    [107] K. Posilovic, T. Kettler, V. A. Shchukin, et al. Ultrahigh-brightness850nmGaAs/AlGaAs photonic crystal laser diodes [J]. Appl. Phys. Lett.,2008,93(22):221102_1-221102_3.
    [108] T. Kettler, K. Posilovic, J. Fricke, et al. High brightness and ultra-narrowbeam850nm GaAs/AlGaAs photonic band crystal lasers and first uncoupled PBCsingle-mode arrays [J]. Semiconductor Laser Conference,2008, pp.193-194.
    [109] T. Kettler, K. Posilovic, L. Ya. Karachinsky, et al. High-Brightness andUltranarrow-Beam850-nm GaAs/AlGaAs Photonic Band Crystal Lasers andSingle-Mode Arrays [J]. IEEE J. of Select. Topics in Quantum Electronics,2009,15(3):901-908.
    [110] M. V. Maximov, Yu. M. Shernyakov, I. I. Novikov, et al. High powerGaInP/AlGaInP visible lasers (λ=646nm) with narrow circular shaped far-fieldpattern [J]. Electron. Lett.2005,41(13):741-742.
    [111] M. V. Maximov, Yu. M. Shernyakov, I. I. Novikov. High-Performance640-nm-Range GaInP–AlGaInP Lasers Based on the Longitudinal Photonic BandgapCrystal With Narrow Vertical Beam Divergence [J]. IEEE J. Quantum Electron.,2005,41(11):1341-1348.
    [112] I. I. Novikov, L. Ya. Karachinsky, M. V. Maximov, et al. Single mode cwoperation of658nm AlGaInP lasers based on longitudinal photonic band gap crystal[J].Appl. Phys. Lett.,2006,88(23):231108_1-231108_3.
    [113] V. A. Shchukin, N. N. Ledentsov, N. Yu. Gordeev, et al. High brilliancephotonic band crystal lasers [J]. Proc. of SPIE,2006,6350:635005.
    [114] A. J. Fox. The grating guide-a component for integrated optics [J]. Proc.IEEE,1974,62(5):644–645.
    [115] P. Yeh, and A. Yariv. Bragg reflection waveguides [J]. Opt. Commun.,1976,19(3):427-430.
    [116] P. Yeh, A. Yariv, and C. S. Hong,"Electromagnetic propagation in periodicstratified media. I. General theory," J. Opt. Soc.Am.,1977,67(4):423–438.
    [117] A. Y. Cho, A. Yariv, and P. Yeh. Observation of confined propagation inbragg waveguides [J]. Appl. Phys. Lett.,1977,30(9):471-472.
    [118] Y. Fink, J. N. Winn, S. Fan et al.. A dielectric omnidirectional reflector [J].Science,1998,282(5394):1679-1682.
    [119] Brian R. West, and A. S. Helmy., Analysis and design equations for phasematching using Bragg reflector waveguides [J]. IEEE J. Sel. Top. QuantumElectron.,2006,12(3):431-442.
    [120] M. Dainese, M. Swillo, L. Wosinski et al.. Directional coupler wavelengthselective filter based on dispersive Bragg reflection waveguide [J]. Opt. Commun.,2006,260(2):514-521.
    [121] E. Simova, and I. Golub. Polarization splitter/combiner in high index contrastBragg reflector waveguides [J]. Opt. Express.,2003,11(25):3425-3430.
    [122] A. Yariv, Y. Xu, and S. Mookherjea. Transverse Bragg resonance laseramplifier [J]. Opt. Lett.,2003,28(3):176-178.
    [123] T. H. Her. Gain-guiding in transverse grating waveguides for large modalarea laser amplifiers [J]. Opt. Express.2008,16(10):7197-7202.
    [124] B. R. West, and Amr S. Helmy. Properties of the quarter-wave Braggreflection waveguide: theory [J]. J. Opt. Soc.Am. B,2006,23(6):1207-1220.
    [125] J. Li, K. S. Chiang. Guided modes of one-dimensional photonic bandgapwaveguides [J]. J. Opt. Soc.Am. B,2007,24(8):1942-1950.
    [126] B. P. Pal, S. Ghosh, R. K. Varshney, et al. Loss and dispersion tailoring in1Dphotonics band gap Bragg reflection waveguides: finite chirped claddings as a designtool [J]. Opt. Quant. Electron.,2007,39:983–993.
    [127]梁琨. GaAs基垂直腔型表面发射和接收光电子器件[D]:[博士学位论文].北京:中国科学院半导体研究所,2003.
    [128]程澎.红光VCSEL与新的微腔形成机理的研究[D]:[博士学位论文].北京:中国科学院半导体研究所,2001.
    [129] F. Bachmann, P. Loosen, R. Poprawe. D. Ulhman. High Power DiodeLasers-Technology and Applications [M]. New York: Springer-Verlag New York Inc,2007.5-55
    [130] J. H. Jacob, R. Petr, M. A. Jaspan, et al. Fault Protection of Broad-Area LaserDiodes [J]. Proc. SPIE,2009,7198:7198_1-7198_10.
    [131] F. Rinner, J. Rogg, M. T. Kelemen, et al. Facet temperature reduction by acurrent blocking layer at the front facets of high-power InGaAs/AlGaAs lasers [J]. J.Appl. Phys.,2003,93(3):1848-1850.
    [132] M. L. Osowski, W. Hu. R. M. Lammert, et al. Advances in high-brightnesssemiconductor lasers [J]. Proc. SPIE,2008,6952:695208_1-695208_8.
    [133] C. Silfvenius, P. Blixt, C. Lindstrom,e t al. High COMD, nitridizedInAlGaAs laser facets for high reliability50W bar operation at805nm [J]. Proc. SPIE,2004,5336:132-143.
    [134] D. A. Yanson, J. H. Marsh, S. Najda, et al. High-Power, High-Brightness,High-Reliability Laser Diodes Emitting at800-1000nm [J]. Proc. SPIE,2007,6456:64560L_1-64560L_8.
    [135] H. Kawanishi, H. Ohno, T. Morimoto, et al. Improvement of high powercharacteristics of780nm AlGaAs laser diode by (NH4)2S facet treatment [J]. Proc.SPIE,1990,1219:309-316.
    [136] R. Diehl. High-Power Diode Lasers-Fundamentals, Technology, Applications[M]. New York: Springer-Verlag New York Inc,2000.173-223.
    [137] X. Wang, P. Crump, A. Pietrzak, et al. Assessment of the Limits to PeakPower of1100nm Broad Area Single Emitter Diode Lasers under Short PulseConditions [J]. Proc. SPIE,7198:71981G_1-71981G_9.
    [138] G. Erbert, F. Bugge, A. Knigge, et al. Highly reliable75W InGaAs/AlGaAslaser bars with over70%conversion efficiency [J]. Proc. SPIE,2006,6133:61330B.
    [139] B. Bijlani, P. Abolghasem, and A. S. Helmy. Second harmonic generation inridge Bragg reflection waveguides [J]. Appl. Phys. Lett.,2008,92(10):101124_1-101124_3
    [140] P. Abolghasem, J. B. Han, B. J. Bijlani et al.. Highly EfficientSecond-Harmonic Generation in Monolithic Matching Layer Enhanced AlxGa1-xAsBragg Reflection Waveguides [J]. IEEE Photonic. Tech. Lett..2009,21(9):1462-1464.
    [141] P. Abolghasem, J. B. Han, D. P. Kang et al.. Monolithic Photonics UsingSecond-Order Optical Nonlinearities in Multilayer-Core Bragg ReflectionWaveguides [J]. IEEE J. Sel. Topics Quantum Electron..2012,18(2):812-825.
    [142] J. B. Han, P. Abolghasem, B. J. Bijlani et al.. Continuous-wavesum-frequency generation in AlGaAs Bragg reflection waveguides [J]. Opt. Lett.2009,34(23):3656-3658.
    [143] D. P. Kang, and A. S. Helmy. Generation of polarization entangled photonsusingconcurrent type-I and type-0processes in AlGaAs ridge waveguides [J]. Opt.Lett..2012,37(9):1481-1483.
    [144] W. Liang, Y. Xu, J. M. Choi et al.. Engineering transverse Bragg resonancewaveguides for large modal volume lasers [J]. Opt. Lett.,2003,28(21):2079-2081.
    [145] L. Zhu, A. Scherer, and A. Yariv,“Modal gain analysis of transverse Braggresonance waveguide lasers with and without transverse defects,” IEEE J. QuantumElectron.,2007,43(10):934-940.
    [146] B. J. Bijlani, and A. S. Helmy. Bragg reflection waveguide diode lasers [J].Opt. Lett..2009,34(23):3734-3736.
    [147] C. Z. Tong, B. J. Bijlani, S. Alali et al.. Characteristics of edge emittingBragg reflection waveguide lasers [J]. IEEE J. Quantum Electron.2010,46(11):1605-1610.
    [148] C. Z. Tong, B. J. Bijlani, L. J. Zhao et al.. Mode Selectivity in BraggReflection Waveguide Lasers [J]. IEEE Photonic. Tech. Lett.2011,23(14):1025-1027.
    [149] A. Arimoto, S. Saitoh, T. Mochizuki, et al. Dual beam laser diode scanningsystem for ultrahigh speed laser beam printers using a spot control method [J]. Appl.Opt.,1987,26(3):2554-2557.
    [150] K. Kataoka. Analysis of banding problem in multiple beam scanning systemof laser printer [J]. Opt. Rev.,2008,15(4):196-203.
    [151] A. Heidmann, R. J. Horowicz, S. Reynaud, et al. Observation of quantumnoise reduction on twin laser beams [J]. Phys. Rev. Lett.,1987,59(22):2555-2557.
    [152] N. T. K. Thanh, J. H. Rees, and Z. Rosenzweig. Laser-based double beamabsorption detection for aggregation immunoassays using gold nanoparticles [J]. Anal.Bioanal. Chem.,2002,374:1174–1178.
    [153] M. Kawahashi, and K. Hosoi. Dual-beam-sweep laser speckle velocimetry [J].Exp. Fluids,1991,11(4):278–280.
    [154] B. B. Wang, Q. Liao, H. A. Bootsma, et al. A dual-beam dual-camera methodfor a battery-powered underwater miniature PIV (UWMPIV) system [J]. Exp. Fluids.,2012,52(6):1401-1414.
    [155] E. Miyai, K. Sakai, T. Okano, et al. Lasers producing tailored beams [J].Nature,2006,441(7096):946.
    [156] R. F. Cregan, B. J. Mangan, J. C. Knight, et al. Single-mode photonic bandgap guidance of light in air [J]. Science,1999,285(5433):1537-1539.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700