混凝土自锚式悬索桥的力学性能分析与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自锚式悬索桥由于省去了庞大的锚碇,相对降低了造价,外形也比较美观,因此越来越受到人们的青睐,成为城市市区中小跨径桥梁极具竞争力的方案。本文在总结国内外相关文献的基础上,对混凝土自锚式悬索桥的静力性能和动力性能进行了较为系统的分析,并结合一座正在建设的混凝土自锚式悬索桥的模型试验对理论计算进行了验证,主要结论如下:
     (1) 以抚顺市万新大桥为背景,研究了混凝土自锚式悬索桥的静力性能,分析比较了混凝土自锚式悬索桥与地锚式悬索桥的差别,自锚式悬索桥的跨中弯矩和挠度均比地锚式悬索桥的要大一些,这主要是因为自锚式悬索桥主梁中存在着巨大的轴向压力,从而降低了主梁的刚度。弹性理论和非线性有限元模型计算结果比较接近,对于中小跨径的自锚式悬索桥,弹性理论完全可以进行设计计算和分析。混凝土的收缩、徐变对结构的影响比较明显,主梁的跨中挠度和弯矩均与主跨矢跨比、主梁拱度、主缆和吊索的弹性模量成反比,增大加劲梁的抗弯惯性矩能有效减少主梁的跨中挠度,但同时也使主梁跨中的弯矩大大增加。
     (2)基于有限元原理,建立了万新大桥的动力计算模型,给出了万新大桥的前20阶频率和相应的振型。从结果来看,该桥的自振周期较长,第一阶振型对应的周期达到了2.19秒,体现了悬索桥的柔性结构的特性。与同一跨径和结构参数的地锚式混凝土悬索桥相比,混凝土自锚式悬索桥的自振周期略长一些,说明自锚式体系要比同样结构参数的地锚式体系的刚度要小一些。用反应谱法计算了万新大桥的地震反应,计算结果表明,竖向地震分量对结构的影响较大。
     (3) 以万新大桥实桥为基础,于大连理工大学桥梁工程研究所实验室制作了1∶40的试验模型。对试验模型进行了静力试验和动力试验,试验结果与理论计算吻合较好,验证了理论计算中的各种模拟与假定的正确性。同时试验也表明:对于中小跨度的混凝土自锚式悬索桥,在成桥状态,受力行为基本是线弹性的,可以用线弹性理论进行分析。研究结果可用于指导实桥的设计和施工。
With no large anchor and its lower cost, self-anchored suspension bridge(SASB) is now catching more attention by its elegant shape. It has become a competitive design scheme in middle-, and small-span bridges in cities. Based on the documents at home and abroad, the static force performance and dynamic behavior of concrete self-anchored suspension bridge(CSASB) are systematically investigated in this paper. At last, theoretical calculation is proved by model experiment of a CSASB being constructed. The main conclusion covers the following aspects:
    (1) Based on Wanxin Bridge in Fushun city, the static force performance of CSASB is analyzed. The difference between SASB and earth-anchored suspension bridge(EASB) is revealed.in this paper. Bending moment and deflection at the span midpoint of SASB are greater than those of EASB. The reason is that the great axial pressure in the main beam of SASB decreases its stiffness. The result calculated with elastic theory is similar to the result calculated with finite element model. Elastic theory is applicable to middle-, and small-span SASB. The infection by shrink and creep of concrete is obvious. Bending moment and deflection at the span midpoint are inversely proportional to rise-span ratio, camber and inertia moment of main girder. Enhancing the inertia moment of main girder will decrease the deflection at the span midpoint; however, it will increase the bending moment of the span midpoint at the same time.
    (2) Based on Finite Element Method, the dynamic computation model of Wanxin Bridge is set up. The first 20 frequencies and corresponding vibration modes of Wanxin Bridge are given. According to the result, the natural period of vibration of this bridge is long. This proves the suppleness of suspension bridge. The natural period of vibration of SASB is longer than that of EASB with the same span and structure parameters. This indicates that the stiffness of SASB is less than that of EASB with the same span and structure parameters. The seismic r esponse o f Wanxin B ridge i s a nalyzed w ith t he R esponse S pectrum M ethod. T he result indicates that vertical vibration has a strong influence on the bridge.
    (3) Based on Wanxin Bridge, an experiment model with a scale of 1:40 was made in bridge laboratory of Institute of Bridge Engineering, Dalian University of Technology. Static test and dynamic test were carried out on the model. The result of experiment coincides well with that of theoretical computation. Thereby the simulations and presuppositions are correct in theoretical calculation. At the same time, the result of experiment also indicates that the mechanic performance of CSASB in middle-, and small-span presents linear elasticity in finished state, and linear elastic theory is applicable to CSASB. The research in this paper is useful to direct design and construction of such kind of bridges.
引文
[1] 雷俊卿,郑明珠,徐恭义.悬索桥设计[M].北京:人民交通出版社,2002
    [2] 铁道部大桥工程局桥梁科学研究所.悬索桥[M].北京:科学技术文献出版社
    [3] 颜娟 编译.自锚式悬索桥[J].国外桥梁,2002,No.1:19-22
    [4] 楼庄鸿 译,自锚式悬索桥[J]_中外公路,2002,No.6:49-51
    [5] Kim,Ho-Kyung,Lee,Myenong-Jae,etc. Non-linear shape-finding analysis of a self anchored suspension bridges[J]. Engineering Structures ,2002, Vol. 12,No. 24:1547-1559
    [6] 林荫岳 译,世界上第一座自锚体系斜吊杆悬索桥—日本此花大桥[J].国外桥梁,1993 No.1:1-4
    [7] 严国敏 译,韩国永宗悬索桥[J].国外公路,1998,No.12:16-18。
    [8] H.Gil,C.Cho,Korea. Yongjong Grand Suspension Bridge[J]. 国际桥协(IABSE) Structural Engineering International SEI, Vol. 8,No. 2,1998
    [9] M.Kamei, T.Maruyama, H.Tanaka. Konohana Bridge, Japan[J]. Structural Engineering Intemationa, 1992,Vol. 2,No. 1 : 4-6
    [10] 张元凯,肖汝诚,金成棣.自锚式悬索桥概念设计[J].公路,2002,No.11:46-49
    [11] 张哲,窦鹏,石磊,刘春城.自锚式悬索桥的发展综述[J].世界桥梁,2003,No.1:4-9
    [12] Choong-Young Cho, Seung-Woo Lee, Soo-Young Park, Myeongjae Lee.Yongjong Self-anchored Suspension Bridge[J]. SEI Structural Engineering Intemational,Vol. 11, No. 1
    [13] John A.Ochsendorf.Divid P.Villington. Self-anchored suspension bridges[J]. Journal of Bridge Engineering, August 1999,Vol. 4,No. 3 : 151 - 155
    [14] 楼庄鸿,严文彪.自锚式悬索桥[A].中国公路学会桥梁和结构工程学会2002年全国桥梁学术会议论文集,2002.10
    [15] J.F.Klein.瑞士日内瓦湖上的新型悬索桥方案.哥本哈根IABSE学术会议论文集[C],1996
    [16] 大连理工大学土木建筑设计研究院桥梁研究所.金石滩金湾大桥施工图设计,2002.12
    [17] 大连理工大学土木建筑设计研究院桥梁研究所.抚顺市浑河万新大桥施工图设计,2003
    [18] 大连理工大学土木建筑设计研究院桥梁研究所.延吉市布尔哈通河局子街桥施工图设计,2002.12
    [19] 史佩杰,戴利民.一座造型新颖别致的自锚式悬索桥,苏州市政工程设计院文章交流,2003
    [20] 杭州市城建设计研究院.金华市金东新区纵3号路跨义乌江大桥施工图设计,2002
    [21] 湖南省交通规划勘察设计院.佛山和顺至北滘、北滘至乐从公路主干线第二合同段东平水道大桥方案设计,2003.11
    [22] 湖南省交通规划勘察设计院.佛山市和顺至北滘公路主干线第二合同段平胜大桥主桥设计汇报材料,2003.12
    [23] 项海帆.高等桥梁结构理论[M].北京:人民交通出版社,2001
    [24] 钱冬生,陈仁福.大跨悬索桥的设计与施工[M].成都:西南交通大学出版社,1999
    [25] 华孝良,徐光辉.桥梁结构非线性分析[M].北京:人民交通出版社,1997
    [26] 范立础.预应力混凝士连续梁桥[M].北京:人民交通出版社,1999
    [27] 严国敏.现代悬索桥[M].北京:人民交通出版社,2002
    [28] 唐茂林,沈锐利,强士中.大跨度悬索桥非线性静动力分析与软件开发[J].桥梁建设,2000,NO.1:9-12
    [29] 张哲,石磊,刘春城,黄才良.混凝土自锚式悬索桥结构内力分析[J].哈尔滨工业大学学报,2003,Vol.35,No.5:625-627
    
    
    [30] 石磊,张哲,刘春城,檀永刚.混凝土自锚式悬索桥设计及其力学性能分析[J].大连理工大学学报,2003,Vol.43,No.2:202-206
    [31] 陈万春,郝宪武,钟小兰,师辉军.混凝土收缩和徐变对钢箱混凝土构件应力影响的计算[J].西安公路交通大学学报,1998,Vol.18,No.4(B):157-160
    [32] 黄平明,梅葵花,徐岳.大跨径悬索桥主缆系统施工控制计算[J].西安公路交通大学学报,2000,Vol.20,No.4:19-22
    [33] 李国豪.桥梁结构稳定与振动[M].北京:中国铁道出版社,1992
    [34] 李国豪.工程结构抗震动力学[M].北京:中国铁道出版社,1980
    [35] 刘涛,杨凤鹏.精通ANSYS[M].北京:清华大学出版社,2002
    [36] 范立础,胡世德,叶爱君.大跨度桥梁抗震设计[M].北京:人民交通出版社,2001
    [37] 范立础.桥梁抗震[M].上海:同济大学出版社,1997
    [38] 交通部公路规划设计院.公路工程抗震设计规范(JTJ 004—89)[M].北京:人民交通出版社,2001
    [39] 地矿抚顺工程勘察院.抚顺市前甸通道工程岩土工程勘察报告,2002
    [40] 中华人民共和国交通部标准.公路钢筋混凝土及预应力混凝土桥涵设计规范(JTJ 023-85),北京:人民交通出版社,2001
    [41] 范立础,王君杰.桥梁抗震设计规范的现状与发展趋势[J].地震工程与工程振动,2001,Vol.21,No.2:70-77
    [42] 刘春城,张哲,石磊.虚拟激励法在自锚式悬索桥竖向地震反应分析中的应用[J].大连理工大学学报,2003,Vol.33,No.4:522-525
    [43] 张运波,陈伟,林玉森.影响大跨度悬索桥自振特性的参数分析[J].华东公路,2002,No.6:3-6
    [44] 姚振纲,刘祖华.建筑结构试验[M].上海:同济大学出版社,1996
    [45] 李德寅,王邦楣,林亚超.结构模型实验[M].北京:科学出版社,1996
    [46] 章关永.桥梁结构试验[M].北京:人民交通出版社,2002
    [47] 江一守郎等著.模型实验的理论和应用[M].北京:科学出版社,1984
    [48] 谷音,郑振.白塔大桥模型实验分析[J].福州大学学报(自然科学版),2000,Vol.28,No.5:72-76
    [49] 孙传洲 编译.曲线斜拉桥的实桥试验、模型试验及结构分析[J].国外桥梁,2001,No.1:15-19
    [50] 何玉珊,张劲泉,宿建等.虎门悬索桥动力荷载试验[J].公路交通科技,1999,Vol.16,No.2:30-34
    [51] 中国地震局工程力学研究所.891型测振仪使用说明书

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700