大兴安岭地区地幔橄榄岩捕虏体的同位素特征与岩石圈地幔时代
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
兴蒙造山带内分布有大面积的显生宙花岗岩,花岗岩的Nd和Hf同位素显示地壳为新元古代-显生宙时期新增生的特征,而近年来通过对五大连池-二克山-科洛地区富钾玄武岩的研究认为,本区可能存在一个富集的岩石圈地幔,其形成时代远年轻于地壳形成时代。兴蒙造山带壳幔年龄解耦的现象对传统的岩石圈壳幔年龄结构提出了挑战。介于此,本文选择大兴安岭地区直接来源于地幔的橄榄岩包体进行研究,旨在揭示兴蒙造山带岩石圈地幔的时代、性质及结构等方面的信息。
     本文运用LA-ICP-MS、MC-ICP-MS和N-TIMS等先进实验测试分析技术对兴蒙造山带东段大兴安岭地区新生代玄武岩中地幔橄榄岩包体进行详细的岩石学及地球化学研究。研究结果显示:兴蒙造山带不仅具有古老的岩石圈地幔,而且还有大规模新生的岩石圈地幔。两期岩石圈地幔时代与上覆地壳的形成时代完全解耦,而且在科洛和诺敏地区岩石圈地幔存在“上新下老”的倒置现象。这种特殊的岩石圈结构特征在世界范围内比较少见,这暗示兴蒙造山带的岩石圈地幔经历了复杂的演化过程——不仅与华北克拉通一同经历了岩石圈拆沉减薄作用,还接受了来源于其它克拉通之下的古老岩石圈地幔的就位。
The subcontinental lithospheric mantle (SCLM) is an important part of lithosphere, and serves as a bridge that connects the asthenosphere and the crust. Recently, understanding of the formation and evolution is largely depended on the cognition of the lithospheric mantle. However, for a long time, the most difficult problem is that how to dating the SCLM. The poor silicon and high temperature of the SCLM make the common isotopic methods useless to dating the SCLM. Fortunately, the newly developed Re-Os isotope dating technique provides a powerful method to determine the age of lithospheric mantle because of the unique geochemical behavior of the Re-Os system. Therefore, this work takes the advantage of the Re-Os isotopic dating technique, studying on the peridotite xenoliths contained by Cenozoic basalts in Great Xing'an Range, Xing'an-Mongolia Orogenic Belt (XMOB). Major, trace elements and Sr-Nd-Hf isotopes of clinopyroxene of the xenoliths were analyzed to determine the melting and metasomatism of the SCLM. Furthermore, the bulk-rock Re-Os isotopes were also used to constrain the forming age of the SCLM, and to discuss the relationship of crust-mantle and evolution histories of the lithospheric mantle in the XMOB.
     The Great Xing'an Range located in eastern part of the XMOB, is characterized by the widespread Mesozoic granite and volcanic rocks. During the Cenozoic, extensive basalt eruptions formed a series of volcanoes. Some of these basalts contain mantle xenoliths and xenocrysts.
     In Keluo area, the mantle xenoliths, hosted in potassic basalts, mainly comprise spinel lherzolite (some phlogopite-bearing) and harzburgite, with minor wehrlite and dunite. The xenoliths hosted in the Nuomin sub-potassic basalts, mainly comprise spinel lherzolite and harzburgite. Abundant mantle xenoliths have also been recovered from the sodic basalt in Chaihe volcanoes. They are mainly composed of spinel lherzolite, with minor spinel harzburgite. Garnets have been found in some peridotites, but they are broken down as fine-grained pyroxene and spinel aggregates. All the xenoliths display equigranular, protogranular to porphyroclastic textures, with weak deformation. The equilibrium temperatures of the xenoliths have been calculated using various geothermometers. The obtained equilibrium temperatures are 770~950℃for Keluo and 900~1070℃for Nuomin using the geothermometer of Brey and Kohler (1990), and 946-1279℃for Chaihe by Eichshen and Seek, (1991). There is little difference in temperatures between the lithologies in any area.
     The xenoliths have wide range of bulk-rock Al2O3 and CaO contents. However, in Al2O3-CaO diagram, they are all plotted along the oceanic trend. Of them, the refractory harzburgites fall into the area of the depleted cratonic mantle, indicating that these xenoliths are residues of mantle that underwent relatively high degrees of partial melting. The occurrence of phlogopite vein and wehrlite, low Fo dunites, and enriched LREE suggest that the mantle had been refertilized and metasomatised by carbonatite melts and silicate melt. Comparison of trace elements of the clinopyroxene and bulk-rock indicates that components introduced by refertilization and metasomatism mainly aggregated intergranularly, with little effect on major components and Os isotopes.
     187Os/188Os ratios of the Keluo samples range from 0.11458 to 0.13194, and that of the Nuomin xenoliths from 0.11852 to 0.12533. Most of them have 187Os/188Os ratios are in the range of estimated modern convecting upper mantle, indicating that the present lithospheric mantle is juvenile and formed during the Phanerozoic. However, two harzburgites in Keluo (KL3-40 and 08KL-02) which experienced high degrees of partial melting, show the 187Os/188Os radios of 0.1146 and 0.1160, with Re depleted model ages of 1.9-2.1Ga that agrees well with the proxy-isochron age. The same conclusion can obtain in Nuomin as well. Additionally, theεNd andf of xenoliths with Phanerozoic melt depletion ages are much higher than that of xenoliths with ancient melt depletion ages. So, it is concluded that the shallow lithospheric mantle (spinel face) beneath Keluo and Nuomin are mainly juvenile with minor ancient component. Previous studies had demonstrated that the host basalts of these xenoliths derived from the phlogopite-baring garnet peridotites which located beneath the spinel peridotites and synchronously metasomatised by the potassic silicate melt with spinel peridotites. The Sr-Nd isotopes of the basalts indicate they generated from an ancient EM-Ⅰtype SCLM source, which locates beneath the juvenile depleted mantle. Clearly, the stratigraphy in SCLM beneath Keluo and Nuomin is inverted, that is much different from the normal age structure of SCLM in most craton.
     The 187Os/188Os ratios of xenoliths in Chaihe range from 0.11059 to 0.12755. The most refractory harzburgite 03CH-10 with Fo value of 92.1, has the lowest 87Os/188Os ratios (0.11059), and less depleted Sr-Nd-Hf isotopes than other samples. This indicates the occurrence of residues of SCLM with ancient Re depleted model age (TRD=2.6Ga). The 187Os/188Os ratios of most of the remaining samples are the same as the modern convecting upper mantle. Sr-Nd-Hf isotopes of clinopyroxene from these samples show depleted signature. Contrasted Sr-Nd-Hf-Os results for peridotites from Dashihe, Yitong, Wangqing and Shuangliao, it likely that the present lithospheric mantle in there areas is mainly juvenile with minor ancient residues.
     Based on the Sm-Nd and Lu-Hf isotopic characteristics of the Phanerozoic granites and volcanic rocks in XMOB, it is the general consensus that the crust growth started at Mid-Proterozoic, with the peak at Neo-Proterozoic to Phanerozoic, which is decoupled with the age of SCLM. Therefore, the crust-mantle age decoupling and "inverted" mantle indicate the complicated evolution history of SCLM in XMOB.
     Usually, the SCLM and crust should be formed at the same time. The absence of Neo-Proterozoic and Phanerozoic mantle suggested that the XMOB had undergone the whole-scale lithosphere removal event. We believe that the SCLM fall into the asthenosphere by the delamination, then the asthenosphere upwelling and formed the depleted lithospheric mantle.
     According to geological evolution of XMOB, we inferred that the Neoarchean-Paleoperozoic lithospheric mantle should be exotic. The ancient lithosphere residues occurred in the juvenile mantle, e.g. Chaihe, Wangqing, Dashihe, may be originated from the asthenosphere with the depleted lithospheric mantle. However, the large-scale ancient SCLM beneath Keluo and Nuomin was extruded from elsewhere and impinged beneath the XMOB. We inferred that it may come from North China Craton or Yangtze Craton.
引文
[1].白志达,田明中,武法东等.焰山、高山——内蒙古阿尔山火山群中的两座活火山[J].中国地震,2005,21:113-117.
    [2].表尚虎,李仰春,何晓华等.黑龙江省塔河绿林林场一带兴华渡口群岩石地球化学特征[J].中国区域地质,1999,18:28-33.
    [3].陈道公,支霞臣,李彬贤等.江苏盘石山二辉橄榄岩包体的Nd、Si、Pb同位素特征[J].地球化学,1994,245-253.
    [4].陈井胜.松辽盆地南部营城组火山岩成因[D].硕士学位论文.长春,吉林大学,2009.
    [5].池际尚主编.中国东部新生代玄武岩及上地幔研究[M].武汉:中国地质大学出版社,1988,277.
    [6].池际尚和路风香.华北地台金伯利岩及古生代岩石圈地幔特征[M].北京:科学出版社,1996,292.
    [7].储著银,陈福坤,王伟等.微量地质样品铼锇含量及其同位素组成的高精度测定方法[J].岩矿测试,2007,26:431-435.
    [8].邓晋福,莫宣学,赵海玲等.中国东部岩石圈根/去根作用与大陆“活化”——东亚型大陆动力学模式研究计划[J].现代地质,1994,8:349-356.
    [9].邓晋福,苏尚国,刘翠等.关于华北克拉通燕山期岩石圈减薄的机制与过程的讨论:是拆沉,还是热侵蚀和化学交代?[J].地学前缘,2006,13:105-119.
    [101].丁日新,舒萍,纪学雁等.松辽盆地庆深气田储层火山岩锆石U-Pb同位素年龄及其地质意义[J].吉林大学学报(地球科学版),2007,37:525-5302.
    [11].鄂莫岚和赵大升主编.中国东部新生代玄武岩及深源岩石包体[M].北京:科学出版社,1987,490.
    [12].樊祺诚,隋建立,赵勇伟等.大兴安岭中部第四纪火山岩中石榴石橄榄岩捕虏体的初步研究[J].岩石学报,2008,24:2563-2568.
    [13].高福红,许文良,杨德彬等.松辽盆地南部基底花岗质岩石锆石LA-ICP-MSU-Pb定年:对盆地基底形成时代的制约[J].中国科学D辑,2007,37:
    [14].高妍.松辽盆地东南缘中生代火山岩的年代学和地球化学特征[D].硕士学位论文.长春,吉林大学,2008,
    [15].葛文春,李献华,林强等.呼伦湖早白垩世碱性流纹岩的地球化学特征及其意义[J].地质科学,2001,36:176-18.
    [16].葛文春,隋振民,吴福元等.大兴安岭东北部早古生代花岗岩锆石U-Pb年龄、Hf同位素特征及地质意义[J].岩石学报,2007a,23:423-440.
    [17].葛文春,吴福元,周长勇等.大兴安岭北部塔河花岗岩体的时代及对额尔古纳地块构造归属的制约[J].科学通报,2005a,50:1239-1247.
    [18].葛文春,吴福元,周长勇等.乌兰浩特地区中生代花岗岩的锆石U-Pb年龄[J].岩石学报, 2005b,21:749-762.
    [19].葛文春,吴福元,周长勇等.兴蒙造山带东段斑岩型Cu-Mo矿床成矿时代及其地球动力学意义[J].科学通报,2007b,52:2407-2417.
    [20].黑龙江地质矿产局.黑龙江区域地质质.北京:地质出版社,1991:1-734.
    [21].洪大卫,黄怀曾,肖宜君等.内蒙中部二叠纪碱性花岗岩及其地球动力学意义[J].地质学报,1994,68:219-230.
    [22].洪大卫,王式洸,谢锡林等.从中亚正εNd值花岗岩看超大陆演化和大陆地壳生长的关系[J].地质学报,2003,77:
    [23].洪大卫,王式洗,谢锡林等.兴蒙造山带正eNd(t)值花岗岩成因和大陆地壳生长[J].地学前缘,2000,7:441-456.
    [24].黄婉康,王俊文,Basu, A.R等.福建明溪石榴石二辉橄榄岩包体的REE及Pb, Sr, Nd同位素研究[J].地球化学,1992,21:102-113.
    [25].李锦轶.中国东北及邻区若干地质构造问题的新认识[J].地质论评,1998,44:339-347
    [26].李培忠和于津生.碾子山晶洞碱性花岗岩同位素地球化学[G].见:陈好寿主编,同位素地球化学研究.杭州,浙江大学出版社,,1994,269-286.
    [27].梁科伟,赵忠海,曲晖等.诺敏火山群钾质火山岩特征与成因[J].黑龙江科技学院院报,2009,19:185-189.
    [28].刘池.多宝山斑岩铜矿地质年代学和地球化学成因[D].北京大学硕士论文,1994.
    [29].刘嘉麒.中国东北地区新生代火山岩的年代学研究[J].岩石学报,1987 4:21-31.
    [30].刘嘉麒.中国火山[M].科技出版社,1999
    [31].刘志超,吴福元,储著银等.安徽女山地幔橄榄岩捕虏体的同位素组成:中国东部新生代岩石圈地幔时代制约[J].岩石学报,2010,26:1217-1240.
    [32].路凤香,韩柱国,郑建平等.辽宁复县地区古生代岩石圈地幔特征[J].地质科技情报,1991,10(增刊):2-20.
    [33].马保起,卢海峰,旺小东等.大兴安岭诺敏河火山岩喷发时代的初步研究[J].第四纪研究,2006,26:295-296.
    [34].马杏垣.中国岩石圈动力学纲要[M].北京:地质出版社,1987.
    [35].苗来成,范蔚茗,张福勤等.小兴安岭西北部新开岭-科洛杂岩锆石年代学研究及其意义[J].科学通报,2003,48:2315-2323.
    [36].苗来成,刘敦一,张福勤等.大兴安岭韩家园子和新林地区兴华渡口群和扎兰屯群锆石SHRIMP U-Pb年龄[J].科学通报,2007,52:
    [37].穆治国,刘驰,黄宝玲等.黑龙江科洛晚新生代火山岩K-Ar定年和地球化学[J].北京大学学报(自然科学版),1992,28:733-744.
    [38].裴福萍,许文良,杨德彬等.松辽盆地基底变质岩中锆石U-Pb年代学及其地质意义[J].科学通报,2006,51:2281-2287.
    [39].邱家骧.五大连池-科洛-二克山富钾火山岩[M].中国地质大学山版社,1991
    [40].邱家骧,廖群安和杜向荣.黑龙江省二克山-五大连池-科洛富钾火山岩带的岩石特征及成因分析[J].岩石矿物学杂志,1988,7:97-108.
    [41].邱家骧,吴志勤和杜向荣.黑龙江省二克山-五大连池-科洛富钾火山岩中幔源包体的研究[J].现代地质,1987,1:344-356.
    [42].邵济安,洪大卫和张履桥.内蒙古火成岩Sr-Nd同位素特征及成因[J].地质通报,2002,21:817-822.
    [43].施光海,苗来成,张福勤等.内蒙古锡林浩特A型花岗岩的时代及区域构造意义[J].科学通报,2004,49:384-389.
    [44].宋彪,李锦轶,牛宝贵.黑龙江省东部麻山群黑云斜长片麻岩中锆石的年龄及其地质意义[J].地球学报,1997,18:306-312.
    [45].舒萍,丁日新,纪学雁等.松辽盆地庆深气田储层火山岩锆石地质年代学研究[J].岩石矿物学杂志,2007,26:239-246.
    [46].隋振民,葛文春,吴福元等.大兴安岭东北部侏罗纪花岗质岩石的锆石U-Pb年龄、地球化学特征及成因[J].岩石学报,2007,23:461-480.
    [47].隋振民.大兴安岭东北部花岗岩类锆石U-Pb年龄,岩石成因和地壳演化[D].博士学位论文.长春,吉林大学,2007
    [48].孙德有,吴福元,李惠民等.小兴安岭西北部造山后A型花岗岩的时代及与索伦山-贺根山-扎赉特碰撞拼合带东延的关系[J].科学通报,2000,45:2217-2222.
    [49].孙广瑞,李仰春和张昱.额尔古纳地块基底地质构造[J].地质与资源,2002,11:129-139.
    [50].汤吉,王继军,陈小斌等.阿尔山火山区地壳上地幔电性结构初探[J].地球物理学报,2005,48:196-202.
    [51].王承祺,杜向荣和刘继贤.科洛-五大连池-二克山火山群[J].华东地质学院学报,1987,
    [52].王庆权,Gill, J.,朱炳泉等.我国东北的第四纪超钾质-钾质-亚钾质-似钾质镁铁质火山岩省:喷发时代,岩石类型与地球化学特征[J].2004年全国岩石学与地球动力学研讨会,2004,255-258.
    [53].王兴光和王颖.松辽盆地南部北带基底岩浆岩SHRIMP锆石U-Pb年龄及其地质意义[J].地质科技情报,2007,26:23-27.
    [54].王一先和赵振华.巴尔哲超大型稀土铌铍锆矿床地球化学和成因[J].地球化学,1997,26(1):24-35
    [55].王颖,张福勤,张大伟等.松辽盆地南部变闪长岩SHRIMP锆石U-Pb年龄及其地质意义[J].科学通报,2006,51:1811-1816.
    [56].魏春生,郑永飞和赵子福.中国东部A型花岗岩形成时代及物质来源的Nd-Sr-O同位素地球化学制约[J].岩石学报,2001,17(1):95-111.
    [57].吴福元,葛文春,孙德有等.中国东部岩石圈减薄研究中的几个问题[J].地学前缘,2003,10:51-59.
    [58].吴福元,李献华,郑永飞等. Lu-Hf同位素体系及其岩石学应用[J].岩石学报,2007a,23:185-220.
    [59].吴福元和孙德有.中国东部中生代岩浆作用与岩石圈减薄[J].长春科技大学学报,29:313-318,1999,
    [60].吴福元,孙德有,李惠民等.松辽盆地基底岩石锆石U-Pb年龄[J].科学通报,2000a,45: 656-660.
    [61].吴福元,孙德有和林强.东北地区显生宙花岗岩的成因与地壳增生[J].岩石学报,1999,15:181-189.
    [62].吴福元,徐义刚,高山等.华北岩石圈减薄与克拉通破坏研究的主要学术争论[J].岩石学报,2008,24:1145-1174.
    [63].吴福元,杨进辉,储著银等.大陆岩石圈地幔定年[J].地学前缘,2007b,14:76-86.
    [64].武广,孙丰月,赵财胜等.额尔古纳地块北缘早古生代后碰撞花岗岩的发现及其地质意义[J].科学通报,2005,50:2278-2288.
    [65].肖燕.新增生岩石圈地幔与软流圈的相互作用:来自地幔橄榄岩捕虏体的证据[D].博士学位论文.北京:中国科学院地质与地球物理研究所,2009.
    [66].肖增岳和王艺芬.黑龙江二克山与科洛五大连池富钾火山岩特征及成因[J].桂林冶金地质学院学报,1994,14:387-395.
    [67].谢广轰和王俊文.汉诺坝玄武岩及其超镁铁岩捕虏体的地球化学[J].刘若新主编:中国新生代火山岩年代学与地球化学,1992,149-170.
    [68].谢烈文,张艳斌,张辉煌等.锆石/斜锆石U-Pb和Lu-Hf同位素以及微量元素成分的同时原位测定[J].科学通报,2008,53:220-228.
    [69].徐义刚,林传勇,史兰斌等.中国东部上地幔等温线及其地质意义[J].中国科学,1995,25:874-881.
    [70].叶惠文,张兴洲和周裕文.从蓝片岩及蛇绿岩特点看满洲里-绥芬河断面岩石圈结构与演化.见:M-SGT地质课题组编,中国满洲里-绥芬河地学断面域内岩石圈结构及其演化的地质研究[M].北京:地质出版社,1994,73-83.
    [71].于福生和丛立民.内蒙古阿尔山地区新生代玄武岩及其幔源包体微量元素组成特征[J].矿物岩石,2006,26:29-34.
    [72].于宋月.东北双辽和蛟河地区新生代玄武岩中幔源包体地球化学特征:对中国东部岩石圈性质和演化的制约[D].广州,中国科学院研究生院,2008.
    [73].章凤奇,陈汉林,董传万等.松辽盆地北部火山岩锆石SHRIMP测年与营城组时代探讨[J].地层学杂志,2008b,32:15-20.
    [74].章凤奇,陈汉林,董传万等.松辽盆地北部存在前寒武纪基底的证据[J].中国地质,2008a,35:
    [75].章凤奇,庞彦明,杨树锋等.松辽盆地北部断陷区营城组火山岩锆石SHRIMP年代学、地球化学及其意义[J].地质学报,2007,81:1249-1259.
    [76].张宏福.橄榄岩-熔体的相互作用:岩石圈地幔组成转变的重要方式[J].地学前缘,2006,13(1):65-75.
    [77].张宏福,英基丰,徐平等.华北中生代玄武岩中地幔橄榄石捕虏晶:对岩石圈地幔置换过程的启示[J].科学通报,2004,49:784-789.
    [78].张吉衡.大兴安岭中生代火山岩年代学及地球化学研究[J].博士学位论文,武汉:中国地质大学,2009.
    [79].张文兰,邵济安,徐夕生等.科洛橄榄岩地幔捕虏体中富P,F地幔熔/流体的发现及其交 代作用.科学通报,2007,52(8):931-938
    [80].张兴洲,杨宝俊,吴福元等.中国兴蒙-吉黑地区岩石圈结构基本特征[J].中国地质,2006,33:816-823.
    [81].张彦龙,葛文春,柳小明等.大兴安岭新林镇岩体的同位素特征及其地质意义[J].吉林大学学报(地球科学版),2008,38(2):177-186.
    [82].张彦龙,葛文春,高妍等.龙镇花岗岩中锆石U-Pb年龄和Hf同位素及地质意义[J].岩石学报,2010a,26:1059-1073.
    [83].张彦龙,赵旭晁,葛文春等.大兴安岭北部塔河花岗杂岩体的地球化学特征及成因[J].岩石学报,2010b,26:3507-3520.
    [84].张玉涛,张连昌,英基丰等.大兴安岭北部扎兰屯脉岩群的地球化学特征及其地质意义[J].岩石学报,2006,22:2733-2742.
    [85].赵勇伟,樊祺诚,白志达等.大兴安岭哈拉哈河—淖尔河地区第四纪火山活动初步研究[J].岩石学报,2008,24:2569-2575.
    [86].郑建平.中国东部地幔置换作用与中新生代岩石圈减薄[M].武汉:中国地质大学出版社,1999,126.
    [87].郑建平,路凤香,Griffin, W.L等.华北东部橄榄岩与岩石圈减薄中的地幔伸展和侵蚀置换作用[J].地学前缘,2006,13:
    [88].周长勇,吴福元,葛文春等.大兴安岭北部塔河堆晶辉长岩体的形成时代、地球化学特征及其成因[J].岩石学报,2005,21:
    [89].周琴,吴福元,储著银等.吉林省伊通地区橄榄岩包体的同位素特征与岩石圈地幔时代[J].岩石学报,2010,26:1241-1264.
    [90].周琴,吴福元,储著银等.吉林蛟河地幔橄榄岩包体的Sr-Nd-Hf-Os同位素特征与岩石圈地幔时代[J].岩石学报,2007,23:1269-1280.
    [91]. Alard, O., Griffin, W.L., Lorand, J.P., et al. Non-chondritic distribution of the highly siderophile elements in mantle sulphides[J]. Nature,2000,336:665-667.
    [92]. Alard, O., Luguet, A., Pearson, N.J., et al. In-situ Os isotopes in abyssal peridotites bridge the isotopic gap between MORB and their source mantle[J]. Nature,2005,436:1005-1008.
    [93]. Anderson, D.L. Lithosphere, asthenosphere, and perisphere[J]. Rev Geophys,1995,33: 125-149.
    [94]. Armstrong, R. The persistent myth of crustal growth[J]. Australian Journal of Earth Sciences, 1991,38:613-630.
    [95]. Aulbach, S., Griffin, W.L., Pearson, N.J., et al. Mantle formation and evolution, Slave Craton: constraints from HSE abundances and Re-Os isotope systematics of sulfide inclusions in mantle xenocrysts[J]. Chemical Geology,2004,208:61-88.
    [96]. Barnes, S.J., Naldrett, A.J and Gorton, M.P. the origin of the fractionation of Platinum-group elements in terrestrial magmas[J]. Chem. Geol.,1985,53:303-323.
    [97]. Bertrand, P., and Mercier, J.C. The mutual solubility of coexisting ortho-and clinopyroxene: toward an absolute geothermometer for the natural system?[J]. Earth and Planetary Science Letters,1985,76:109-122.
    [98]. Bonatti, E. and Michael, P.J. Mantle peridotites from continental rifts to ocean basin to subduction zones. Earth and Planetary Science Letters,1989,91:297-311.
    [99]. Boyd, F.R. Compositional distinction between oceanic and cratonic lithosphere[J]. Earth and Planetary Science Letters,1989,96:15-26.
    [100]. Brandon, A.D., Snow, J.E., Walker, R.J., et al.190Pt-1860s and 187Re-1870s systematics of abyssal peridotites[J]. Earth and Planetary Science Letters,2000,177:319-335.
    [101]. Brey, G.P., and Kohler, T. Geothermobarometry in four-phase lherzolites Ⅱ:new thermo-barometers, and practical assessment of existing thermobarometers[J]. Journal of Petrology, 1990,31:
    [102]. Brugmann, G.E., Arndt, N.T., Hofmann, A.W., et al. Noble metal abundances in komatiite suites from Alexo, Ontario and Gorgona Island, Columbia[J]. Geochim. Cosmochim. Acta, 1987,51:2159.
    [103]. Burnham, O.M., Rogers, N.W., Pearson, D.G., et al. The petrogenesis of the eastern Pyrenean peridotites:An integrated study of their whole-rock geochemistry and Re-Os isotope composition.[J]. Geochimica Et CosmochimicaActa,1998,62:2293-2310.
    [104]. Burton, K.W., Schiano, P., Birck, J.L., et al. The distribution and behaviour of rhenium and osmium amongst mantle minerals and the age of the lithospheric mantle beneath Tanzania[J]. Earth and Planetary Science Letters,2000,183:93-106.
    [105]. Carlson, R.W., Boyd, F.R., Shirey, S.B., et al. Continental growth, preservation, and modification in southern Africa[J]. GSA. Today,2000,10:1-7.
    [106]. Carlson, R.W., and Irving, A.J. Depletion and enrichment history of subcontinental lithospheric mantle:An Os, Sr, Nd and Pb isotopic study of ultramafic xenoliths from the northwestern Wyoming Craton[J]. Earth and Planetary Science Letters,1994,126:457-472.
    [107]. Carlson, R.W., Irving, A.J., and Hearn, J.B.C. Chemical and isotopic systematics of peridotites xenoliths from the Williams kimberlite, Montana:clues to processes of lithosphere formation, modification and destruction. [G]. In:Gurney, J.J., Gurney, J.L., Pescoe, M.D., Richardson, S.H. (eds), Proceedings of the seventh international kimberlite conference. Cape Town, South Africa,1999,90-98.
    [108]. Carlson, R.W.Chemical and age structure of the Southern African mantle, Ext. Abstr[M]. The Slave-Kaapvaal Workshop, Merrichville.2001,5.
    [109]. Carlson, R.W., Pearson, D.G., and James, D.E. Physical, chemical, and chronological characteristics of continental mantle[J]. Rev. Geophys.,2005,43:RG1001.
    [110]. Chen, B., Jahn, B.M, Arakawa, Y., et al. Petrogenesis of the Mesozoic intrusive complexes from the southern Taihang Orogen, North China Craton:elemental and Sr-Nd-Pb isotopic constraints[J]. Contributions to Mineralogy and Petrology,2004,148:489-501.
    [111]. Chen, B., Jahn, B.M., Wilde, S., et al. Two contrasting Paleozoic magmatic belts in northern Inner Mongolia, China:petrogenesis and tectonic implications. [J]. Tectonophysics,2000,328: 157-182.
    [112]. Chen, Y., Zhang, Y., Graham, D., et al. Geochemistry of Cenozoic basalts and mantle xenoliths in Northeast China[J]. Lithos,2007,96:108-126.
    [113]. Chesley, J.T., Rudnick, R.L., and Lee, C.-T. Re-Os systematics of mantle xenoliths from the East African Rift:age, structure, and history of the Tanzanian craton[J]. Geochimica et Cosmochimica Acta,1999,63:1203-1217.
    [114]. Chu, Z.Y., Wu, F.Y., Walker, R.J., et al. Temporal evolution of the lithospheric mantle beneath the eastern North China Craton[J]. Journal of Petrology,2009,50:1857-1898.
    [115]. Coltorti, M., Bonadiman, C., Hinton, R., et al. Carbonatite metasomatism of the oceanic upper mantle:evidence from clinopyroxenes and glasses in ultramafic xenoliths of Grande Comore, Indian Ocean[J]. Journal of Petrology,1999,40:133.
    [116]. Deng, F.L., and Macdougall, J.D. Proterozoic depletion of the lithosphere recorded in mantle xenoliths from Inner Mongolia[J]. Nature,1992,360:333-336.
    [117]. Deng, J.F., Su, S.G., Niu, Y.L., et al. A possible model for the lithospheric thinning of North China Craton:Evidence from the Yanshanian (Jura-Cretaceous) magmatism and tectonism[J]. Lithos,2007,96:22-35.
    [118]. Doin, M.P., Fleitout, L., and Christensen, U. Mantle convection and stability of depleted and undepleted continental lithosphere[J]. Journal of geophysical research,1997,102:2771-2787.
    [119]. Fan, Q.C., and Hooper, P.R. The mineral chemistry of ultramafic xenoliths of eastern China: Implications for upper mantle composition and the paleogeotherms[J]. Journal of Petrology, 1989,30:1117-1158.
    [120]. Fan, W.M., and Menzies, M.A. Destruction of aged lower lithosphere and accretion of asthenosphere mantle beneath eastern China[J]. Geotectonic Metallogenia,1992,16:171-180.
    [121]. Fan, W.M., Zhang, H.F., Baker, J., et al.On and Off the North China Craton:Where is the Archaean Keel?[J]. Journal of Petrology,2000,41:933-950.
    [122]. Gao, S., Luo, T.C., Zhang, B.R., et al. Chemical composition of the continental crust as revealed by studies in East China[J]. Geochimica et cosmochimica acta,1998a,62:1959-1975.
    [123]. Gao, S., Rudnick, R.L., Carlson, R.W., et al. Re-Os evidence for replacement of ancient mantle lithosphere beneath the North China craton[J]. Earth and Planetary Science Letters,2002a,198: 307-322.
    [124]. Gao, S., Rudnick, R.L., Yuan, H.L., et al. Recycling lower continental crust in the North China craton[J]. Nature,2004,432:892-897.
    [125]. Gao, S., Zhang, B.R., Jin, Z.M., et al. How mafic is the lower continental crust?[J]. Earth and Planetary Science Letters,1998b,161:101-117.
    [126]. Gao, S., Zhang, B.R., Luo, T.C., et al. Chemical composition of the continental crust in the Qinling Orogenic Belt and its adjacent North China and Yangtze Cratons[J]. Geochimica et cosmochimica acta,1992,56:3933-3950.
    [127]. Griffin, W., Spetsius, Z., Pearson, N., et al.In situ Re-Os analysis of sulfide inclusions in kimberlitic olivine:New constraints on depletion events in the Siberian lithospheric mantle[J]. Geochemistry Geophysics Geosystems,2002,3:1069-1093.
    [128]. Griffin, W.L., Graham, S., O'Reilly, S.Y., et al.Lithosphere evolution beneath the Kaapvaal Craton:Re-Os systematics of sulfides in mantle-derived peridotites[J]. Chemical Geology, 2004,208:89-118.
    [129]. Griffin, W., O'Reilly, S., and Ryan, C., Composition and thermal structure of the lithosphere beneath South Africa, Siberia and China:proton microprobe studies, Abstract of the International Symposium on Cenozoic Volcanic Rocks and Deep-seated Xenoliths of China and its Environs. Beijing,1992:65-66.
    [130]. Griffin, W., O'Reilly, S., and Ryan, C., The composition and origin of sub-continental lithospheric mantle[J]. Mantle Petrology:Field Observations and High-Pressure Experimentation. A Tribute to France R.(Joe) Boyd. Geochemical Society Special Publications, 1999a,6:13-46.
    [131]. Griffin, W., O'Reilly, S., Ryan, C., et al. Secular variation in the composition of subcontinental lithospheric mantle[J]. Structure and Evolution of the Australian Continent, Geodyn. Ser, 1998b,26:1C25.
    [132]. Griffin, W.L., O'Reilly, S.Y., Natapov, L.M., et al. The evolution of lithospheric mantle beneath the Kalahari Craton and its margins[J]. Lithos,2003,71:215-241.
    [133]. Griffin, W.L., Shee, S.R., Ryan, C.G., et al. Harzburgite to lherzolite and back again: metasomatic processes in ultramafic xenoliths from the Wesselton kimberlite, Kimberley, South Africa. [J]. Contributions to Mineralogy and Petrology,1999b,134:232-250.
    [134]. Griffin, W., Zhang, A.D., O'Reilly, S.Y., et al. Phanerozoic evolution of the lithosphere beneath the Sino-Korean craton.ln Mantle Dynamics and Plate Interactions in East Asia (eds.Flower MFJ,Chung SL,Lo CH,Lee TY). Am. Geophy. Union, Washington,D.C., Geodyn.Ser.,1998a, 27:107-126.
    [135]. Hammouda, T., and Laporte, D. Ultrafast mantle impregnation by carbonatite melts[J]. Geology,2000,28:283.
    [136]. Handler, M.R., and Bennett, V.C. Behaviour of Platinum-group elements in the subcontinental mantle of eastern Australia during variable metasomatism and melt depletion[J]. Geochimica et Cosmochimica Acta,1999,63:3597-3618.
    [137]. Handler, M.R., Bennett, V.C., and Carlson, R.W. Nd, Sr and Os isotope systematics in young, fertile spinel peridotite xenoliths from northern Queensland, Australia:A unique view of depleted MORB mantle?[J]. Geochimica et Cosmochimica Acta,2005,69:5747-5763.
    [138]. Handler, M.R., Bennett, V.C., and Esat, T.M. The persistence of off-cratonic lithospheric mantle:Os isotopic systematics of variably metasomatised southeast Australian xenoliths[J]. Earth and Planetary Science Letters,1997,151:61-75.
    [139]. Hart, S.R., and Ravizza, G.E. Os partitioning between phases in lherzolite and basalt[J]. Earth processes:reading the isotopic code,1996,95:123-134.
    [140]. Harvey, J., Gannoun, A., Burton, K.W., et al. Ancient melt extraction from the oceanic upper mantle revealed by Re-Os isotopes in abyssal peridotites from the Mid-Atlantic ridge[J]. Earth and Planetary Science Letters,2006,244:606-621.
    [141]. Hellebrand, E., Snow, J.E., Dick, H.J.B., et al. Coupled major and trace elements as indicators of the extent of melting in mid-ocean-ridge peridotites [J]. Nature,2001,410:677-681.
    [142]. Huang, F., Li., S.G., and Yang., W. Contributions of the lower crust to Mesozoic mantle derived mafic rocks from the North China Craton:implications for lithospheric thinning[G]. In:Zhai MG, Windley BF, Kusky TM, Meng QR.(eds), Mesozoic Sub-Continental Lithospheric Thinning Under Eastern Asia. Geological Society Special Publication,280:55-75,2007,
    [143]. Ionov, D.A., Griffin, W.L., and O'Reilly, S.Y. Volatile-bearing minerals and lithophile trace elements in the upper mantle[J]. Chemical Geology,1997,141:153-184.
    [144]. Irvine, G.J., Pearson, D.G., Kjarsgaard, B.A., et al. A Re-Os isotope and PGE study of kimberlite-derived peridotite xenoliths from Somerset Island and a comparison to the Slave and Kaapvaal cratons[J]. Lithos,2003,71:461-488.
    [145]. Jahn, B.M., Capdevila, R., Liu, D.Y, et al. Sources of Phanerozoic granitoids in the transect Bayanhongor-Ulaan Baatar, Mongolia:geochemical and Nd isotopic evidence, and implications for Phanerozoic crustal growth[J]. Journal of Asian Earth Sciences,2004,23: 629-653.
    [146]. Jahn, B.M., Wu, F.Y., and Chen, B. Massive granitoid generation in central Asia:Nd isotopic evidence and implication for continental growth in the Phanerozoic[J]. Episodes,2000,23: 82-92.
    [147]. Jahn, B.M., Wu, F.Y., Capdevila, R., et al.Highly evolved juvenile granites with tetrad REE patterns:the Woduhe and Baerzhe granites from the Great Xing'an Mountains in NE China[J]. Lithos,2001,59:171-198.
    [148]. Jin, Z.Y., Zhou, X.R., and Du, X.R. Characteristics of the trace elements in potassic alkaline basalts and mantle source inclusions and their genesis informations from Wudalianchi and other regions[J]. Geoscience,1987,193-102.
    [149]. Kelemen, P.B. Reaction between ultramafic rock and fractionating basaltic magma I. Phase relations, the origin of calc-alkaline magma series, and the formation of discordant dunites.[J]. Journal of Petrology,1990,31:51-98.
    [150]. Kelemen, P.B., Shimizu, N., and Salters, V.J.M. Extraction of mid-ocean-ridge basalt from the upwelling mantle by focused flow of melt in dunite channels[J]. Nature,1995,375:747-753.
    [151]. Klemme, S., Van der Laan, S., Foley, S., et al. Experimentally determined trace and minor element partitioning between clinopyroxene and carbonatite melt under upper mantle conditions[J]. Earth and Planetary Science Letters,1995,133:439-448.
    [152]. Kopylova, M.G., and Russell, J.K. Chemical stratification of cratonic lithosphere:constraints from the Northern Slave craton, Canada[J]. Earth and Planetary Science Letters,2000,181: 71-87.
    [153]. Le Roux, V., Bodinier, J.L., Tommasi, A., et al. The Lherz spinel lherzolite:Refertilized rather than pristine mantle[J]. Earth and Planetary Science Letters,2007,259:599-612.
    [154]. Lee, C.T., Yin, Q.Z., Rudnick, R.L., et al. Osmium Isotopic Evidence for Mesozoic Removal of Lithospheric Mantle Beneath the Sierra Nevada, California[J]. Science,2000,289:1912-1916.
    [155]. Lee, C.T., Yin, Q.Z, Rudnick, R.L., et al. Preservation of ancient and fertile lithospheric mantle beneath the southwestern United States[J]. Nature,2001,411:69-73.
    [156]. Lee, C.T. Platinum-group element geochemistry of peridotite xenoliths from the Sierra Nevada and the Basin and Range, California[J]. Geochimica Et Cosmochimica Acta,2002,66: 3987-4005.
    [157]. Li, X.H., Li, Z.X., Wingate, M.T.D., et al. Geochemistry of the 755Ma Mundine Well dyke swarm, northwestern Australia:part of a Neoprozerotoic mantle superplume beneath Rodinia?[J]. Precambrian Research,2006,146:1-15.
    [158]. Liati, A., Franz, L., Gebauer, D., et al. The timing of mantle and crustal events in South Nanibia, as defined by ShRIMP-dating of zircon domains from a garnet peridotite xenolith of the Gibeon Kimberlite Province[J]. J. African Earth Sci,2004,39:147-157.
    [159]. Liu, C. Z., Snow, J.E., Hellebrand, E., et al. Ancient, highly heterogeneous mantle beneath Gakkel ridge, Arctic Ocean[J]. Nature,2008,452:311-316.
    [160]. Liu, C.Z., Wu, F.Y., Wilde, S.A., et al. Anorthitic plagioclase and pargasitic amphibole in mantle peridotites from the Yungbwa ophiolite (southwestern Tibetan Plateau) formed by hydrous melt metasomatism[J]. Lithos 2010 114:413-422.
    [161]. Liu, J.Q., Han, J.T, and Fyfe, W.S. Cenozoic episodic volcanism and continental rifting in northeast China and possible link to Japan Sea development as revealed from K-Ar geochronology[J]. Tectonophysics,2001,339:385-401.
    [162]. Liu, J.G., Rudnick, R.L., Walker, R.J., et al. The age of mantle lithosphere on the northernmost margin of the Central Orogenic Belt, North China Craton.[J]. Abstract,9th International Kimberlite Conference,2008
    [163]. Luguet, A., Shirey, S.B., Lorand, J.P., et al.Residual platinum-group minerals from highly depleted harzburgites of the Lherz massif (France) and their role in HSE fractionation of the mantle[J]. Geochimica et Cosmochimica Acta,2007,71:3082-3097.
    [164]. McDonough, W.F., and Sun, S.S. The composition of the Earth[J]. Chemical Geology,1995, 120:223-253.
    [165]. Meibom, A., Sleep, N.H., Chamberlain, C.P., et al. Re-Os isotopic evidence for long-lived heterogeneity and equilibration processes in the Earth's upper mantle[J]. Nature,2002,419: 705-708.
    [166]. Meisel, T., Walker, R.J., Irving, A.J., et al. Osmium isotopic compositions of mantle xenoliths: a global perspective[J]. Geochimica et Cosmochimica Acta,2001,65:1311-1323.
    [167]. Menzies, M.A., Fan, W., and Zhang, M. Palaeozoic and Cenozoic lithoprobes and the loss of> 120 km of Archaean lithosphere, Sino-Korean craton, China[J]. Geological Society, London, Special Publications,1993,76:71.
    [168]. Menzies, M.A., and Xu, Y. Geodynamics of the North China craton[J]. Mantle dynamics and plate interactions in East Asia,1998,27:155-165.
    [169]. Meng, E., Xu, W.L., Pei, F.P., et al. Detrital-zircon geochronology of Late Paleozoic sedimentary rocks in eastern Heilongjiang Province, NE China:Implications for the tectonic evolution of the eastern segment of the Central Asian Orogenic Belt[J]. Tectonophysics,2010, 485:42-51.
    [170]. Nickel, K., and Green, D. Empirical geothermobarometry for garnet peridotites and implications for the nature of the lithosphere, kimberlites and diamonds[J]. Earth and Planetary Science Letters,1985,73:158-170.
    [171]. Niu, Y.L. Generation and evolution of basaltic magmas:Some basic concepts and a new view on the origin of Mesozoic-Cenozoic basaltic volcanism in eastern China[J]. Geological Journal of China Universities,2005,11:9-46.
    [172]. O'Reilly, S., Griffin, W., Djomani, Y.H.P., et al. Are lithospheres forever? Tracking changes in subcontinental lithospheric mantle through time[J]. GSA today,2001,11:4-9.
    [173]. Parkinson, I.J., Hawkesworth, C.J., and Cohen, A.S. Ancient Mantle in a Modern Arc:Osmium Isotopes in Izu-Bonin-Mariana Forearc Peridotites[J]. Science,1998,281:2011-2013.
    [174]. Pearson, D.G The age of continental roots[J]. Lithos,1999,48:171-194.
    [175]. Pearson, D.G., Irvine, G.J., Ionov, D.A., et al. Re-Os isotope systematics and platinum group element fractionation during mantle melt extraction:a study of massif and xenolith peridotite suites[J]. Chemical Geology,2004,208:29-59.
    [176]. Pearson, D.G., Carlson, R.W., Shirey, S.B., et al. Stabilisation of Archean lithospheric mantle:a Re-Os isotope study of peridotite xenoliths from the Kaapvaal craton[J]. Earth Planet. Sci. Lett.,1995,134:341.
    [177]. Pearson, D.G., and Nowell, G.M. Dating mantle differentiation:a comparison of the Lu-Hf, Re-Os and Sm-Nd isotope systems in the Beni Bousera peridotite massif and constraints on the Nd-Hf composition of the lithospheric mantle[J]. Geophys Res Abstr,2003,5:05430.
    [178]. Peslier, A.H., Reisberg, L., Ludden, J., et al. Os isotopic systematics in mantle xenoliths; age constraints on the Canadian Cordillera lithosphere[J]. Chemical Geology,2000a,166:85-101.
    [179]. Peslier, A.H., Reisberg, L., Ludden, L., et al. Re-Os constraints on harzburgite and lherzolite formation in the lithospheric mantle:A study of Nrothern Canadian Cordilliera xenoliths[J]. Geochimica et Cosmochimica Acta,2000b,64:3061-3071.
    [180]. Poudjom Djomani, Y.H., O'Reilly, S.Y., Griffin, W., et al. The density structure of subcontinental lithosphere through time[J]. Earth and Planetary Science Letters,2001,184: 605-621.
    [181]. Quick, J.E. The origin and significance of large, tabular dunite bodies in the Trinity peridotite, northern California[J]. Contributions to Mineralogy and Petrology,1982,78:413-422.
    [182]. Rehkamper, M., Halliday, A.N., Fitton, J.G., et al. Ir, Ru, Pt, and Pd in basalts and komatiites: New constraints for the geochemical behavior of the platinum-group elements in the mantle. [J]. Geochimica Et Cosmochimica Acta,1999,63:3915-3934.
    [183]. Reisberg, L., and Lorand, J.P. Longevity of sub-continental mantle lithosphere from osmium isotope systematics in orogenic peridotite massifs[J]. Nature,1995,376:159.
    [184]. Robinson, P.T., Zhou, M.F., and Hu, X.F. Geochemical constraints on the petrogenesis and tectonic setting of the Hegenshan ophiolite, Northern China. [J]. J. Asian Earth Sci,1999,17: 423-442.
    [185]. Rollinson, H. Using Geochemical Data:Evaluation, Presentation, Interpretation[J]. New York: Longman Scientific & Techmical,1993,352.
    [186]. Rudnick, R.L., McDonough, W.F., and Chappell, B.W. Carbonatite metasomatism in the northern Tanzanian mantle:petrographic and geochemical characteristics[J]. Earth and Planetary Science Letters,1993,114:463-475.
    [187]. Rudnick, R.L., and Walker, R.J.Interpreting ages from Re-Os isotopes in peridotites[J]. Lithos, 2009,112:1083-1095.
    [188]. Shirey, S.B., and Walker, R.J. The Re-Os Isotope system in cosmochenistry and high-temperature geochemistry[J]. Annual Review of Earth and Planetary Sciences,1998,26: 423-500.
    [189]. Sleep, N.H. Evolution of the continental lithosphere[J]. Annu. Rev. Earth Planet. Sci.,2005,33: 369-393.
    [190]. Snow, J., and Reisberg, L. Os isotopic systematics of the MORB mantle:results from altered abyssal peridotites[J]. Earth Planet. Sci. Lett.,1995,133:411.
    [191]. Sun, S.-S., and McDonough, W.F.Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. In:Saunder, A.D., Norry, M.J.,(Eds.). Magmatism in the Ocean Basin. Special Publication of the Geological Society of London, 1989,42:313-346.
    [192]. Sylvester, P.J., Campbell, I.H., and Bowyer, D.A. Niobium/uranium evidence for early formation of the continental crust[J]. Science,1997,275:521.
    [193]. Taylor, S.R., and McLennan, S.M. The geochemical evolution of the continental crust[J]. Reviews of Geophysics,1995,33:241-265.
    [194]. Thibault, Y., and Edgar, A. Patent mantle-metasomatism:Inferences based on experimental studies[J]. Journal of Earth System Science,1990,99:21-37.
    [195]. van Achterbergh, E., Ryan, C., Jackson, S., et al. Appendix 3 data reduction software for LA-ICP-MS[J]. In:Sylvester, P. (Ed), Laser-Ablation-ICPMS in the Earth Sciences, vol.29, Mineralogical Association of Canada, Short Course,2001,239-243.
    [196]. van Acken, D., Becker, H., and Walker, R.J. Refertilization of Jurassic oceanic peridotites from the Tethys Ocean—Implications for the Re-Os systematics of the upper mantle[J]. Earth and Planetary Science Letters,2008,268:171-181.
    [197]. Walker, R.J., and Morgan, J.W. Rhenium-osmium isotope systematics of carbonaceous chondrites[J]. Science,1989,243:519.
    [198]. Walker, R.J., Prichard, H.M., Ishiwatari, A., et al. The osmium isotopic composition of convecting upper mantle deduced from ophiolite chromites[J]. Geochimica et Cosmochimica Acta,2002,66:329-345.
    [199]. Wang, F., Zhou, X.H., Zhang, L.C., et al.Late Mesozoic volcanism in the Great Xing'an Range (NE) China:Timing and implications for the dynamic setting of NE Asia.[J]. Earth and Planetary Science Letters,2006,251:179-198.
    [200]. Wang, L.W., Wang, Y., Yang, J., et al.Pre-Mesozoic basement provenance tracing of the Songliao Basin by means of detrital zircon SHRIMP chronology[J]. Earth Science Frontiers, 2007,14:151-158.
    [201]. Wang, P.J., Liu, W.Z., Wang, S.X., et al.40Ar/39Ar and K/Ar dating on the volcanic rocks in the Songliao basin, NE China:Constraints on stratigraphy and basin dynamics[J]. International Journal of Earth Sciences,2002,91:331-340.
    [202]. Wells, P.R.A. Pyroxene thermometry in simple and complex systems[J]. Contributions to Mineralogy and Petrology,1977,62:129-139.
    [203]. Wilde, S.A., Zhang, X.Z., and Wu, F.Y. Extension of a newly identified 500 Ma metamorphic terrain in Northeast China:further U-Pb SHRIMP dating of the Mashan Complex, Heilongjiang Province, China[J]. Tectonophysics,2000,328:115-130.
    [204]. Wilson, M. Magmatism and the geidynamics of basin fromation[J]. Sedimentory Geology, 1993,85:5-39.
    [205]. Witt-Eickschen, G., and Seek, H.A. Solubility of Ca and Al in orthopyroxene from spinel peridotite:an improved version of an empirical geothermometer[J]. Contributions to Mineralogy and Petrology,1991,106:431-439.
    [206]. Wittig, N., Baker, J.A., and Downes, H. Dating the mantle roots of young continental crust[J]. Geology,2006,34:237-240.
    [207]. Wood, B.J., and Banno, S. Garnet-orthopyroxene and orthopyroxene-clinopyroxene relationships in simple and complex systems[J]. Contributions to Mineralogy and Petrology, 1973,42:109-124.
    [208]. Wu, F.Y., Jahn, B.M., Wilde, S.A, et al. Phanerozoic crustal growth:U-Pb and Sr-Nd isotopic evidence from the granites in northeastern China[J]. Tectonophysics,2000a,328:89-113.
    [209]. Wu, F.Y., Jahn, B.A., Wilde, S.A., et al. Highly fractionated I-type granites in NE China (II): isotopic geochemistry and implications for crustal growth in the Phanerozoic[J]. Lithos,2003a, 67:191-204.
    [210]. Wu, F.Y, Walker, R.J., Ren, X.W., et al. Osmium isotopic constraints on the age of lithospheric mantle beneath northeastern China[J]. Chemical Geology,2003b,196:107-129.
    [211]. Wu, F.Y., Sun, D.Y., Li, H.M., et al. A-type granites in northeastern China:age and geochemical constraints on their petrogenesis. [J]. Chem. Geol,2002,187:
    [212]. Wu, F.Y., Sun, D.Y., Li, H.M., et al. Zircon U-Pb ages of the basement rocks beneath the Songliao Basin, NE China[J]. Chinese Science Bulletin,2000b,45:1514-1518.
    [213]. Wu, F.Y., Sun, D.Y., Li, H.M., et al. The nature of basement beneath the Songliao Basin in NE China:geochemical and isotopic constraints.[J]. Phys. Chem. Earth (part A),2001,26: 793-803.
    [214]. Wu, F.Y., Walker, R.J., Yang, Y.H., et al. The chemical-temporal evolution of lithospheric mantle underlying the North China Craton[J]. Geochimica et cosmochimica acta,2006,70: 5013-5034.
    [215]. Wu, F.Y., Yang, J.H., Lo, C.H., et al. The Jiamusi Massif:a Jurassic accretionary terrane along the western Pacific margin of NE China[J]. Island Arc,2007,16:
    [216]. Wu, F.Y, Sun, D.Y, Jahn, B.M, et al.A Jurassic garnet-bearing granitic pluton from NE China showing tetrad REE patterns[J]. Journal of Asian Earth Sciences,2004,23:731-744.
    [217]. Wu, F.Y., Lin, J.Q., Wilde, S.A., et al.Nature and significance of the Early Cretaceous giant igneous event in eastern China[J]. Earth and Planetary Science Letters,2005,233:103-119.
    [218]. Wu, F.Y., Sun, D.Y., Ge, W.C., et al. Geochronology of the Phanerozoic granitoids in northeastern China[J]. Journal of Asian Earth Sciences,2011,41:1-30.
    [219]. Wulff-Pedersen, E., Neumann, E.R., Vannucci, R., et al. Silicic melts produced by reaction between peridotite and infiltrating basaltic melts:ion probe data on glasses and minerals in veined xenoliths from La Palma, Canary Islands[J]. Contributions to Mineralogy and Petrology, 1999,137:59-82.
    [220]. Xu, X.S., O'Reilly, S.Y., Griffin, W.L., et al. Genesis of Young Lithospheric Mantle in Southeastern China:an LAM-ICPMS Trace Element Study[J]. Journal of Petrology,2000,41: 111-148.
    [221]. Xu, X.S., O'Reilly, S.Y., Griffin, W.L., et al.Enrichment of upper mantle peridotite:petrological, trace element and isotopic evidence in xenoliths from SE China[J]. Chemical Geology,2003, 198:163-188.
    [222]. Xu, Y.G. Thermo-tectonic destruction of the archaean lithospheric keel beneath the sino-korean craton in china:evidence, timing and mechanism[J]. Physics and Chemistry of the Earth,Part A: Solid Earth and Geodesy,2001,26:747-757.
    [223]. Xu, Y.G. Lithospheric thinning beneath North China:A temporal and spatial perspective[J]. Geological Journal of China Universities,2004,10:324-331.
    [224]. Xu, Y.G., Blusztajn, J., Ma, J.L., et al. Late Archean to Early Proterozoic lithospheric mantle beneath the western North China craton:Sr-Nd-Os isotopes of peridotite xenoliths from Yangyuan and Fansi[J]. Lithos,2008,102:25-42.
    [225]. Yang, W., and Li, S.G. Geochronology and geochemistry of the Mesozoic volcanic rocks in Western Liaoning:Implications for lithospheric thinning of the North China Craton[J]. Lithos, 2008,102:88-117.
    [226]. Yang, Y.H., Zhang, H.H., Chu, Z.Y., et al. Combined chemical separation of Lu, Hf, Rb, Sr, Sm and Nd from a single rock digest and precise and accurate isotope determinations of Lu-Hf, Rb-Sr and Sm-Nd isotope systems using Multi-Collector ICP-MS and TIMS[J]. International Journal of Mass Spectrometry,2010,290:120-126.
    [227]. Yaxley, G.M., Crawford, A.J., and Green, D.H. Evidence for carbonatite metasomatism in spinel peridotite xenoliths from western Victoria, Australia[J]. Earth and Planetary Science Letters,1991,107:305-317.
    [228]. Yaxley, G.M., Green, D.H., and Kamenetsky, V. Carbonatite Metasomatism in the Southeastern Australian Lithosphere[J]. Journal of Petrology,1998,39:1917-1930.
    [229]. Yu, S.Y., Xu, Y.G., Huang, X.L., et al. Hf-Nd isotopic decoupling in continental mantle lithosphere beneath Northeast China:Effects of pervasive mantle metasomatism[J]. Journal of Asian Earth Sciences,2009,35:554-570.
    [230]. Zangana, N., Downes, H., Thirlwall, M., et al. Geochemical variation in peridotite xenoliths and their constituent clinopyroxenes from Ray Pic (French Massif Central):implications for the composition of the shallow lithosphere mantle.[J]. Chemical Geology,1999,153:11-35.
    [231]. Zhang, H.F, Ying, J.F, Xu, P., et al. Mantle olivine xenocrysts entrained in Mesozoic basalts from the North China craton:Implication for replacement process of lithospheric mantle[J]. Chinese Science Bulletin,2004,49:961-966.
    [232]. Zhang, H.F. Transformation of lithospheric mantle through peridotite-melt reaction:A case of Sino-Korean craton[J]. Earth and Planetary Science Letters,2005,237:768-780.
    [233]. Zhang, H.F., Goldstein, S.L., Zhou, X.H., et al. Evolution of subcontinental lithospheric mantle beneath eastern China:Re-Os isotopic evidence from mantle xenoliths in Paleozoic kimberlites and Mesozoic basalts[J]. Contributions to Mineralogy and Petrology,2008a,155:271-293.
    [234]. Zhang, H.F., Nakamura, E., Sun, M., et al. Transformation of subcontinental lithospheric mantle through peridotite-melt reaction:evidence from a highly fertile mantle xenolith from the North China craton[J]. International Geology Review,2007,49:658.
    [235]. Zhang, H.F., Sun, M., Zhou, X.H., et al. Mesozoic lithosphere destruction beneath the North China Craton:evidence from major-, trace-element and Sr-Nd-Pb isotope studies of Fangcheng basalts[J]. Contributions to Mineralogy and Petrology,2002,144:241-254.
    [236]. Zhang, H.F., Sun, M., Zhou, X.H., et al. Secular evolution of the lithosphere beneath the eastern North China Craton:evidence from Mesozoic basalts and high-Mg andesites[J]. Geochimica et cosmochimica acta,2003,67:4373-4387.
    [237]. Zhang, J.H., Gao, S., Ge, W.C., et al.Geochronology of the Mesozoic volcanic rocks in the Great Xing'an Range, northeastern China:Implications for subduction-induced delamination[J]. Chemical Geology,2010,276:144-165.
    [238]. Zhang, J.H., Ge, W.C., Wu, F.Y., et al. Mesozoic bimodal volcanic suite in Zhalantun of the Da Hinggan Range and its geological significance:zircon U-Pb age and Hf isotopic constraints[J]. Acta Geol. Sin.,2006,80:58-69.
    [239]. Zhang, J.H., Ge, W.C., Wu, F.Y., et al. Large-scale Early Cretaceous volcanic events in the northern Great Xing'an Range, Northeastern China[J]. Lithos,2008b,102:138-157.
    [240]. Zhang, M., Suddaby, P., O'Reilly, S.Y., et al. Nature of the lithospheric mantle beneath the eastern part of the Central Asian fold belt:mantle xenolith evidence[J]. Tectonophysics,2000, 328:131-156.
    [241]. Zhang, M., Suddaby, P., Thompson, R.N., et al. Potassic rocks in NE China:Geochemical constraints on mantle source and magma genesis[J]. Journal of Petrology,1995,36: 1275-1303.
    [242]. Zhang, M., Zhou, X.H., and Zhang, J.B. Nature of the lithospheric mantle beneath NE China: evidence from potassic volcanic rocks and mantle xenoliths[J]. In:Flower M.F.J., Chung SL, Lo CH., Lee TY. (Eds.). Mantle Dynamics and Plate interactions in East Asia. AGU Geodynamics Series,1998,27:197-21.
    [243]. Zheng, J.P., Griffin, W., O'Reilly, S., et al. Mechanism and timing of lithospheric modification and replacement beneath the eastern North China Craton:Peridotitic xenoliths from the 100 Ma Fuxin basalts and a regional synthesis[J]. Geochimica et cosmochimica acta,2007,71: 5203-5225.
    [244]. Zheng, J.P., Lu, F.X., O'Reilly, S.Y., et al. Comparison between Paleozoic and Cenozoic lithospheric mantle in the eastern part of the North China block:with a discussion of mantle evolution[J]. Acta Geol.Sinica,73:47-56,1999,
    [245]. Zheng, J.P., O'Reilly, S.Y., Griffin, W.L., et al. Nature and evolution of Cenozoic lithospheric mantle beneath Shandong Peninsula, Sino-Korean craton, eastern China[J]. International Geology Review,1998,40:471-499.
    [246]. Zheng, J.P., O'Reilly, S.Y., Griffin, W., et al. Relict refractory mantle beneath the eastern North China block:significance for lithosphere evolution[J]. Lithos,2001,57:43-66.
    [247]. Zheng, J.P., Griffin, W.L., O'Reilly, S.Y., et al. A refractory mantle protolith in younger continental crust, east-central China:Age and composition of zircon in the Sulu UHP peridotite[J]. Geology,2006a,34:705-708.
    [248]. Zheng, J.P., Griffin, W.L., O'Reilly, S.Y., et al. Zircons in mantle xenoliths record the Triassic Yangtze-North continental collision [J]. Earth and Planetary Science Letters,2006b,247: 130-142
    [249]. Zou, H.B, Reid, M.R., Liu, Y., et al. Constraints on the origin of historic potassic basalts from northeast China by U-Th disequilibrium data[J]. Chemical Geology,2003,200:189-201.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700