甘蓝型黄籽油菜油份与色素、蛋白质及糖代谢间关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1、甘蓝型黄籽油菜油分合成特点 在种子发育不同时期,测定甘蓝型油菜黄、黑籽种子的含油量、琥珀酸脱氢酶(SDH)、异柠檬酸脱氢酸(IDH)和异柠檬酸裂解酶(ILY)的活性;比较黄、黑籽之间含油量以及这三种酶的动态变化的差异,结果表明,在种子发育初期,黄、黑间含油量无明显差异,随着种子不断成熟,黄、黑籽油分快速积累,黄籽积累速度快于黑籽。种子成熟时,黄籽种子含油量高于黑籽,达到显著差异。在种子发育初期,SDH、IDH和ILY活性较低,随着种子发育,三种酶活性迅速增强,在开花31天后三种酶活性达到持续稳定高峰期。其中SDH在开花41d后略有下降,黄、黑籽间差异明显。当种子成熟时,黄、黑籽间SDH活性无明显差异。IDH活性也是在31至41期间达到稳定高峰期,黄籽高于黑籽,差异极明显。开花后41天,黄籽IDH活性是黑籽的2倍。种子成熟时,黄、黑籽间IDH活性差异明显,表明IDH活性对最终种子油份含量起很重要的作用。ILY活性在开花27天后,黄、黑籽均呈现明显上升趋势,黄、黑籽ILY活性达到最大值,黄籽峰值平均为黑秆的2.8倍,黄、黑籽间差异明显。开花34—41期间,ILY活性为持续稳定高峰期,黄籽始终高于黑籽,当种子成熟时,黄籽ILY活性为黑籽的3.2倍,差异明显。
     用SDH抑制剂——丙二酸(PTS)和苹果酸钠(OAN)处理植株,发现种子含油量减少。相关分析表明,种子含油量与SDH和ILY活性是显著正相关,与IDH是不显著正相关,说明SDH和ILY对种子油份合成有直接影响。
     2、甘蓝型黄籽油菜合油量与粒色关系 在种子形成过程中,分别以油分、色素及其相关合成酶的抑制剂处理植株,结果发现,油分合成抑制剂四氢呋喃(FHH)和SDH抑制剂(PTS和OAN)种子含油量减少,种皮黑色素和花色素含量增加,油分合成促进剂(LMS)处理植株,种子含油量增加,种皮黑色素和花色素含量减少,色素合成抑制剂亚硫酸钠(YSS)以及多酚氧化酶(PPO)抑制剂——二乙基二硫代氨基甲酸钠(TSA)利聚乙烯吡咯烷酮(PVP)、苯丙氨酸解氨酶活性(PAL)抑制剂——对一羟基苯甲酸钠(DBA)和过氧化物酶(POD)抑制剂(Vc)处理植株,种子含油量增加,而种皮黑色素和花色素含量减少。
     相关分析表明,种子含油量与种皮花色素含量呈显著负相关,与种皮黑色素含量呈极显著负相关。
     3、甘蓝型黄籽油菜含油量与蛋白质的关系 以蛋白质抑制剂——盐酸林可霉素(HLN)处理植株,种子含油量增加,蛋白质含量减少,油分合成抑制剂(FHH)处理植株,种子含油量减少,蛋白质含量增加,油分合成促进剂(LMS)处理植株,种子含油量增加,蛋白质含量减少。相关分析表明,种子含油量与蛋白质呈显著负相关。
     4、甘蓝型黄籽油菜与糖份的关系 以油分合成抑制剂(FHH)处理植株,种子含油量和糖份含量均减少,以油分合成促进剂——柠檬酸(LMS)处理植株,种子含油量和糖份含量均增加,以糖份合成抑制剂——正磷酸钠(NPO)处理植株,种子含油量和糖份含量均减少。相关分析表明,种子含油量与糖份含量呈不显著正相关。
     5.不同时期不同化学调控剂处理对甘蓝型黄籽油菜相关品质的影响 在种子成熟收获前1周,收获前1天以及种子脱粒后,用7组不同化学调控剂处理植株或种子,结果表明,不同时期
    
     西南农业大学硕士学位论文
    一.嗯旦月目户腆喃孺钾典点...~口...口.里.里里.里.目国.口目目
    不同化学调控剂处理对种子含油量、黄籽度,蛋白质含量均有影响。
     对含油量的影响:收获前1周以2%亚硫酸钠和lg.L一’vC混合液、0.5%柠檬酸和lg.t-lvc
    混合液、1%柠檬酸以及2%亚硫酸钠处理植株,种子含油量均提高,只有2%亚硫酸钠和lg.L-IVc
    混合液处理植株达到显著水平。收获前1天处理中,0.5%柠檬酸和lg.U,vc混合液、2%亚硫
    酸钠和lg.L’,vc混合液处理植株,种子含油量均提高。种子发育不同时期各种处理中,收获
    前1天2%亚硫酸钠十vc lg.L一’混合液处理植株,种子含油量提高最多。种子脱粒后各种处理,
    种子含油量均提高。与对照比较,以1%柠檬酸使种子含油量提高最多。
     对黄籽度的影响:收获前1周和收获前l大所有处理黄籽度均有不同程度提高,以收获
    前1天2%亚硫酸钠和1 g.L一,vc混合液处理提高黄籽度最佳,为4.8,达极显著水平。收获脱
    粒后,所有处理黄籽度均有提高,以1%柠檬酸处理植株,黄籽度提高最多,达4.9,为极显
    著水平。
     对蛋白质的影响:所有处理种子蛋白质含量均有变化,其中以收获前1周lg.L一,vc,种
    子蛋白质含量增加最大,达1.8%。以收获前1周2%亚硫酸钠和lg.L一1 vc混合液处理植株,
    种子蛋白质含量减少最多,在一2.4%。
     对发芽率的影响:不同时期不同处理对发芽率均无明显影响。
     综上所述,种子发育不同时期各种处理中,收获前1天以2%亚硫酸钠和lg.L一’vc混合液
    提高含油量同时提高黄籽度的最佳化学调控剂。种子脱粒后各种处理,以1%柠檬酸为提高含
    油量和黄籽度的最佳化学调控剂。
Yellow-seeded rape (Brassica napus L.) is characterized with thinner seedcoat, higher oil and protein content and lower fiber compared with black ones under the same genetic background . Many researchers obtained the same conclusion through their studies that the content of protein and oil content is negatively related with the luster of the testa..On the other hand, the heredity of the testa color is not unstable.Based on this,we tried to understand the metabolism pathway containing the pigment,protein and carbohydrate through chemistry regulation using three pairs of near-isogenic lines of black- and yellow-seeded rape as experiment materials.The results are as follows:
    1 .Characteristic of lipid synthesis in rape: The dynamic variation of activity of many enzymes such as SDH,IDH,ILY and oil content were measured and the difference between the two types rape was analysed. The oil content in the yellow- was not significantly different from the black-seeded lines at the early development stage. With the maturation of the seeds,the oil bagan to accumulate quickly, what's more, the accumulation in the yellow- was faster than that of black ones.After maturation,the oil content in the yellow- was obviously higher than that in yellow-ones. The activity of the enzymes (SDH,IDH,ILY) was low at the early period of development, then they increased and reached the maxium in 31 days after flowering. The changes in the content of SDH,IDH and ILY was very obvious between yellow- and black-seeded in seed and the difference was up to significant level. However,the difference among variety was not obvious. The difference of SDH,1DH and ILY in seed was significant level when seed was
     in maturity between yellow- and black-seeded in seed. Correlation analysis between one group of enzymes(SDH,IDH and ILY) and oil content was done.
    2 The correlation coefficient between oil content and enzymes including SDH and ILY was positive,it is no positive between oil content and IDH,which suggested that SDH and ILY affected oil content of rapeseed.While the activity of SDH enzyme was repressed ,the oil content was decrease. We utilized FHH to repress oil synthesize ,the oil content also was drop.Citric acide promoted oil synthesize.
    3 Relationship between oil content and protein was as followsrthe oil content was increase but protein decreas after treatment of rape with protein(HLN) and oil regulaters(LMS). :the oil content was decrease but protein increas after treatment of rape with oil regulaters(FHH). Correlation analysis between oil content and protein indicated that oil content was negative correlation with
    
    
    protein.
    4 Relationship between oil content and sugar was as follows:the oil content and sugar was delining after treatment of rape with FHH and NPO respectively,while treated with LMS.the oil content and sugar was increase.it showed no significant correlation by variance analysis.
    5 Effect of treatment with chemical regulations during different time on rapeseed.the time was 7days and 1day before mature and after harvest.the plant or seed were treated with 7chemical regulaters.The results are as follows:
    The effect of chemical regulaters on oil content of rapeseed:special chemical regulators.such as citric acide.sodium sulfite and Vc could improve oil content of rapeseed, the mixture of 2% sodium sulfite and Ig.L'1 Vc had the best effect among 7 groups of chemical regulators in lday before gaining,which improve oil content of rapeseed . All those regulators in the experiment could improve oil content of threshing seed of yellow-seeded rapeseed,but 1% citric acide had the best effect among 7 groups of chemical regulators.
    The effect of chemical regulaters on yellow-seeded degree of rapeseed: the mixture of 2% sodium sulfite and 1g.L-1 Vc had the best effect among 7 groups of chemical regulators in lday before gaining,which improve yellow-seeded degree of yellow-seeded rapeseed. All those regulators in the experiment could improve yellow-seeded degree of yellow-seeded rapeseed of threshin
引文
白宝樟.植物生理学测试技术.中国科学技术出版社,1993
    陈俊意,梁颖.甘蓝型油菜种子油份积累机理研究进展.西南农业大学大学学报,2003,25(20):55—57
    陈玉萍.甘蓝型油菜种子发育进程中种皮色素含量动态变化.中国油科,1994,16(4)13—16
    董遵,刘敬阳.我国甘蓝型黄籽油菜育种研究进展[J].华中农业大学学报,1999,18(6):533—536
    韩继祥.甘蓝型油菜含油量的遗传研究.中国油料1990(2):1—6
    李加纳,张学昆,湛利等.不同遗传背景甘蓝型黄籽油菜粒色遗传初步[J]中国油料作物学报.1998,20(4):16—19
    李敏,张瑞茂.甘蓝型黄籽油菜果位分布和农艺措施与粒色相关性的研究[J].耕作与栽培,1999(5):26—29
    李殿融,田建华.甘蓝型油菜黄籽基因的发现和黄籽杂交种的选育.中国作物学公油料专业委员会第四次全国会员代表大会学术论文摘要[M],2000,30—31
    梁颖.李加纳.甘蓝型油菜种皮色泽形成与相关酶及蛋白质含量的关系[J].中国农业科学,2004,37(4):446-451
    梁颖,李加纳.红光和蓝光对甘蓝型油菜黄籽和黑籽粒色的影响.中国油料作物学报,2003,25(1):21-24
    梁艳丽,梁颖,李加纳.甘蓝型黄、黑籽油菜种皮特性比较研究.中国油料作物学报,2002,24(4):14-18
    梁艳丽,梁颖.甘蓝型黄籽与黑籽种皮以多酚及PPO的比较.西南农业学报,2002,24(2):128—130
    刘后利.油菜遗传育种学[M],农业出版社.1993,216
    刘后利.甘蓝型黄籽油菜的遗传研究[J].作物学报,1992,18(4):241—249
    刘吕智.氮、磷、钾对油菜籽产量、蛋白质和含油量的影响[J].中国油料,1982(3):25—29。
    王庆仁.大田追施硫肥对双低油菜产量与品质的影响[J].中国油料,1997,19(1):53—57
    王庆仁.硫肥对双低油菜产量与品质的影响.植物营养与肥料学报,1996,(2)46—5
    王汉中,刘后利.甘蓝型油菜黄籽和黑籽皮壳中花色素,多酚、苯丙氨酸含量和PAL酶活性的变异.华中农业大学学报,15(6):509—513
    王汉中,刘后利.甘蓝型油菜粒色与种子相关性状间的关系研究.中国油料.1989,11(2)32—35
    王三根主编.植物生理研究技术,西南农业大学,2000
    许智宏,刘春明.色素基因的表达和调控[M].北京:科学出版社,1998。107—119
    肖达人,刘后利.甘蓝型油菜种皮与种子含油量的相关分析.作物学报,8(4):245—254
    杨玉爱,徐和昆.硼、氮、钾营养水平对油菜籽粒品质及产量的影响.中国农业科学,1989,(1):44—51
    
    
    赵成松,李强生.白菜型油菜黄、黑籽间种皮和胚中蛋白质含量及其他组份的比较研究.作物学报,1994。20(1):114—118
    周伟军,徐光华.油菜高油分育种的前景与问题探讨.科科通报,1995,11(6):361—364
    周旭章,魏开华.从黑芝麻中提取黑色素的研究[J].林产化工通讯,1997,417—19
    邹国林,朱汝番.武汉大学出版社,1997
    朱利泉主编.基础生物化学试验原理与方法,成都科技大学出版社,1993
    张宪政.作物生理研究法.北京,中国农业出版社,1990
    张志良.植物生理学实验指导.北京,高等教育出版社,1990
    张子龙,李加纳.甘蓝型黄籽油菜粒色遗传及其育种研究进展[J].作物杂志,2001(6):37—40
    钟黔湘.影响甘蓝型油菜黄籽频率的若干因素[J].中国油料,1991,13(2):85—36,90
    上海植物生理学会,植物生理学测试手册.上海科技出版社 1991
    实验室实用化学试剂手册,山东科学技术出版社.350—354
    Alban c, Baldet P, Douce R(1994) localization and characterization of two structurally different forms of acety-COA carboxy-lase in young pea leaves, of which one is sensitive to aryloxy-phenoxypropionat her bicides, Biochem J 300:557-565
    Asthana A N. Breeding of improved yellow-seeded Indian mustard [J]. Ind J Genet Plant Breed, 1975,35(1):49-53.
    Bloch, K. and Vance, D.E.control nechanisins in the synthesis of saturafed futty acids. Ann. Rev.Biochem.1977,46-263
    Bonner JPBD(1996) Molecular cloning of a CDNA encoding 3-ketoacyl carrier profein synthase Ⅲ from leek, Gene 182:45-52.
    Clough RC, Matthis AL, Barnum SR, Jaworski JG(1992) Puritication and characterixation of 3-ketoacylacyl carrier protein synthase-Ⅲ from spinach a condensing enzyme utilizing a cetyl-coenzyme-A to imitate fatty acid synthesis J Biol Chem 267 : 20992-20998
    Dehaye L, Alban C, Jobc, Douce R, JobD(1994) Kinetics of the two forms of acety1-COA carboxylase from pisum safivum correlation of the substrat specificity of the enzymes and sensitivity towards aryloxyphenoxyp ropionat herbiciches. Eur J Biochem 225:1113-1123
    Dixon R A, Dey P N, Lamb C J, Phytoalexins:Molecular biology and enzymology[J]. Adv Enzymol Relat Areas Mol Biol, 1983,55:1-35
    Dooner, H.K Weck. E. Adams. A mole cular genetic of insertions in the vrohza locus in maize. Mol Gen Genet, 1985. 200:240-246
    Dormann P, Voelker TA, Ohlrogge JKB, 1995. Cloning and expression in Escherichia coli of a novel thioesterase from Arbidopsis thaliana specific for long-chain acyl-acyl carrier proteins, Arch Biochem Biophys.316:612-8
    Dormann P, voelker TA, Ohlrogge J, 2000 Accumulation of palmitate in Arabidopsis mediated by the acyl-acyl carrier protein thioesterase FATB1. plat physiol 123:637-43
    
    
    Eccleston V, Cranmer A, Voelker T, Ohlrogge J1996. medium-chain fatty acid biosynthesis and utilization in Brassica napus plants expressing lauroyl-acyl carrier protein thioesterase Planta 198:46-3
    Elborough KM, Swinhoe R, Win2 R, Kroon JTM Farnsworth L, Fawcett T, Martine2 Rivas JM, Slabas AM(1994) Isolation of cDNAS from Brassica napus encodiny the biotinbinding and transcarboxylase domains of acetyl-COA corboxylase:assign-ment of the domain structure in a full-length Arab:dopsis genomic cbne.Biochem J301:599-605
    Forkmann, G Precursors and genetic control of unthocyanin synthesis in Motthiola incana R.Br. Planfa, qouu, 137(2):159-163
    Frankel EN 1982, Volatile lipid oxidation products. Prog. Lipid Res 22:1-33
    Frentzen M, 1998. Acyltransferases from basic science to modified seed oils. Fett/Lipid 100:161-66
    Frentzen M, 1993. Acyltransferases from basic cience to modified seed oils. Fett/Lipid.100:161-66
    Frentzen M, Wolter FP. 1993. Molecular biology of acyltransferases involved in glycerolipid biosynthesis. In Biosynthesis Fundamental and Agricultural Applications, ed. JL Harwood, pp247-72. Cam-bridge: Univ. Press
    Forkmann G. Flavonoids as flower pigments:the formation of the natural spectrum and its extension by genetic engineerin[J]. Plant Breeding, 1991,106:1-26.
    Girke T, Sperling P, Heinz E 1998. Cloning of desaturases with new specificities. Ref.99a, pp103-9
    Girke T, Sperling P, Heinz E 1998. Cloning of desaturases with new specificities. Ref .99a, pp103-9
    Gurr MI, Blades J, Appleby R, 1972. Studies on seed-oil triglycerides: the compostition of Crambe abyssinica triglycerides during seed maturation Eur.J. Biochem. 29:362-68
    Haigh WG, Morris L J, James AT, 1968. Acetylenic acid biosynthesis in Crepis rubra Lipids 3:307-12
    Hakomori S, 1983. Chmistry and glycosphingolipids. In Handbook of lipid Research, ed JN Kanfer,S Hakomori, 3:1-165 New York Plenum
    Hamberg M, Hamberg G. 1996. Peroxy-genase-catalyzed fatty acid epoxidation in cereal seeds, Plant Physiol, 110:807-15
    Harwood JL 1988. Fatty acid metabolism. Annu Rev. Plant Physiol Plant Mol Biol. 39:101-38
    Harwood JL 1996 Recent advances in the biosynthesis of plant fatty acids. Biochim biophys. Acta. 130:7-56
    Hawkins DJ, Kridl JC. 1998. Characterization of acyl-ACP thioesterases of mangosteen (Garcinia mangostana) seed and high levels of stearate production in transgenic canola. Plant J. 13:743-52
    Hellyer SA, chandler IC, Bosley JA. 1999 Can the fatty acid selectivety of plant lipases be predicted from the composition of the seed triglyceride? Biochim. Biophys. Acta 1440:215-24
    Herman EM, 1995. Cell and molecular biology of seed oil bodies, In Seed Development and Germination, ed. J Kigel, G Galili, ppl95-214. New york:Marcel Dekker
    Hilditch TP, Williams PN. 1964. The Chemical Consitution of Natural Fats. London:Chapman&HallHitz WD 1998 U, S, Patent No 5846784
    
    
    Huang a. 1996. Oleosins and oil bodies in seeds and other organs. Plant Physiol. 110:1055-61
    James DW, Lime E, Keller J, Plooy, I, Ralston E, Dooner HK. 1995. directed tagging of the Arabidopsis FAEI gene with the maize transposon activator Plant Cell 7:309-19
    Jaworski JG, Post-Beittenmiller D, Ohlrogger JB(1993) Adcetyl-acyl carrier protein is not a major intermediate in fatty acid biosynthesis in spinach. Eur J Biochem 213:981-937.
    Jones D H. Phenylalanine ammonia-lyase: regulation of its inductio, and its role in plant development[J]. Phytochemistry, 1984,23,1349-1359.
    Jonsson R. Breeding for improved oil and meal quality in rape (Brassica napus L.) and turnip rape (Brassica campestris L.)[J]. Hereditas, 1977,87:205-218.
    Kader F; Rovel B; Girardin M; Metche M Mechnnism of browning in fresh highbush blueberry fruit (Vaccinium corymbosum L). Role of blueberry polyphenol oxidase, chlorogenic acid and anthocyanins, Journaof the Science of Food and Agriculfure, 74(1):31-34
    Kauppinen S, Siggaard-Anderson M, von Wettstein-knoneles P(1988) β-ketoacyl-ACP synthase of the fub B gene and identificadtion of the cerulenin binding residue, Carlsberg Res Commun 53:357-370.
    Mason HS The chemistry of melanin Ⅲ Mechanism of the oxidation of dihydroxyphen ylalanine by tyrosinase [J] J Biol chem., 948;172:83-89
    Microanalysis of Eumelanin and pheomelanin in Hair and Mblanoma by Chemical degredation and Liquid Chromatography. Analytical Biochemistry 144:527-536.
    Munishi S K, Kumari Anita. Meationship of podwall with lipid biosynthsis in developing musfard seeds. Plant physwiol and Biochem, 1997, 24(1):51-57
    Ohlrogge JB, Jaworski JG, Post-Beitlenmiller D(1993) De novo fatty acid biosynthesis. In TS Moore, ed, Lipid Metabolism in plants. CRC, Boca Raton, FL, pp3-32.
    Page RA, okada S, Harwood JL(1994) Acetyl-COA carboxylase exerts strong flux control over lipid synthesis in plants Bio chim Biophys Acta 1210:369-372
    Pirie A, Mullins M G. Chenges in anthocyanin and phenolics content of grapevine leaf and fruit tissue treated with sucrose, nitrate and abscisic acid[J]. Plant Physiol, 1976,58:468-472.
    Pomerant2 SH Separation, purification and properties of two tyrosinase from hamaser melanoma [J] J Biol Chem. 1963;238:2351-2356.
    Russell Tkachuk and F.Dkuzina. Rapeseed:Relations between some physical and chemical properties. Canadian Journal of plant science, 1975,169-174
    Schulte W, Schel,J, Topfer R(1994)A gene encoding acetyl-coenzyme A carboxylase from Brassica napus. Plant physiol 106:793-794
    Wanner G et al. The antogeny of bodies in plunt cells. Planta 1981, 151:109-123
    Woods D L. The association of yellow-seed color with other characters 1 mustard(Brassica juncea) [J].Cruciferae Newsletter, 1980,t:23-24.
    Wurtele ES, Nikolau BJ(1990) Plants contain multiple biotin enzymes-discovery of 3-methylcrotonyl-COA carboxylase, propionyi COA carbxylase and pyruvat carboxylase in the plant
    
    kingdom. Arch Biochem Biophys 278:179-186
    Yue G, Pering S K, Walter T Let al, Stab:lity analysis of yield in maize, wheat and sorghum and its implications in breeding programs, Plant Breeding 1990,104(1)74-84.
    Zucker M. Light and its relation to chloogenic acid synthesis in patato trber tissue[J]. Plant Physiol,1965,40:779-784.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700